inst.eecs.berkeley.edu/~cs61c CS61C: Machine Structures

## Lecture \#16 - Representations of Combinatorial

 Logic Circuits

## 2007-7-23

## Scott Beamer

## Instructor

Plug-in Hybrid Upgrades Available
sfgate.com


## Review

- We use feedback to maintain state
- Register files used to build memories
- D-FlipFlops used to build Register files
- Clocks tell us when D-FlipFlops change
- Setup and Hold times important
-TODAY
- Representation of CL Circuits
- Truth Tables
- Logic Gates
- Boolean Algebra


## Truth Tables



## TT Example \#1: 1 iff one (not both) a,b=1



## TT Example \#2: 2-bit adder



## TT Example \#3: 32-bit unsigned adder

| A | B | C |
| :---: | :---: | :---: |
| $000 \ldots 0$ | $000 \ldots 0$ | $000 \ldots 00$ |
| $000 \ldots 0$ | $000 \ldots 1$ | $000 \ldots 01$ |
| - |  | How Many Rows? |
| $111 \ldots 1$ | $111 . . .1$ | $111 \ldots 10$ |

## TT Example \#3: 3-input majority circuit

| a | b | c | y |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

## Logic Gates (1/2)



## NOT



CS61C L16 Representations of Combinatorial Logic Circuits (8)



Beamer, Summer 2007 © UCB

## And vs. Or review - Dan's mnemonic

## AND Gate

Symbol


Definition


## Logic Gates (2/2)



## 2-input gates extend to n-inputs

- N-input XOR is the only one which isn't so obvious
- It's simple: XOR is a 1 iff the \# of 1s at its input is odd $\Rightarrow$

| a | b | c | y |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

## Administrivia

## - Midterm TONIGHT 7-10pm in 10 Evans

- Bring
- Pencils/pens
- One 8.5"x11" sheet of notes
- Green Sheet (or copy of it)
- Don't bring calculators (or other large electronics)
- Assignments
- HW5 due 7/26 (up today)
- HW6 due 7/29


## Truth Table $\Rightarrow$ Gates (e.g., majority circ.)



## Truth Table $\Rightarrow$ Gates (e.g., FSM circ.)

| PS | Input | NS | Output |
| :---: | :---: | :---: | :---: |
| 00 | 0 | 00 | 0 |
| 00 | 1 | 01 | 0 |
| 01 | 0 | 00 | 0 |
| 01 | 1 | 10 | 0 |
| 10 | 0 | 00 | 0 |
| 10 | 1 | 00 | 1 |



## Boolean Algebra

- George Boole, 19 ${ }^{\text {th }}$ Century mathematician
- Developed a mathematical system (algebra) involving logic

- later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- The power of BA is there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA

Boolean Algebra (e.g., for majority fun.)


$$
\begin{gathered}
y=a \cdot b+a \cdot c+b \cdot c \\
y=a b+a c+b c
\end{gathered}
$$

## Boolean Algebra (e.g., for FSM)

| PS | Input | NS | Output |
| :---: | :---: | :---: | :---: |
| 00 | 0 | 00 | 0 |
| 00 | 1 | 01 | 0 |
| 01 | 0 | 00 | 0 |
| 01 | 1 | 10 | 0 |
| 10 | 0 | 00 | 0 |
| 10 | 1 | 00 | 1 |


or equivalently...


$$
\mathrm{y}=\mathrm{PS}_{1} \cdot \overline{\mathrm{PS}_{0}} \cdot \text { INPUT }
$$

## BA: Circuit \& Algebraic Simplification



## Laws of Boolean Algebra

$$
\begin{gathered}
x \cdot \bar{x}=0 \\
x \cdot 0=0 \\
x \cdot 1=x \\
x \cdot x=x \\
x \cdot y=y \cdot x \\
(x y) z=x(y z) \\
x(y+z)=x y+x z
\end{gathered}
$$

$$
\begin{gathered}
x+\bar{x}=1 \\
x+1=1 \\
x+0=x \\
x+x=x \\
x+y=y+x \\
(x+y)+z=x+(y+z) \\
x+y z=(x+y)(x+z) \\
\frac{(x+y) x=x}{(x+y)}=\bar{x} \cdot \bar{y}
\end{gathered}
$$

complementarity laws of 0's and 1's identities
idempotent law
commutativity
associativity
distribution
uniting theorem
DeMorgan's Law

## Boolean Algebraic Simplification Example

$$
\begin{aligned}
y & =a b+a+c & & \\
& =a(b+1)+c & & \text { distribution, identity } \\
& =a(1)+c & & \text { law of } 1 \text { 's } \\
& =a+c & & \text { identity }
\end{aligned}
$$

## Canonical forms (1/2)



## Canonical forms (2/2)

$$
\begin{aligned}
y & =\bar{a} \bar{b} \bar{c}+\bar{a} \bar{b} c+a \bar{b} \bar{c}+a b \bar{c} & & \\
& =\bar{a} \bar{b}(\bar{c}+c)+a \bar{c}(\bar{b}+b) & & \text { distribution } \\
& =\bar{a} \bar{b}(1)+a \bar{c}(1) & & \text { complementarity } \\
& =\bar{a} \bar{b}+a \bar{c} & & \text { identity }
\end{aligned}
$$



## Peer Instruction

A. $(a+b) \cdot(\bar{a}+b)=b$
B. N-input gates can be thought of cascaded 2 -input gates. I.e., $(\mathrm{a} \Delta \mathrm{bc} \Delta \mathrm{d} \Delta \mathrm{e})=\mathrm{a} \Delta(\mathrm{bc} \Delta(\mathrm{d} \Delta \mathrm{e}))$ where $\Delta$ is one of AND, OR, XOR, NAND
C. You can use NOR(s) with clever wiring to simulate AND, OR, \& NOT

ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

## Peer Instruction Answer

A. $(a+b) \cdot(\bar{a}+b)=b$
B. N-input gates can be thought of cascaded 2 -input gates. I.e., $(\mathrm{a} \Delta \mathrm{bc} \Delta \mathrm{d} \Delta \mathrm{e})=\mathrm{a} \Delta(\mathrm{bc} \Delta(\mathrm{d} \Delta \mathrm{e}))$ where $\Delta$ is one of AND, OR, XOR, NAND
C. You can use NOR(s) with clever wiring to simulate AND, OR, \& NOT

CS61C L16 Representations of Combinatorial Logic Circuits (24)

## Peer Instruction Answer (B)

CS61C L16 Representations of Combinatorial Logic Circuits (25)

## "And In conclusion..."

- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
- You'll see them again in 150, 152 \& 164
- Use this table and techniques we learned to transform from 1 to another


