inst.eecs.berkeley.edu/~cs61c CS61C: Machine Structures

Lecture #16 – Representations of Combinatorial Logic Circuits

2007-7-23

Scott Beamer

Instructor

Plug-in Hybrid Upgrades Available

sfgate.com

Review

- We use feedback to maintain state
- Register files used to build memories
- D-FlipFlops used to build Register files
- Clocks tell us when D-FlipFlops change
 - Setup and Hold times important

TODAY

- Representation of CL Circuits
 - Truth Tables
 - Logic Gates
 - Boolean Algebra

Truth Tables

a	b	c	d	y
0	0	0	0	F(0,0,0,0)
0	0	0	1	F(0,0,0,1)
0	0	1	0	F(0,0,1,0)
0	0	1	1	F(0,0,1,1)
0	1	0	0	F(0,1,0,0)
0	1	0	1	F(0,1,0,1)
0	1	1	0	F(0,1,1,0)
0	1	1	1	F(0,1,1,1)
1	0	0	0	F(1,0,0,0)
1	0	0	1	F(1,0,0,1)
1	0	1	0	F(1,0,1,0)
1	0	1	1	F(1,0,1,1)
1	1	0	0	F(1,1,0,0)
1	1	0	1	F(1,1,0,1)
1	1	1	0	F(1,1,1,0)
1	1	1	1	F(1,1,1,1)

TT Example #1: 1 iff one (not both) a,b=1

a	b	y
0	0	0
0	1	1
1	0	1
1	1	0

TT Example #2: 2-bit adder

Α	В	C
a_1a_0	b_1b_0	$c_2c_1c_0$
00	00	000
00	01	001
00	10	010
00	11	011
01	00	001
01	01	010
01	10	011
01	11	100
10	00	010
10	01	011
10	10	100
10	11	101
11	00	011
11	01	100
11	10	101
11	11	110

How Many Rows?

TT Example #3: 32-bit unsigned adder

A	В	C
000 0	000 0	000 00
000 0	000 1	000 01
•	•	• How
•	•	. Many Rows?
•	•	•
111 1	111 1	111 10

TT Example #3: 3-input majority circuit

a	b	c	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logic Gates (1/2)

ab 00 **AND** 01 10 ab 00 OR 01 10 11

And vs. or review - Dan's mnemonic

AND Gate

Symbol

A B AN

Definition

A	В	C
0	0	0
0	1	0
1	0	0
1	1	1

Logic Gates (2/2)

	$a \rightarrow r$	ab	c
	·))	00	0
XOR	5 1	01	1
		10	1
		11	0
	a - N	ab	c
	L D-C	00	1
NAND	D —	01	1
		10	1
		11	0
	$a \rightarrow \sum$	ab	c
	P - D	00	1
NOR		01	0
		10	0
		11	0

2-input gates extend to n-inputs

- N-input XOR is the only one which isn't so obvious
- It's simple: XOR is a
 1 iff the # of 1s at its
 input is odd ⇒

a	b	c	y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Administrivia

- Midterm TONIGHT 7-10pm in 10 Evans
 - Bring
 - Pencils/pens
 - One 8.5"x11" sheet of notes
 - Green Sheet (or copy of it)
 - Don't bring calculators (or other large electronics)
- Assignments
 - HW5 due 7/26 (up today)
 - HW6 due 7/29

Truth Table ⇒ **Gates** (e.g., majority circ.)

a	b	c	y	_
0	0	0	0	-
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	y y
1	0	1	1	
1	1	0	1	
1	1	1	1	

Truth Table ⇒ Gates (e.g., FSM circ.)

PS	Input	NS	Output	151
00	0	00	0	PSO DO OUTPUT
00	1	01	0	INPUT -
01	0	00	0	or oquivalently
01	1	10	0	or equivalently
10	0	00	0	PS ₁
10	1	00	1	PSO OUTPUT
				INPUT - OUTTOI

100

Boolean Algebra

- George Boole, 19th Century mathematician
- Developed a mathematical system (algebra) involving logic

- later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- The power of BA is there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA

+ means OR, • means AND, x̄ means NOT

Boolean Algebra (e.g., for majority fun.)

$$y = a \cdot b + a \cdot c + b \cdot c$$

 $y = ab + ac + bc$

Boolean Algebra (e.g., for FSM)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

or equivalently...

$$y = PS_1 \cdot \overline{PS_0} \cdot INPUT$$

BA: Circuit & Algebraic Simplification

$$y = ((ab) + a) + c$$

$$\downarrow = ab + a + c$$

$$= a(b+1) + c$$

$$= a(1) + c$$

$$= a + c$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

original circuit

equation derived from original circuit

algebraic simplification

BA also great for circuit <u>verification</u>
Circ X = Circ Y?
use BA to prove!

simplified circuit

Laws of Boolean Algebra

$$x \cdot \overline{x} = 0$$

$$x \cdot \overline{x} = 1$$

$$x \cdot 0 = 0$$

$$x + 1 = 1$$

$$x \cdot 1 = x$$

$$x \cdot x = x$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

$$(xy)z = x(yz)$$

$$x(y + z) = xy + xz$$

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$x(y + z) = xy + xz$$

$$x + yz = (x + y)(x + z)$$

$$xy + x = x$$

$$xy + x = x$$

$$xy + x = x$$

$$x + yz = (x + y)(x + z)$$

$$xy + x = x$$

$$x + yz = (x + y)(x + z)$$

$$xy + x = x$$

$$x + yz = (x + y)(x + z)$$

$$xy + x = x$$

$$x + yz = (x + y)(x + z)$$

$$xy + x = x$$

$$x + yz = x$$

$$x +$$

complementarity
laws of 0's and 1's
identities
idempotent law
commutativity
associativity
distribution
uniting theorem
DeMorgan's Law

Boolean Algebraic Simplification Example

$$y = ab + a + c$$

 $= a(b+1) + c$ distribution, identity
 $= a(1) + c$ law of 1's
 $= a + c$ identity

Canonical forms (1/2)

$\overline{a} \cdot \overline{b} \cdot \overline{c}$	abc 000	$\begin{vmatrix} y \\ 1 \end{vmatrix}$	
$\overline{a} \cdot \overline{b} \cdot c$	001	1	
	010	0	
	011	0	
$a \cdot \overline{b} \cdot \overline{c}$	100	1	
	101	0	
$a \cdot b \cdot \overline{c}$	110	1	
	111	0	
		-	

Sum-of-products (ORs of ANDs)

Canonical forms (2/2)

$$y = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}c + a\overline{b}\overline{c} + ab\overline{c}$$

$$= \overline{a}\overline{b}(\overline{c} + c) + a\overline{c}(\overline{b} + b)$$

$$= \overline{a}\overline{b}(1) + a\overline{c}(1)$$

$$= \overline{a}\overline{b} + a\overline{c}$$

distribution complementarity identity

Peer Instruction

- A. $(a+b) \cdot (\bar{a}+b) = b$
- B. N-input gates can be thought of cascaded 2-input gates. I.e., (a Δ bc Δ d Δ e) = a Δ (bc Δ (d Δ e)) where Δ is one of AND, OR, XOR, NAND
- C. You can use NOR(s) with clever wiring to simulate AND, OR, & NOT

ABC

1: FFF

2: **FFT**

3: **F**T**F**

4: FTT

5: **TFF**

6: **TFT**

7: **TTF**

8: TTT

Peer Instruction Answer

- A. $(a+b) \cdot (\bar{a}+b) = b$
- B. N-input gates can be thought of cascaded 2-input gates. I.e., (a Δ bc Δ d Δ e) = a Δ (bc Δ (d Δ e)) where Δ is one of AND, OR, XOR, NAND
- C. You can use NOR(s) with clever wiring to simulate AND, OR, & NOT

ABC

1: FFF

2: **FFT**

3: **F**T**F**

4: FTT

5: **TFF**

6: **TFT**

7: TTF

8: TTT

Peer Instruction Answer (B)

"And In conclusion..."

- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
 - You'll see them again in 150, 152 & 164
- Use this table and techniques we learned to transform from 1 to another

