
CS61C L21 CPU Design : Pipelining to Improve Performance (1) Beamer, Summer 2007 © UCB

Scott Beamer, Instructor

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture #21 CPU Design: Pipelining to
Improve Performance

2007-7-31

CS61C L21 CPU Design : Pipelining to Improve Performance (2) Beamer, Summer 2007 © UCB

°5 steps to design a processor
• 1. Analyze instruction set ⇒ datapath requirements
• 2. Select set of datapath components & establish clock

methodology
• 3. Assemble datapath meeting the requirements
• 4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.
• 5. Assemble the control logic

°Control is the hard part
°MIPS makes that easier
• Instructions same size
• Source registers always in same place
• Immediates same size, location
•   Operations always on registers/immediates

Review: Single cycle datapath

Control

Datapath

Memory

Processor
Input

Output

CS61C L21 CPU Design : Pipelining to Improve Performance (3) Beamer, Summer 2007 © UCB

An Abstract View of the Critical Path
Critical Path (Load Instruction) =
    Delay clock through PC (FFs) +
    Instruction Memory’s Access Time +
    Register File’s Access Time, +
    ALU to Perform a 32-bit Add +
    Data Memory Access Time +
    Stable Time for Register File Write

clk

5

Rw Ra Rb
Register

File

Rd

Data
In

Data
Addr Ideal

Data
Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

PC

5
Rs

5
Rt

32

323232
A

B

N
ex

t A
dd

re
ss

clk clk

A
LU

(Assumes a fast controller)

CS61C L21 CPU Design : Pipelining to Improve Performance (4) Beamer, Summer 2007 © UCB

Processor Performance

• Can we estimate the clock rate (frequency) of our
single-cycle processor? We know:

• 1 cycle per instruction
•lw is the most demanding instruction.
• Assume approximate delays for major pieces of the

datapath:
 Instr. Mem, ALU, Data Mem : 2ns each, regfile 1ns
 Instruction execution requires: 2 + 1 + 2 + 2 + 1 = 8ns
 ⇒ 125 MHz

• What can we do to improve clock rate?
• Will this improve performance as well?

• We want increases in clock rate to result in programs
executing quicker.

CS61C L21 CPU Design : Pipelining to Improve Performance (5) Beamer, Summer 2007 © UCB

Ways to Improve Clock Frequency

• Smaller Process Size
• Smallest feature possible in silicon fabrication
• Smaller process is faster because of EE

reasons, and is smaller so things are closer
•Optimize Logic

• Re-arrange CL to be faster
• Sometimes more logic can be used to reduce

delay
• Parallel

• Do more at once - later…

• Cut Down Length of Critical Path
• Inserting registers (pipelining) to break up CL

CS61C L21 CPU Design : Pipelining to Improve Performance (6) Beamer, Summer 2007 © UCB

Gotta Do Laundry
° Ann, Brian, Cathy, Dave

each have one load of
clothes to wash, dry,
fold, and put away

A B C D

° Dryer takes 30 minutes

° “Folder” takes 30 minutes

° “Stasher” takes 30 minutes
to put clothes into drawers

° Washer takes 30 minutes



CS61C L21 CPU Design : Pipelining to Improve Performance (7) Beamer, Summer 2007 © UCB

Sequential Laundry

•Sequential laundry takes
8 hours for 4 loads

T
a
s
k

O
r
d
e
r

B

C
D

A
30
Time

3030 3030 30 3030 3030 3030 3030 3030

6 PM 7 8 9 10 11 12 1 2 AM

CS61C L21 CPU Design : Pipelining to Improve Performance (8) Beamer, Summer 2007 © UCB

Pipelined Laundry

•Pipelined laundry takes
3.5 hours for 4 loads!

T
a
s
k

O
r
d
e
r

B
C
D

A

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

CS61C L21 CPU Design : Pipelining to Improve Performance (9) Beamer, Summer 2007 © UCB

General Definitions

•Latency: time to completely execute a
certain task (delay)

• for example, time to read a sector from
disk is disk access time or disk latency

•Throughput: amount of work that can
be done over a period of time (rate)

CS61C L21 CPU Design : Pipelining to Improve Performance (10) Beamer, Summer 2007 © UCB

Pipelining Lessons (1/2)
• Pipelining doesn’t help

latency of single task, it
helps throughput of entire
workload
• Multiple tasks operating

simultaneously using
different resources
• Potential speedup =

Number pipe stages
• Time to “fill” pipeline and

time to “drain” it reduces
speedup:
2.3X v. 4X in this example

6 PM 7 8 9
Time

B
C
D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

CS61C L21 CPU Design : Pipelining to Improve Performance (11) Beamer, Summer 2007 © UCB

Pipelining Lessons (2/2)
•Suppose new
Washer takes 20
minutes, new
Stasher takes 20
minutes. How
much faster is
pipeline?
•Pipeline rate
limited by slowest
pipeline stage
•Unbalanced
lengths of pipe
stages reduces
speedup

6 PM 7 8 9
Time

B
C
D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

CS61C L21 CPU Design : Pipelining to Improve Performance (12) Beamer, Summer 2007 © UCB

Steps in Executing MIPS

1) IFtch: Instruction Fetch, Increment PC
2) Dcd: Instruction Decode, Read Registers
3) Exec:
  Mem-ref: Calculate Address
  Arith-log: Perform Operation

4) Mem:
  Load: Read Data from Memory
  Store: Write Data to Memory

5) WB: Write Data Back to Register



CS61C L21 CPU Design : Pipelining to Improve Performance (13) Beamer, Summer 2007 © UCB

Pipelined Execution Representation

•Every instruction must take same number
of steps, also called pipeline “stages”, so
some will go idle sometimes

IFtch Dcd Exec Mem WB
IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB
IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB
IFtch Dcd Exec Mem WB

Time

CS61C L21 CPU Design : Pipelining to Improve Performance (14) Beamer, Summer 2007 © UCB

Review: Datapath for MIPS

•Use datapath figure to represent pipeline
IFtch Dcd Exec Mem WB

A
LU  I$ Reg   D$ Reg

PC

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

Da
ta

m
em

or
y

imm

1. Instruction
Fetch

2. Decode/
    Register Read

3. Execute 4. Memory5. Write
Back

CS61C L21 CPU Design : Pipelining to Improve Performance (15) Beamer, Summer 2007 © UCB

Graphical Pipeline Representation

I
n
s
t
r.

O
r
d
e
r

Load

Add

Store

Sub

Or

  I$

Time (clock cycles)

  I$

A
LU

Reg

Reg

  I$

  D$

A
LU

A
LU

Reg

  D$

Reg

  I$

  D$

Reg

A
LU

Reg Reg

Reg

  D$

Reg

  D$

A
LU

(In Reg, right half highlight read, left half write)

Reg

  I$ 

CS61C L21 CPU Design : Pipelining to Improve Performance (16) Beamer, Summer 2007 © UCB

Example
•Suppose 2 ns for memory access, 2 ns
for ALU operation, and 1 ns for register
file read or write; compute instr rate
•Nonpipelined Execution:
•lw : IF + Read Reg + ALU + Memory + Write
Reg = 2 + 1 + 2 + 2 + 1 = 8 ns
•add: IF + Read Reg + ALU + Write Reg
= 2 + 1 + 2 + 1 = 6 ns
(recall 8ns for single-cycle processor)

•Pipelined Execution:
• Max(IF,Read Reg,ALU,Memory,Write Reg)
= 2 ns

CS61C L21 CPU Design : Pipelining to Improve Performance (17) Beamer, Summer 2007 © UCB

Administrivia
•Assignments

• HW7 due 8/2
• Proj3 due 8/5

•Midterm Regrades due Wed 8/1
•Logisim in lab is now 2.1.6
•Valerie’s OH on Thursday moved to 10-
11 for this week

CS61C L21 CPU Design : Pipelining to Improve Performance (18) Beamer, Summer 2007 © UCB

Pipeline Hazard: Matching socks in later load

A depends on D; stall since folder tied up

T
a
s
k

O
r
d
e
r

B
C
D

A

E

F

bubble

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30



CS61C L21 CPU Design : Pipelining to Improve Performance (19) Beamer, Summer 2007 © UCB

Problems for Pipelining CPUs

• Limits to pipelining: Hazards prevent next
instruction from executing during its
designated clock cycle

• Structural hazards: HW cannot support some
combination of instructions (single person to
fold and put clothes away)

• Control hazards: Pipelining of branches causes
later instruction fetches to wait for the result of
the branch

• Data hazards: Instruction depends on result of
prior instruction still in the pipeline (missing
sock)

• These might result in pipeline stalls or
“bubbles” in the pipeline.

CS61C L21 CPU Design : Pipelining to Improve Performance (20) Beamer, Summer 2007 © UCB

Structural Hazard #1: Single Memory (1/2)

Read same memory twice in same clock cycle

  I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
LU  I$ Reg   D$ Reg

A
LU  I$ Reg   D$ Reg

A
LU  I$ Reg   D$ Reg

A
LUReg   D$ Reg

A
LU  I$ Reg   D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L21 CPU Design : Pipelining to Improve Performance (21) Beamer, Summer 2007 © UCB

Structural Hazard #1: Single Memory (2/2)

•Solution:
• infeasible and inefficient to create
second memory

• (We’ll learn about this more next week)
• so simulate this by having two Level 1
Caches (a temporary smaller [of usually
most recently used] copy of memory)

• have both an L1 Instruction Cache and
an L1 Data Cache

• need more complex hardware to control
when both caches miss

CS61C L21 CPU Design : Pipelining to Improve Performance (22) Beamer, Summer 2007 © UCB

Structural Hazard #2: Registers (1/2)

Can we read and write to registers simultaneously?

  I$

sw

Instr 1

Instr 2

Instr 3

Instr 4

A
LU  I$ Reg   D$ Reg

A
LU  I$ Reg   D$ Reg

A
LU  I$ Reg   D$ Reg

A
LUReg   D$ Reg

A
LU  I$ Reg   D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L21 CPU Design : Pipelining to Improve Performance (23) Beamer, Summer 2007 © UCB

Structural Hazard #2: Registers (2/2)

•Two different solutions have been
used:

1) RegFile access is VERY fast: takes less
than half the time of ALU stage
 Write to Registers during first half of each

clock cycle
 Read from Registers during second half of

each clock cycle
2) Build RegFile with independent read
and write ports

•Result: can perform Read and Write
during same clock cycle

CS61C L21 CPU Design : Pipelining to Improve Performance (24) Beamer, Summer 2007 © UCB

Data Hazards (1/2)

add $t0, $t1, $t2

sub $t4, $t0 ,$t3

and $t5, $t0 ,$t6

or  $t7, $t0 ,$t8

xor $t9, $t0 ,$t10

•Consider the following sequence of
instructions



CS61C L21 CPU Design : Pipelining to Improve Performance (25) Beamer, Summer 2007 © UCB

 Data-flow backward in time are hazards
Data Hazards (2/2)

sub $t4,$t0,$t3

A
LUI$ Reg  D$ Reg

and $t5,$t0,$t6

A
LUI$ Reg  D$ Reg

or   $t7,$t0,$t8 I$

A
LUReg  D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg  D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

LUI$ Reg  D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L21 CPU Design : Pipelining to Improve Performance (26) Beamer, Summer 2007 © UCB

• Forward result from one stage to another
Data Hazard Solution: Forwarding

sub $t4,$t0,$t3
A

LUI$ Reg  D$ Reg

and $t5,$t0,$t6

A
LUI$ Reg  D$ Reg

or   $t7,$t0,$t8 I$

A
LUReg  D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg  D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

LUI$ Reg  D$ Reg

 “or” hazard solved by register hardware

CS61C L21 CPU Design : Pipelining to Improve Performance (27) Beamer, Summer 2007 © UCB

• Dataflow backwards in time are hazards

Data Hazard: Loads (1/4)

sub $t3,$t0,$t2
A

LUI$ Reg  D$ Reg

lw $t0,0($t1)
IF ID/RF EX MEM WBA

LUI$ Reg  D$ Reg

• Can’t solve all cases with forwarding
• Must stall instruction dependent on
load, then forward (more hardware)

CS61C L21 CPU Design : Pipelining to Improve Performance (28) Beamer, Summer 2007 © UCB

• Hardware stalls pipeline
• Called “interlock”

Data Hazard: Loads (2/4)

sub $t3,$t0,$t2

A
LUI$ Reg  D$ Regbub

ble

and $t5,$t0,$t4

A
LUI$ Reg  D$ Regbub

ble

or   $t7,$t0,$t6 I$

A
LUReg  D$bub

ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

LUI$ Reg  D$ Reg

CS61C L21 CPU Design : Pipelining to Improve Performance (29) Beamer, Summer 2007 © UCB

Data Hazard: Loads (3/4)

• Instruction slot after a load is called
“load delay slot”
• If that instruction uses the result of the
load, then the hardware interlock will
stall it for one cycle.
• If the compiler puts an unrelated
instruction in that slot, then no stall
•Letting the hardware stall the instruction
in the delay slot is equivalent to putting
a nop in the slot  (except the latter uses
more code space)

CS61C L21 CPU Design : Pipelining to Improve Performance (30) Beamer, Summer 2007 © UCB

Data Hazard: Loads (4/4)
•Stall is equivalent to nop

sub $t3,$t0,$t2

and $t5,$t0,$t4

or   $t7,$t0,$t6 I$

A
LUReg  D$

lw $t0, 0($t1) A
LUI$ Reg  D$ Reg

bub
ble

bub
ble

bub
ble

bub
ble

bub
ble

A
LUI$ Reg  D$ Reg

A
LUI$ Reg  D$ Reg

nop



CS61C L21 CPU Design : Pipelining to Improve Performance (31) Beamer, Summer 2007 © UCB

 Historical Trivia

•First MIPS design did not interlock and
stall on load-use data hazard
•Real reason for name behind MIPS:
Microprocessor without
Interlocked
Pipeline
Stages

• Word Play on acronym for
Millions of Instructions Per Second,
also called MIPS

CS61C L21 CPU Design : Pipelining to Improve Performance (32) Beamer, Summer 2007 © UCB

Peer Instruction

A. Thanks to pipelining, I have reduced the time it
took me to wash my shirt.

B. Longer pipelines are always a win (since less
work per stage & a faster clock).

C. We can rely on compilers to help us avoid data
hazards by reordering instrs.

   ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L21 CPU Design : Pipelining to Improve Performance (34) Beamer, Summer 2007 © UCB

Things to Remember
•Optimal Pipeline

• Each stage is executing part of an
instruction each clock cycle.

• One instruction finishes during each clock
cycle.

• On average, execute far more quickly.

•What makes this work?
• Similarities between instructions allow us
to use same stages for all instructions
(generally).

• Each stage takes about the same amount of
time as all others: little wasted time.


