inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures

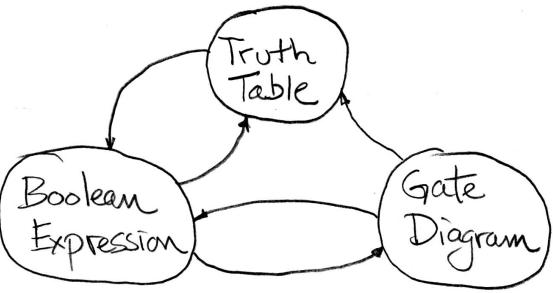
Lecture #17 Combinatorial Logic Blocks

2007-7-24

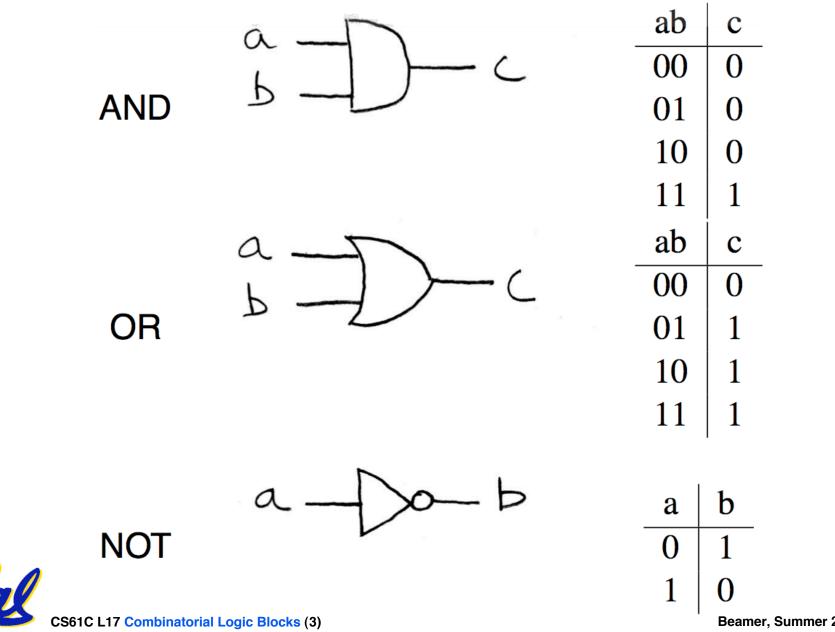
Scott Beamer, Instructor

Review

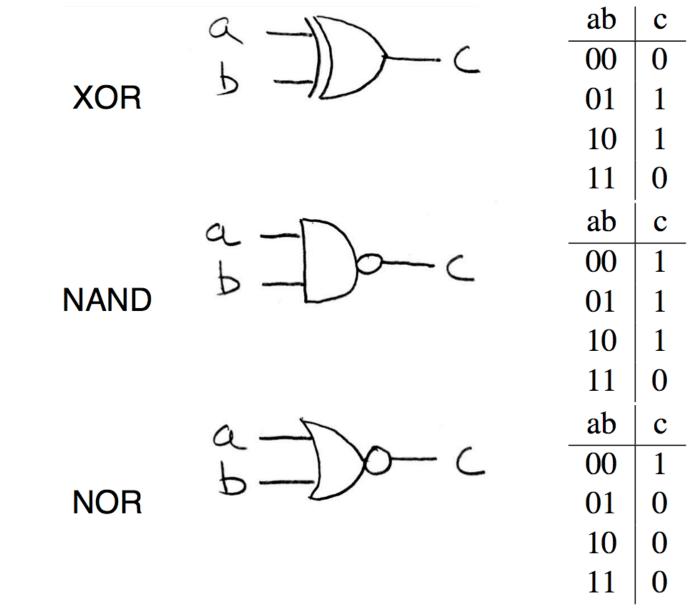
- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
 - You'll see them again in 150, 152 & 164
- Use this table and techniques we learned to transform from 1 to another



Review: Logic Gates (1/2)



Review: Logic Gates (2/2)



CS61C L17 Combinatorial Logic Blocks (4)

Laws of Boolean Algebra

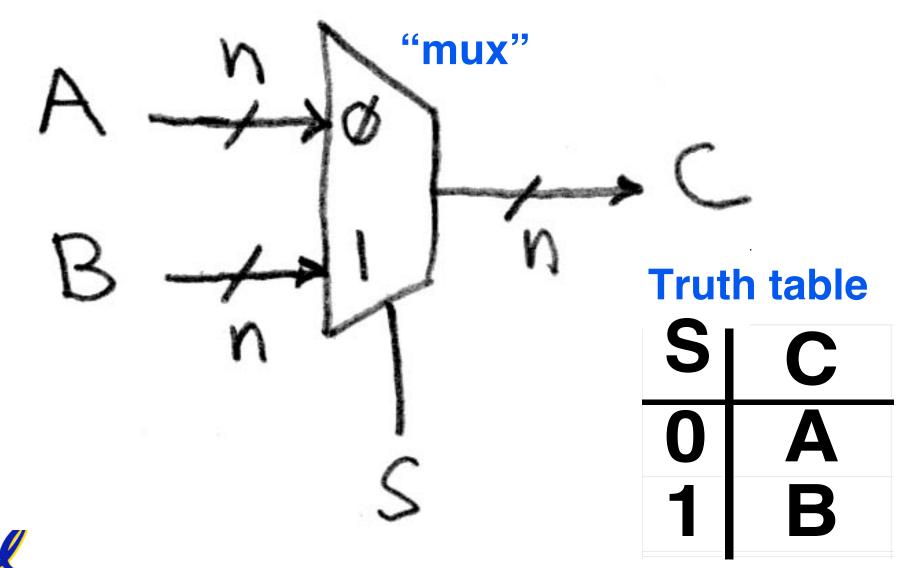
$x \cdot \overline{x} = 0$ $x + \overline{x} = 1$ $x \cdot 0 = 0$ x + 1 = 1 $x \cdot 1 = x$ x + 0 = xx + x = x $x \cdot x = x$ $x \cdot y = y \cdot x$ x + y = y + x(xy)z = x(yz) (x+y) + z = x + (y+z) $x(y+z) = xy + xz \qquad x + yz = (x+y)(x+z)$ (x+y)x = xxy + x = x $\overline{(x+y)} = \overline{x} \cdot \overline{y}$ $\overline{x \cdot y} = \overline{x} + \overline{y}$

complementarity laws of 0's and 1's identities idempotent law commutativity associativity distribution uniting theorem DeMorgan's Law

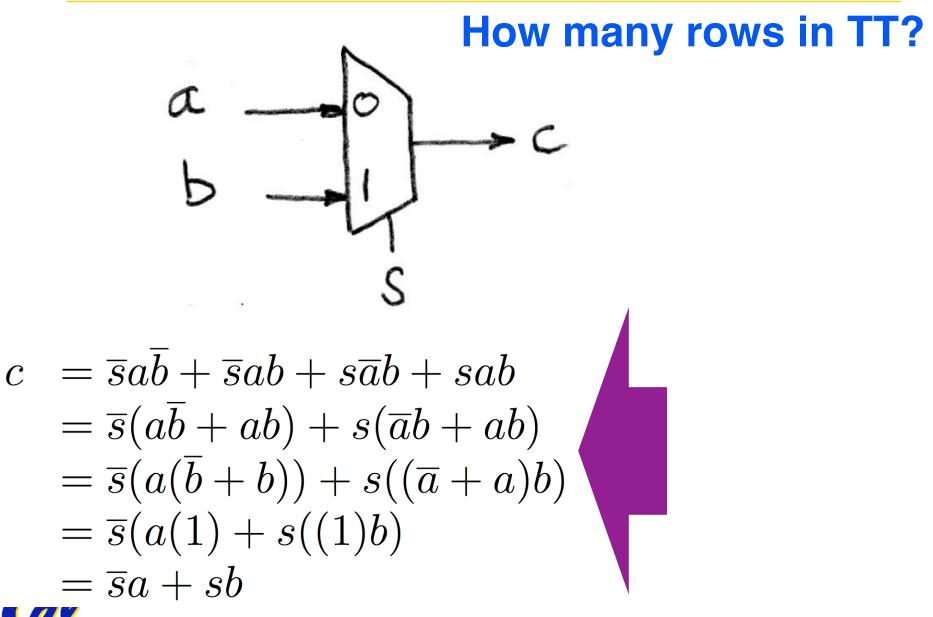
Today

- Data Multiplexors
- Arithmetic and Logic Unit
- Adder/Subtractor
- Programmable Logic Arrays

Data Multiplexor (here 2-to-1, n-bit-wide)

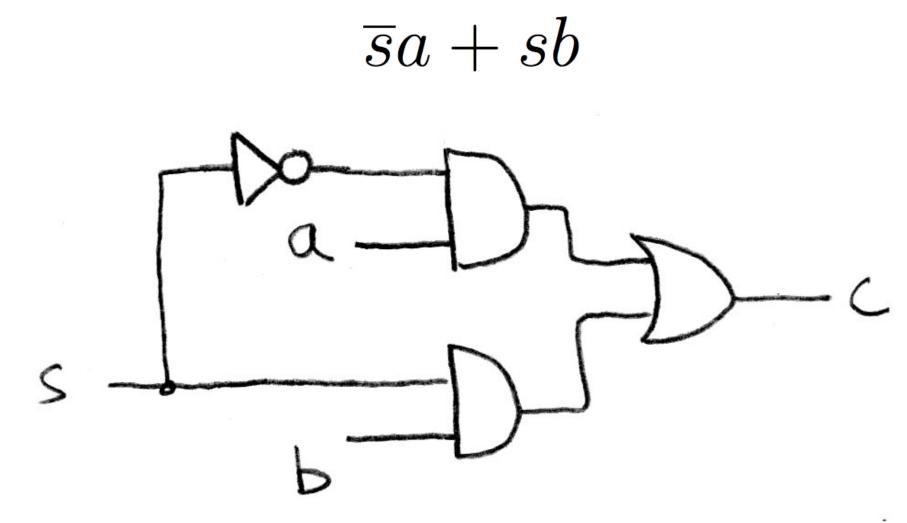


N instances of 1-bit-wide mux

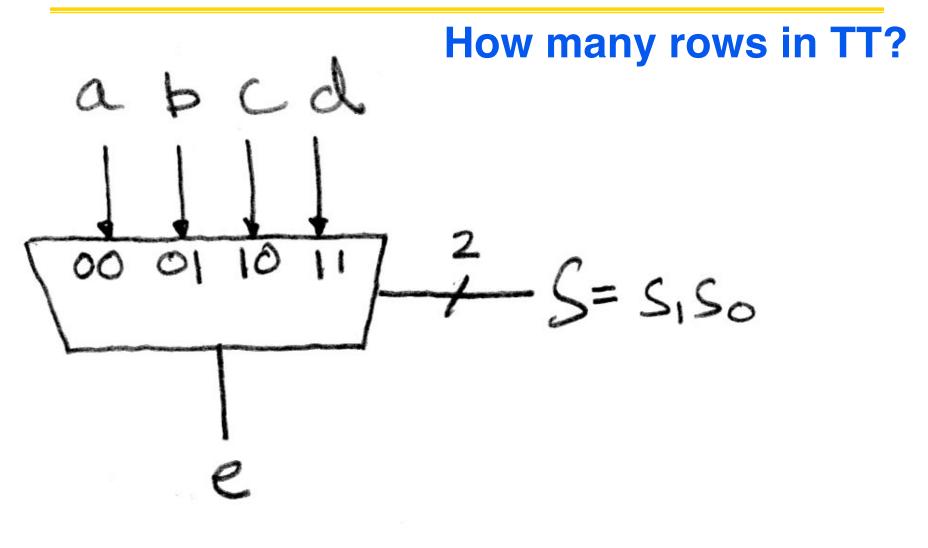


<u>u</u>

How do we build a 1-bit-wide mux?



4-to-1 Multiplexor?



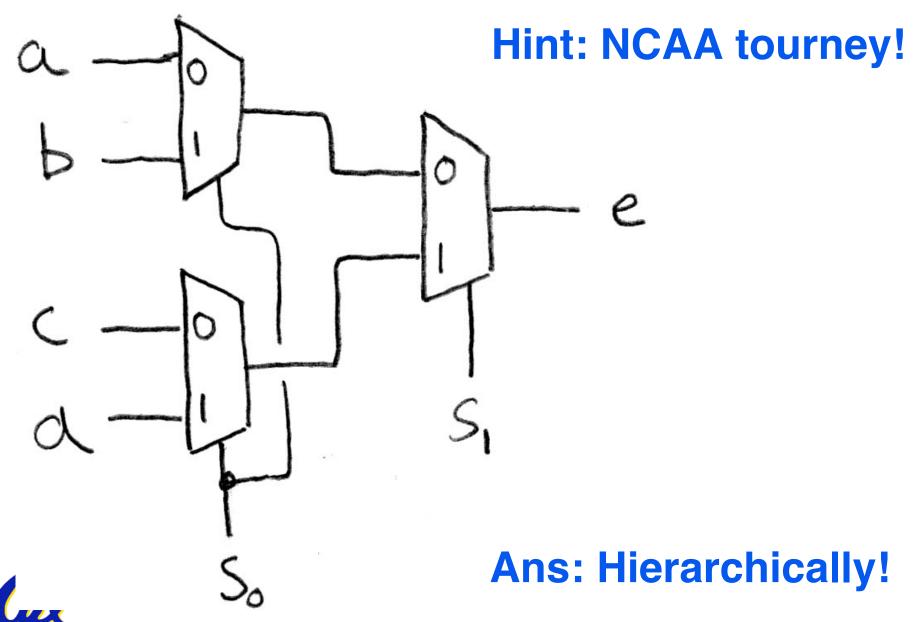
Cal

 $e = \overline{s_1 s_0}a + \overline{s_1} s_0 b + s_1 \overline{s_0} c + s_1 s_0 d$

Beamer, Summer 2007 © UCB

CS61C L17 Combinatorial Logic Blocks (10)

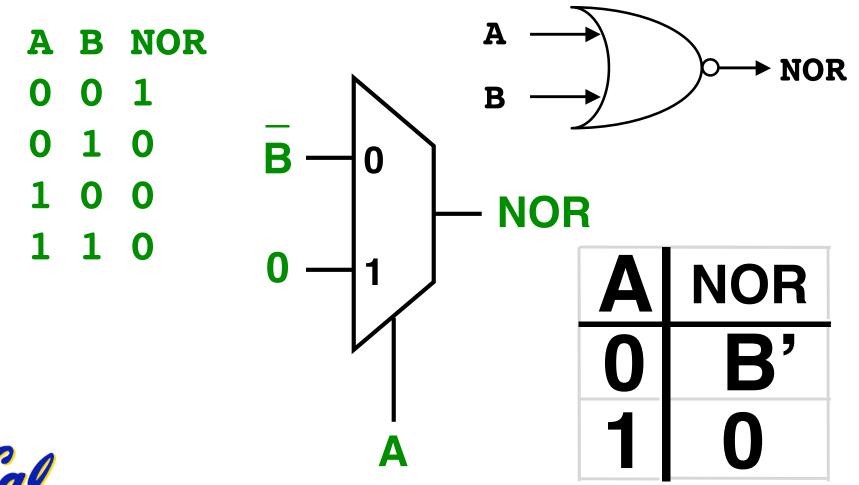
Is there any other way to do it?



CS61C L17 Combinatorial Logic Blocks (11)

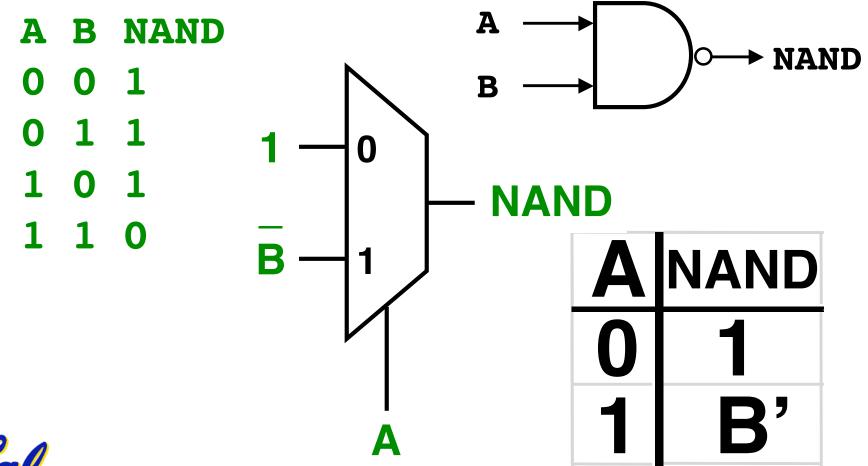
Do you really understand NORs?

- If one input is 1, what is a NOR?
- If one input is 0, what is a NOR?



Do you really understand NANDs?

- If one input is 1, what is a NAND?
- If one input is 0, what is a NAND?



CS61C L17 Combinatorial Logic Blocks (13)

Administrivia

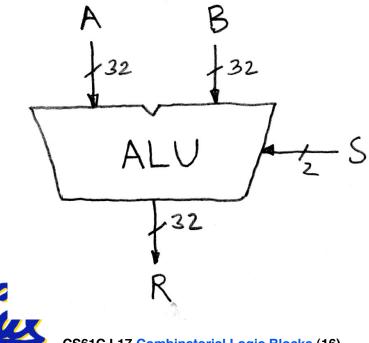
- Assignments
 - HW5 due 7/26
 - HW6 due 7/29
- Midterm Regrade Policy
 - What you do...
 - On paper, explain what was graded incorrectly
 - Staple to front of exam and give to TA or Scott by 8/1
 - What we do...
 - Regrade the entire exam blind
 - Then look at what you wrote, discuss as staff, and regrade
 - Warning: your grade can go down

What does it mean to "clobber" midterm?

- You STILL have to take the final even if you aced the midterm!
- The final will contain midterm-material Qs and new, post-midterm Qs
- They will be graded separately
- If you do "better" on the midterm-material, we will clobber your midterm with the "new" score! If you do worse, midterm unchanged.
- What does "better" mean?
 - Better w.r.t. Standard Deviations around mean
- What does "new" mean?
 - Score based on remapping St. Dev. score on final midterm-material to midterm score St. Dev.

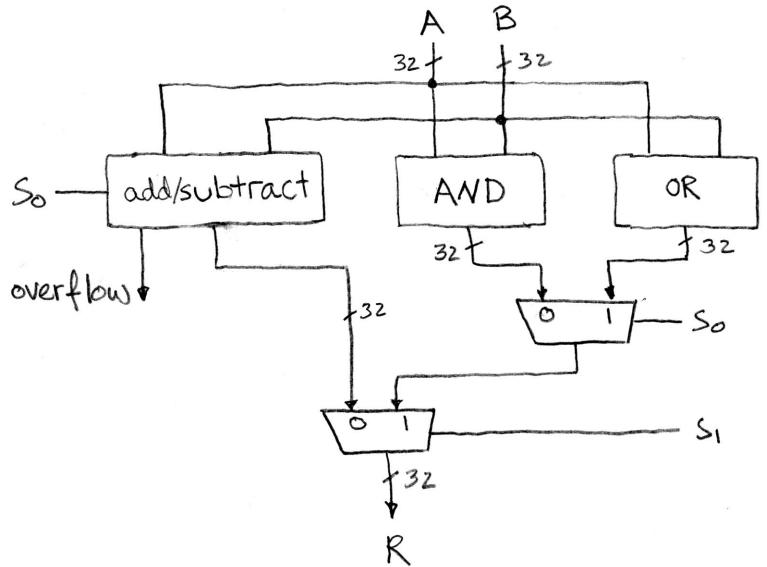
Arithmetic and Logic Unit

- Most processors contain a special logic block called "Arithmetic and Logic Unit" (ALU)
- We'll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR



when S=00, R=A+B when S=01, R=A-B when S=10, R=A AND B when S=11, R=A OR B

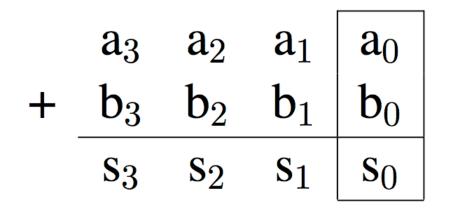
Our simple ALU

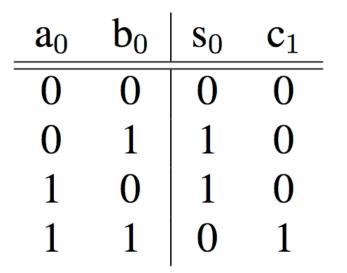


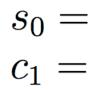
Adder/Subtracter Design -- how?

- Truth-table, then determine canonical form, then minimize and implement as we've seen before
- Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer

Adder/Subtracter – One-bit adder LSB...







Adder/Subtracter – One-bit adder (1/2)...

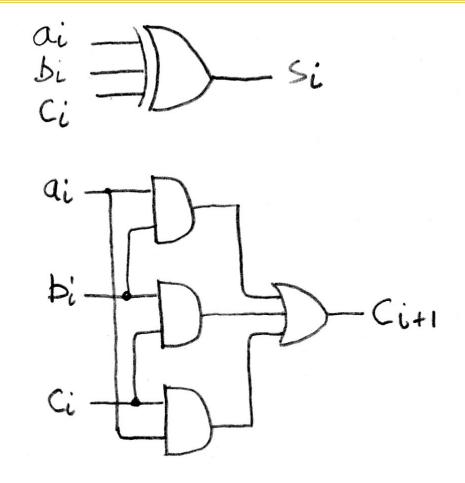
					\mathbf{a}_i	b_i	c_i	Si	\mathbf{c}_{i+1}
					0	0	0	0	0
	0	0			0	0	1	1	0
	a_3		a_1			1			
+	b_3	b_2	b_1	b_0		1			
	S 3	s_2	S 1	s ₀		0			
	0	2		j	1	0	1	0	1
						1			
					1	1	1	1	1

$$s_i =$$

$$c_{i+1} =$$

CS61C L17 Combinatorial Logic Blocks (20)

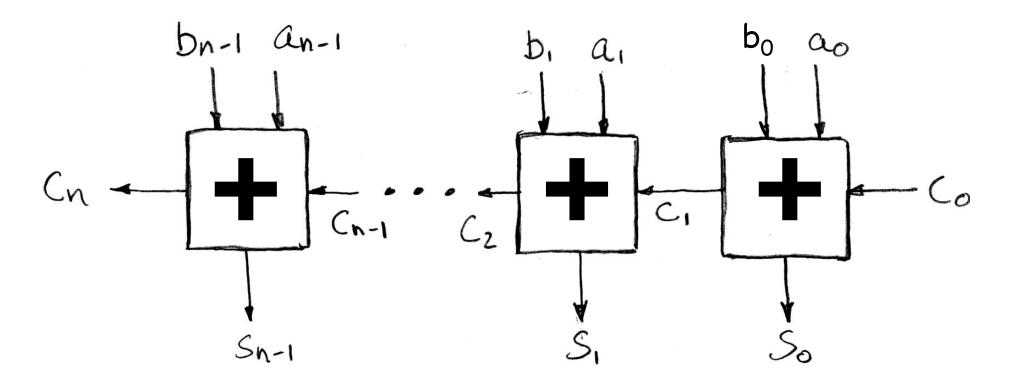
Adder/Subtracter – One-bit adder (2/2)...



$$s_i = \operatorname{XOR}(a_i, b_i, c_i)$$

$$c_{i+1} = \operatorname{MAJ}(a_i, b_i, c_i) = a_i b_i + a_i c_i + b_i c_i$$

N 1-bit adders \Rightarrow 1 N-bit adder



What about overflow? Overflow = c_n ?

Consider a 2-bit signed # & overflow:

b, a,

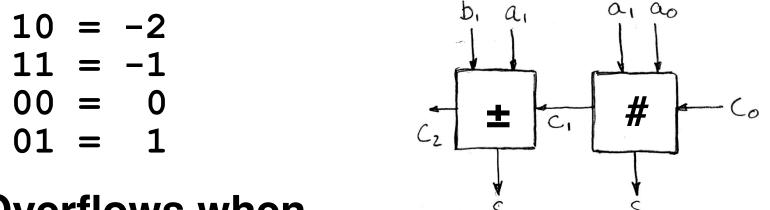
a ao

#

C

- $\cdot 10 = -2 + -2 \text{ or } -1$
- $\cdot 11 = -1 + -2$ only
- $\bullet 00 = 0 \text{ NOTHING!}$
- $\cdot 01 = 1 + 1$ only
- Highest adder
 - $C_1 = Carry-in = C_{in}, C_2 = Carry-out = C_{out}$
 - No C_{out} or $C_{in} \Rightarrow$ NO overflow!
- What $\cdot C_{in}$, and $C_{out} \Rightarrow NO$ overflow!
 - C_{in} , but no $C_{out} \Rightarrow A,B$ both > 0, overflow!
 - C_{out} , but no $C_{in} \Rightarrow A, B$ both < 0, overflow!

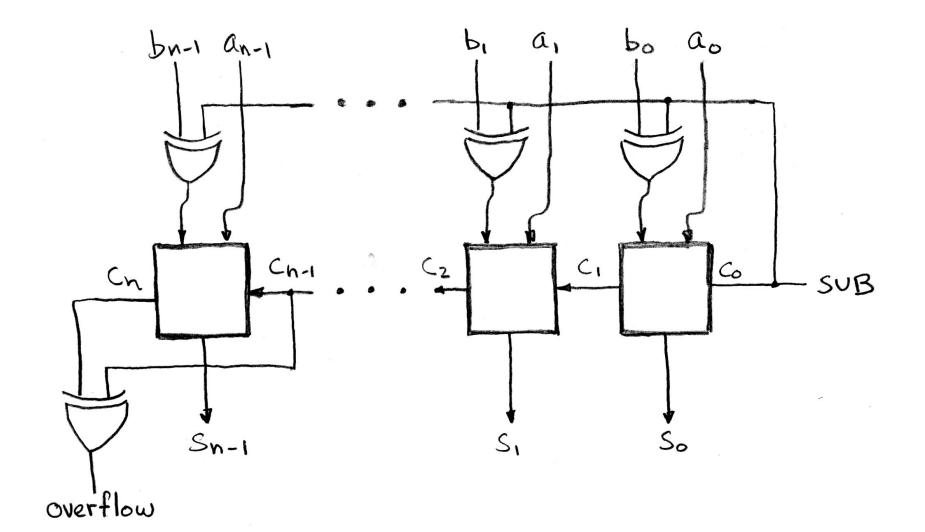
Consider a 2-bit signed # & overflow:



- Overflows when...
 - C_{in} , but no $C_{out} \Rightarrow A,B$ both > 0, overflow! C_{out} , but no $C_{in} \Rightarrow A,B$ both < 0, overflow!

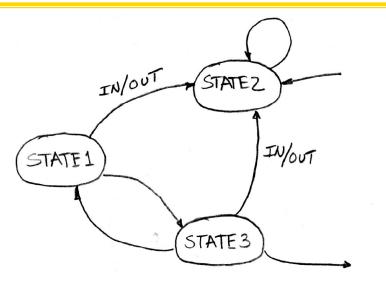
overflow = $c_n \operatorname{XOR} c_{n-1}$

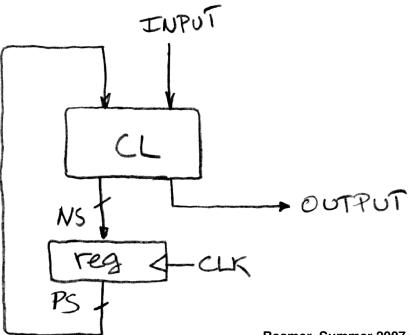
Extremely Clever Subtractor



Review: Finite State Machine (FSM)

- States represent possible output values.
- Transitions represent changes between states based on inputs.
- Implement with CL and clocked register feedback.





Finite State Machines extremely useful!

• They define

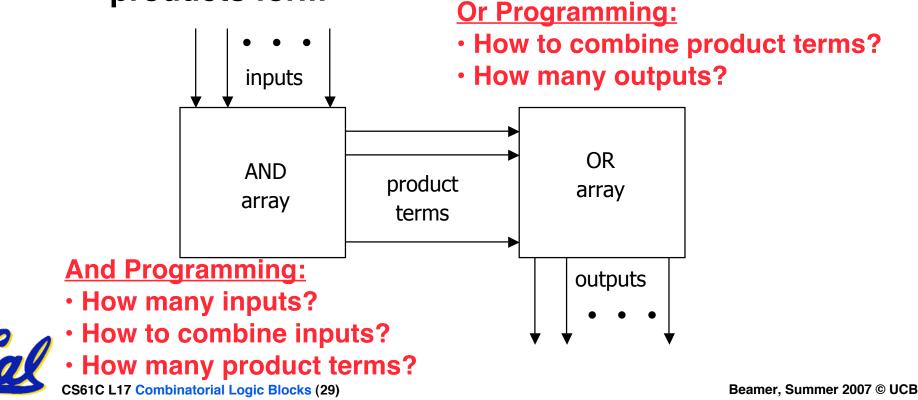
- How output signals respond to input signals and previous state.
- How we change states depending on input signals and previous state
- We could implement very detailed FSMs w/ Programmable Logic Arrays

Taking advantage of sum-of-products

- Since sum-of-products is a convenient notation and way to think about design, offer hardware building blocks that match that notation
- One example is **Programmable Logic Arrays** (PLAs)
- Designed so that can select (program) ands, ors, complements <u>after</u> you get the chip
 - Late in design process, fix errors, figure out what to do later, ...

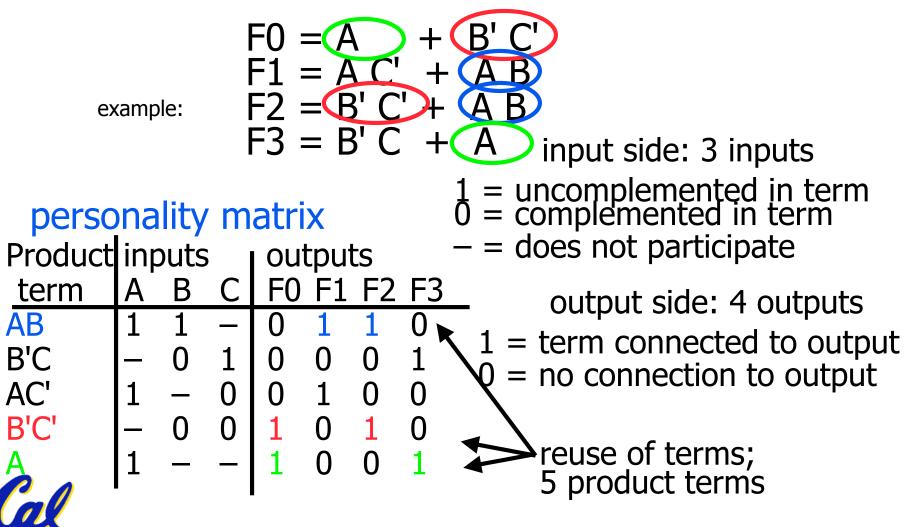
Programmable Logic Arrays

- Pre-fabricated building block of many AND/OR gates
 - "Programmed" or "Personalized" by making or breaking connections among gates
 - Programmable array block diagram for sum of products form



Enabling Concept

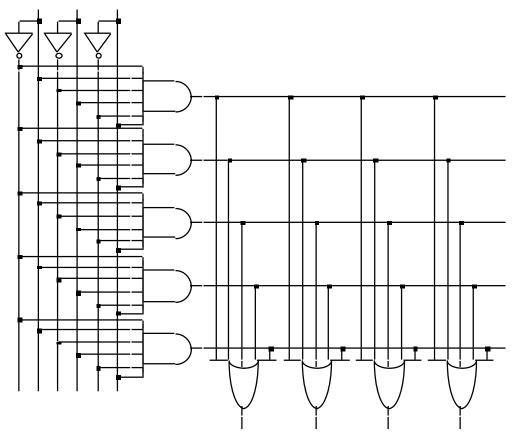
Shared product terms among outputs



CS61C L17 Combinatorial Logic Blocks (30)

Before Programming

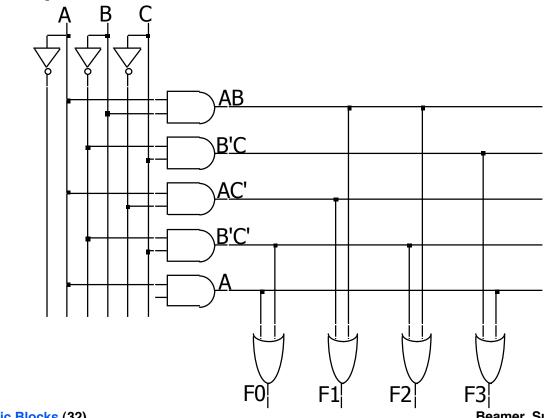
All possible connections available before "programming"



CS61C L17 Combinatorial Logic Blocks (31)

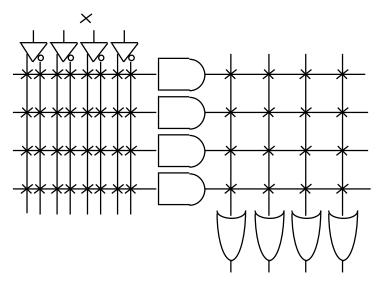
After Programming

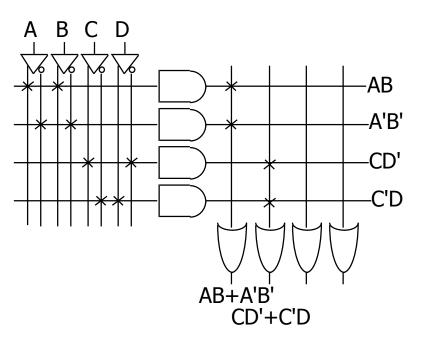
- Unwanted connections are "blown"
 - Fuse (normally connected, break unwanted ones)
 - Anti-fuse (normally disconnected, make wanted connections)



Alternate Representation

- Short-hand notation--don't have to draw all the wires
 - X Signifies a connection is present and perpendicular signal is an input to gate





notation for implementing F0 = A B + A' B'

F1 = CD' + C'D

CS61C L17 Combinatorial Logic Blocks (33)

- Use muxes to select among input
 - S input bits selects 2^S inputs
 - Each input can be n-bits wide, indep of S
- Implement muxes hierarchically
- ALU can be implemented using a mux
 - Coupled with basic block elements
- N-bit adder-subtractor done using N 1bit adders with XOR gates on input
 - XOR serves as conditional inverter

CS61C L17 Combinatorial Logic Blocks (34)

- A. Truth table for mux with 4-bits of signals has 2⁴ rows
- B. We could cascade N 1-bit shifters to make 1 N-bit shifter for sll, srl
- C. If 1-bit adder delay is T, the N-bit adder delay would also be T

CS61C L17 Combinatorial Logic Blocks (35)

Beamer, Summer 2007 © UCB

ABC

ਸਾਸਾ

דיזיז

гтг

ፑጥጥ

ттт

ͲͲͲ

ጥጥጥ

3:

4 ·

5.

6:

Peer Instruction Answer