
CS61C L19 CPU Design : Designing a Single-Cycle CPU (1) Beamer, Summer 2007 © UCB

Scott Beamer

Instructor

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture #19 – Designing a Single-Cycle CPU

2007-7-26

AI Focuses
on Poker

nytimes.com

CS61C L19 CPU Design : Designing a Single-Cycle CPU (2) Beamer, Summer 2007 © UCB

Review

• N-bit adder-subtractor done using N 1-
bit adders with XOR gates on input

• XOR serves as conditional inverter

• CPU design involves Datapath,Control
• Datapath in MIPS involves 5 CPU stages
1) Instruction Fetch
2) Instruction Decode & Register Read
3) ALU (Execute)
4) Memory
5) Register Write

CS61C L19 CPU Design : Designing a Single-Cycle CPU (3) Beamer, Summer 2007 © UCB

Datapath Summary
• The datapath based on data transfers
required to perform instructions

• A controller causes the right transfers
to happen

PC

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s
ALU

Da
ta

m
em

or
y

imm

Controller
opcode, funct

CS61C L19 CPU Design : Designing a Single-Cycle CPU (4) Beamer, Summer 2007 © UCB

CPU clocking (1/2)

• Single Cycle CPU: All stages of an
instruction are completed within one long
clock cycle.

• The clock cycle is made sufficient long to allow
each instruction to complete all stages without
interruption and within one cycle.

For each instruction, how do we control the
flow of information though the datapath?

1. Instruction
Fetch

2. Decode/
 Register

Read
3. Execute 4. Memory 5. Reg.

 Write

CS61C L19 CPU Design : Designing a Single-Cycle CPU (5) Beamer, Summer 2007 © UCB

CPU clocking (2/2)

• Multiple-cycle CPU: Only one stage of
instruction per clock cycle.

• The clock is made as long as the slowest stage.

Several significant advantages over single cycle
execution: Unused stages in a particular
instruction can be skipped OR instructions can
be pipelined (overlapped).

For each instruction, how do we control the
flow of information though the datapath?

1. Instruction
Fetch

2. Decode/
 Register

Read
3. Execute 4. Memory 5. Reg.

 Write

CS61C L19 CPU Design : Designing a Single-Cycle CPU (6) Beamer, Summer 2007 © UCB

How to Design a Processor: step-by-step
• 1. Analyze instruction set architecture (ISA)
⇒ datapath requirements

• meaning of each instruction is given by the
register transfers

• datapath must include storage element for ISA
registers

• datapath must support each register transfer
• 2. Select set of datapath components and
establish clocking methodology

• 3. Assemble datapath meeting requirements
• 4. Analyze implementation of each
instruction to determine setting of control
points that effects the register transfer.

• 5. Assemble the control logic (hard part!)

CS61C L19 CPU Design : Designing a Single-Cycle CPU (7) Beamer, Summer 2007 © UCB

Review: The MIPS Instruction Formats
• All MIPS instructions are 32 bits long. 3 formats:

• R-type

• I-type

• J-type

• The different fields are:
• op: operation (“opcode”) of the instruction
• rs, rt, rd: the source and destination register specifiers
• shamt: shift amount
• funct: selects the variant of the operation in the “op” field
• address / immediate: address offset or immediate value
• target address: target address of jump instruction

op target address
02631

6 bits 26 bits

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt address/immediate
016212631

6 bits 16 bits5 bits5 bits

CS61C L19 CPU Design : Designing a Single-Cycle CPU (8) Beamer, Summer 2007 © UCB

Step 1a: The MIPS-lite Subset for today
• ADDU and SUBU

•addu rd,rs,rt
•subu rd,rs,rt

• OR Immediate:
•ori rt,rs,imm16

• LOAD and
STORE Word
•lw rt,rs,imm16
•sw rt,rs,imm16

• BRANCH:
•beq rs,rt,imm16

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

CS61C L19 CPU Design : Designing a Single-Cycle CPU (9) Beamer, Summer 2007 © UCB

Register Transfer Language
• RTL gives the meaning of the instructions

• All start by fetching the instruction

{op , rs , rt , rd , shamt , funct} ← MEM[PC]

{op , rs , rt , Imm16} ← MEM[PC]

inst Register Transfers
ADDU R[rd] ← R[rs] + R[rt]; PC ← PC + 4
SUBU R[rd] ← R[rs] – R[rt]; PC ← PC + 4
ORI R[rt] ← R[rs] | zero_ext(Imm16); PC ← PC + 4
LOAD R[rt] ← MEM[R[rs] + sign_ext(Imm16)]; PC ← PC + 4
STORE MEM[R[rs] + sign_ext(Imm16)] ← R[rt]; PC ← PC + 4

BEQ if (R[rs] == R[rt]) then
 PC ← PC + 4 + (sign_ext(Imm16) || 00)
 else PC ← PC + 4

CS61C L19 CPU Design : Designing a Single-Cycle CPU (10) Beamer, Summer 2007 © UCB

Step 1: Requirements of the Instruction Set
• Memory (MEM)

• instructions & data (will use one for each)
• Registers (R: 32 x 32)

• read RS
• read RT
• Write RT or RD

• PC
• Extender (sign/zero extend)
• Add/Sub/OR unit for operation on
register(s) or extended immediate

• Add 4 or extended immediate to PC
• Compare registers?

CS61C L19 CPU Design : Designing a Single-Cycle CPU (11) Beamer, Summer 2007 © UCB

Step 2: Components of the Datapath

•Combinational Elements
•Storage Elements

• Clocking methodology

CS61C L19 CPU Design : Designing a Single-Cycle CPU (12) Beamer, Summer 2007 © UCB

Combinational Logic Elements (Building Blocks)

•Adder

•MUX

•ALU

32

32

A

B
32 Sum

CarryOut

32

32

A

B
32 Result

OP

32A

B 32

Y32

Select

A
dder

M
U

X
A

LU

CarryIn

CS61C L19 CPU Design : Designing a Single-Cycle CPU (13) Beamer, Summer 2007 © UCB

ALU Needs for MIPS-lite + Rest of MIPS
• Addition, subtraction, logical OR, ==:
ADDU R[rd] = R[rs] + R[rt]; ...

SUBU R[rd] = R[rs] – R[rt]; ...

ORI R[rt] = R[rs] | zero_ext(Imm16)...

BEQ if (R[rs] == R[rt])...

• Test to see if output == 0 for any ALU
operation gives == test. How?

• P&H also adds AND,
Set Less Than (1 if A < B, 0 otherwise)

• ALU follows chap 5

CS61C L19 CPU Design : Designing a Single-Cycle CPU (14) Beamer, Summer 2007 © UCB

What Hardware Is Needed? (1/2)

• PC: a register which keeps track of
memory addr of the next instruction

• General Purpose Registers
• used in Stages 2 (Read) and 5 (Write)
• MIPS has 32 of these

• Memory
• used in Stages 1 (Fetch) and 4 (R/W)
• cache system makes these two stages as
fast as the others, on average

CS61C L19 CPU Design : Designing a Single-Cycle CPU (15) Beamer, Summer 2007 © UCB

What Hardware Is Needed? (2/2)
• ALU

• used in Stage 3
• something that performs all necessary
functions: arithmetic, logicals, etc.

• we’ll design details later
• Miscellaneous Registers

• In implementations with only one stage
per clock cycle, registers are inserted
between stages to hold intermediate data
and control signals as they travels from
stage to stage.

• Note: Register is a general purpose term
meaning something that stores bits. Not
all registers are in the “register file”.

CS61C L19 CPU Design : Designing a Single-Cycle CPU (16) Beamer, Summer 2007 © UCB

Storage Element: Idealized Memory

• Memory (idealized)
• One input bus: Data In
• One output bus: Data Out

• Memory word is selected by:
• Address selects the word to put on Data Out
• Write Enable = 1: address selects the memory

word to be written via the Data In bus
• Clock input (CLK)

• The CLK input is a factor ONLY during write
operation

• During read operation, behaves as a
combinational logic block:
 Address valid ⇒ Data Out valid after “access time.”

Clk

Data In

Write Enable

32 32
DataOut

Address

CS61C L19 CPU Design : Designing a Single-Cycle CPU (17) Beamer, Summer 2007 © UCB

Storage Element: Register (Building Block)

• Similar to D Flip Flop except
 N-bit input and output
 Write Enable input

• Write Enable:
 negated (or deasserted) (0):

Data Out will not change
 asserted (1):

Data Out will become Data In on positive
edge of clock

clk

Data In

Write Enable

N N

Data Out

CS61C L19 CPU Design : Designing a Single-Cycle CPU (18) Beamer, Summer 2007 © UCB

Storage Element: Register File
• Register File consists of 32 registers:

• Two 32-bit output busses:
 busA and busB
• One 32-bit input bus: busW

• Register is selected by:
• RA (number) selects the register to put on busA (data)
• RB (number) selects the register to put on busB (data)
• RW (number) selects the register to be written

via busW (data) when Write Enable is 1
• Clock input (clk)

• The clk input is a factor ONLY during write operation
• During read operation, behaves as a combinational

logic block:
 RA or RB valid ⇒ busA or busB valid after “access time.”

Clk

busW

Write Enable

32
32

busA

32
busB

5 5 5
RWRA RB

32 32-bit
Registers

CS61C L19 CPU Design : Designing a Single-Cycle CPU (19) Beamer, Summer 2007 © UCB

Administrivia

• Assignments
• HW5 due Tonight
• HW6 due 7/29

• Midterm
• Grading standards up
• If you wish to have a problem regraded

 Staple your reasons to the front of the exam
 Return your exam to your TA

• Scott is now holding regular OH on
Fridays 11-12 in 329 Soda

CS61C L19 CPU Design : Designing a Single-Cycle CPU (20) Beamer, Summer 2007 © UCB

Step 3: Assemble DataPath meeting requirements

• Register Transfer Requirements
⇒ Datapath Assembly

• Instruction Fetch
• Read Operands and Execute Operation

CS61C L19 CPU Design : Designing a Single-Cycle CPU (21) Beamer, Summer 2007 © UCB

3a: Overview of the Instruction Fetch Unit
• The common RTL operations

• Fetch the Instruction: mem[PC]
• Update the program counter:

 Sequential Code: PC ← PC + 4
 Branch and Jump: PC ← “something else”

32

Instruction WordAddress
Instruction

Memory

PCclk

Next Address
Logic

CS61C L19 CPU Design : Designing a Single-Cycle CPU (22) Beamer, Summer 2007 © UCB

3b: Add & Subtract
• R[rd] = R[rs] op R[rt] Ex.: addU rd,rs,rt

• Ra, Rb, and Rw come from instruction’s Rs, Rt,
and Rd fields

• ALUctr and RegWr: control logic after decoding
the instruction

32
Result

ALUctr

clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs RtRd

A
LU

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

Already defined the register file & ALU

CS61C L19 CPU Design : Designing a Single-Cycle CPU (23) Beamer, Summer 2007 © UCB

Clocking Methodology

• Storage elements clocked by same edge
• Being physical devices, flip-flops (FF) and

combinational logic have some delays
• Gates: delay from input change to output change
• Signals at FF D input must be stable before active clock

edge to allow signal to travel within the FF (set-up time),
and we have the usual clock-to-Q delay

• “Critical path” (longest path through logic)
determines length of clock period

Clk

.

.

.

.

.

.

.

.

.

.

.

.

CS61C L19 CPU Design : Designing a Single-Cycle CPU (24) Beamer, Summer 2007 © UCB

Register-Register Timing: One complete cycle
Clk

PC
Rs, Rt, Rd,
Op, Func

ALUctr

Instruction Memory Access Time

Old Value New Value

RegWr Old Value New Value

Delay through Control Logic

busA, B
Register File Access
TimeOld Value New Value

busW
ALU Delay

Old Value New Value

Old Value New Value

New ValueOld Value

Register Write
Occurs Here

32

ALUctr

clk

busW

RegWr

32busA

32

busB

5 5

Rw Ra Rb

RegFile

Rs Rt

A
LU

5
Rd

CS61C L19 CPU Design : Designing a Single-Cycle CPU (25) Beamer, Summer 2007 © UCB

3c: Logical Operations with Immediate
• R[rt] = R[rs] op ZeroExt[imm16]]

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

immediate
016 1531

16 bits16 bits
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32

ALUctr

clk

busW

RegWr

32busA

32

busB

5 5

Rw Ra Rb

RegFile

Rs Rt
A

LU
5

Rd

But we’re writing to Rt register??

CS61C L19 CPU Design : Designing a Single-Cycle CPU (26) Beamer, Summer 2007 © UCB

3c: Logical Operations with Immediate
• R[rt] = R[rs] op ZeroExt[imm16]]

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

immediate
016 1531

16 bits16 bits
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

• Already defined 32-bit MUX; Zero Ext?

What about Rt register read??

32

ALUctr

clk

RegWr

32

32busA

32

busB

5 5

Rw Ra Rb

RegFile

Rs

Rt

Rt

Rd

ZeroExt 3216
imm16

ALUSrc

01

0

1

A
LU

5

RegDst

CS61C L19 CPU Design : Designing a Single-Cycle CPU (27) Beamer, Summer 2007 © UCB

3d: Load Operations
• R[rt] = Mem[R[rs] + SignExt[imm16]]
Example: lw rt,rs,imm16

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

32

ALUctr

clk

RegWr

32

32busA

32

busB

5 5

Rw Ra Rb

RegFile

Rs

Rt

Rt

Rd

ZeroExt 3216
imm16

ALUSrc

01

0

1

A
LU

5

RegDst

CS61C L19 CPU Design : Designing a Single-Cycle CPU (28) Beamer, Summer 2007 © UCB

3d: Load Operations
• R[rt] = Mem[R[rs] + SignExt[imm16]]
Example: lw rt,rs,imm16

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

32

ALUctr

clk

busW

RegWr

32

32busA

32

busB

5 5

Rw Ra Rb

RegFile

Rs

Rt

Rt

RdRegDst

Extender 3216
imm16

ALUSrcExtOp

MemtoReg

clk

Data In
32

MemWr01

0

1

A
LU 0

1
WrEn Adr

Data
Memory

5

?

CS61C L19 CPU Design : Designing a Single-Cycle CPU (29) Beamer, Summer 2007 © UCB

3e: Store Operations
• Mem[R[rs] + SignExt[imm16]] = R[rt]

Ex.: sw rt, rs, imm16

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

32

ALUctr

clk

busW

RegWr

32

32busA

32

busB

5 5

Rw Ra Rb

RegFile

Rs

Rt

Rt

RdRegDst

Extender 3216
imm16

ALUSrcExtOp

MemtoReg

clk

Data In
32

MemWr01

0

1

A
LU 0

1
WrEn Adr

Data
Memory

5

CS61C L19 CPU Design : Designing a Single-Cycle CPU (30) Beamer, Summer 2007 © UCB

3e: Store Operations
• Mem[R[rs] + SignExt[imm16]] = R[rt]

Ex.: sw rt, rs, imm16

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

32

ALUctr

clk

busW

RegWr

32

32busA

32

busB

5 5

Rw Ra Rb

RegFile

Rs

Rt

Rt

RdRegDst

Extender 3216
imm16

ALUSrcExtOp

MemtoReg

clk

Data In
32

MemWr01

0

1

A
LU 0

1
WrEn Adr

Data
Memory

5

CS61C L19 CPU Design : Designing a Single-Cycle CPU (31) Beamer, Summer 2007 © UCB

3f: The Branch Instruction

 beq rs, rt, imm16
• mem[PC] Fetch the instruction from memory
• Equal = R[rs] == R[rt] Calculate branch condition
• if (Equal) Calculate the next instruction’s
address
 PC = PC + 4 + (SignExt(imm16) x 4)

else
 PC = PC + 4

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

CS61C L19 CPU Design : Designing a Single-Cycle CPU (32) Beamer, Summer 2007 © UCB

Datapath for Branch Operations
• beq rs, rt, imm16
Datapath generates condition (equal)

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

Already have mux, adder, need special sign
extender for PC, need equal compare (sub?)imm16

clk

PC

00

4 nPC_sel

PC
 Ext

A
dder

A
dder

M
ux

Inst Address

32

ALUctr

clk

busW

RegWr

32busA

32

busB

5 5

Rw Ra Rb

RegFile

Rs Rt

A
LU

5

=

Equal

CS61C L19 CPU Design : Designing a Single-Cycle CPU (33) Beamer, Summer 2007 © UCB

Putting it All Together:A Single Cycle Datapath

imm16

32

ALUctr

clk

busW

RegWr

32

32busA

32

busB

5 5

Rw Ra Rb

RegFile

Rs

Rt

Rt

Rd
RegDst

Extender

3216
imm16

ALUSrcExtOp

MemtoReg

clk

Data In
32

MemWr
Equal

Instruction<31:0><21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

clk

PC

00

4

nPC_sel

PC
 Ext

Adr

Inst
Memory

A
dder

A
dder

M
ux

01

0

1

=A
LU 0

1
WrEn Adr

Data
Memory

5

CS61C L19 CPU Design : Designing a Single-Cycle CPU (34) Beamer, Summer 2007 © UCB

Peer Instruction

A. For the CPU designed so far, the
Controller only needs to look at
opcode/funct and Equal

B. Adding jal would only require
changing the Instruction Fetch
block

C. Making our single-cycle CPU
multi-cycle will be easy

 ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L19 CPU Design : Designing a Single-Cycle CPU (35) Beamer, Summer 2007 © UCB

How to Design a Processor: step-by-step
1. Analyze instruction set architecture (ISA)
=> datapath requirements

• meaning of each instruction is given by the
register transfers

• datapath must include storage element for ISA
registers

• datapath must support each register transfer
2. Select set of datapath components and
establish clocking methodology

3. Assemble datapath meeting requirements
4. Analyze implementation of each instruction
to determine setting of control points that
effects the register transfer.

5. Assemble the control logic

