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Review
•We use feedback to maintain state
•Register files used to build memories
•D-FlipFlops used to build Register files
•Clocks tell us when D-FlipFlops change
•Setup and Hold times important

•TODAY
•Representation of CL Circuits

- Truth Tables
- Logic Gates
- Boolean Algebra



CS61C L16 Representations of Combinatorial Logic Circuits (3) Beamer, Summer 2007 © UCB

Truth Tables

0
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TT Example #1: 1 iff one (not both) a,b=1

011
101
110
000
yba
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TT Example #2: 2-bit adder

How
Many
Rows?
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TT Example #3: 32-bit unsigned adder

How
Many
Rows?
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TT Example #3: 3-input majority circuit
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Logic Gates (1/2)
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And vs. Or review – Dan’s mnemonic

AND Gate

CA
B

Symbol

A B C

0 0 0

0 1 0

1 0 0

1 1 1

Definition

AND
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Logic Gates (2/2)
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2-input gates extend to n-inputs

• N-input XOR is the
only one which isn’t
so obvious
• It’s simple: XOR is a

1 iff the # of 1s at its
input is odd ⇒
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Administrivia

•Midterm TONIGHT 7-10pm in 10 Evans
•Bring
- Pencils/pens
- One 8.5”x11” sheet of notes
- Green Sheet (or copy of it)

•Don’t bring calculators (or other large
electronics)

•Assignments
•HW5 due 7/26 (up today)
•HW6 due 7/29
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Truth Table ⇒ Gates (e.g., majority circ.)
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Truth Table ⇒ Gates (e.g., FSM circ.)

100110
000010
010101
000001
001100
000000

OutputNSInputPS

or equivalently…
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Boolean Algebra

•George Boole, 19th Century
mathematician
•Developed a mathematical
system (algebra) involving
logic
• later known as “Boolean Algebra”

•Primitive functions: AND, OR and NOT
•The power of BA is there’s a one-to-one
correspondence between circuits made
up of AND, OR and NOT gates and
equations in BA

  + means OR,• means AND, x means NOT
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Boolean Algebra (e.g., for majority fun.)

y = a • b + a • c + b • c
y = ab + ac + bc
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Boolean Algebra (e.g., for FSM)

100110
000010
010101
000001
001100
000000

OutputNSInputPS

or equivalently…

y = PS1 • PS0 • INPUT
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BA: Circuit & Algebraic Simplification

BA also great for 
circuit verification
Circ X = Circ Y?
use BA to prove!
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Laws of Boolean Algebra
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Boolean Algebraic Simplification Example
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Canonical forms (1/2)

Sum-of-products
(ORs of ANDs)
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Canonical forms (2/2)
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Peer Instruction

A. (a+b)• (a+b) = b
B. N-input gates can be thought of

cascaded 2-input gates. I.e.,
(a ∆ bc ∆ d ∆ e) = a ∆ (bc ∆ (d ∆ e))
where ∆ is one of AND, OR, XOR, NAND

C. You can use NOR(s) with clever wiring
to simulate AND, OR, & NOT

   ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT
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A. (a+b)•(a+b) = aa+ab+ba+bb = 0+b(a+a)+b = b+b = b TRUE
B. (next slide)
C. You can use NOR(s) with clever wiring to

simulate AND, OR, & NOT.
° NOR(a,a)= a+a = aa = a
° Using this NOT, can we make a NOR an OR? An And?
° TRUE

Peer Instruction Answer

A. (a+b)• (a+b) = b
B. N-input gates can be thought of

cascaded 2-input gates. I.e.,
(a ∆ bc ∆ d ∆ e) = a ∆ (bc ∆ (d ∆ e))
where ∆ is one of AND, OR, XOR, NAND

C. You can use NOR(s) with clever wiring
to simulate AND, OR, & NOT

   ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT
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A.
B. N-input gates can be thought of cascaded 2-input

gates. I.e.,
(a ∆ bc ∆ d ∆ e) = a ∆ (bc ∆ (d ∆ e))
where ∆ is one of AND, OR, XOR, NAND…FALSE

Let’s confirm!

  CORRECT 3-input
XYZ|AND|OR|XOR|NAND
000| 0 |0 | 0 | 1
001| 0 |1 | 1 | 1
010| 0 |1 | 1 | 1
011| 0 |1 | 0 | 1
100| 0 |1 | 1 | 1
101| 0 |1 | 0 | 1
110| 0 |1 | 0 | 1
111| 1 |1 | 1 | 0

  CORRECT 2-input
YZ|AND|OR|XOR|NAND
00| 0 |0 | 0 | 1
01| 0 |1 | 1 | 1
10| 0 |1 | 1 | 1
11| 1 |1 | 0 | 0

     0  0   0   1
     0  1   1   1
     0  1   1   1
     0  1   0   1
     0  1   1   0
     0  1   0   0
     0  1   0   0
     1  1   1   1

Peer Instruction Answer (B)
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“And In conclusion…”

•Pipeline big-delay CL for faster clock
•Finite State Machines extremely useful
•You’ll see them again in 150, 152 & 164

•Use this table and techniques we
learned to transform from 1 to another


