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Scott Beamer, Instructor
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CS61C : Machine Structures

 Lecture #21 CPU Design: Pipelining to
Improve Performance
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°5 steps to design a processor
• 1. Analyze instruction set ⇒ datapath requirements
• 2. Select set of datapath components & establish clock

methodology
• 3. Assemble datapath meeting the requirements
• 4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.
• 5. Assemble the control logic

°Control is the hard part
°MIPS makes that easier
• Instructions same size
• Source registers always in same place
• Immediates same size, location
•   Operations always on registers/immediates

Review: Single cycle datapath
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An Abstract View of the Critical Path
Critical Path (Load Instruction) =
    Delay clock through PC (FFs) +
    Instruction Memory’s Access Time +
    Register File’s Access Time, +
    ALU to Perform a 32-bit Add +
    Data Memory Access Time +
    Stable Time for Register File Write
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Processor Performance

• Can we estimate the clock rate (frequency) of our
single-cycle processor? We know:

• 1 cycle per instruction
•lw is the most demanding instruction.
• Assume approximate delays for major pieces of the

datapath:
 Instr. Mem, ALU, Data Mem : 2ns each, regfile 1ns
 Instruction execution requires: 2 + 1 + 2 + 2 + 1 = 8ns
 ⇒ 125 MHz

• What can we do to improve clock rate?
• Will this improve performance as well?

• We want increases in clock rate to result in programs
executing quicker.
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Ways to Improve Clock Frequency

• Smaller Process Size
• Smallest feature possible in silicon fabrication
• Smaller process is faster because of EE

reasons, and is smaller so things are closer
•Optimize Logic

• Re-arrange CL to be faster
• Sometimes more logic can be used to reduce

delay
• Parallel

• Do more at once - later…

• Cut Down Length of Critical Path
• Inserting registers (pipelining) to break up CL
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Gotta Do Laundry
° Ann, Brian, Cathy, Dave

each have one load of
clothes to wash, dry,
fold, and put away

A B C D

° Dryer takes 30 minutes

° “Folder” takes 30 minutes

° “Stasher” takes 30 minutes
to put clothes into drawers

° Washer takes 30 minutes
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Sequential Laundry

•Sequential laundry takes
8 hours for 4 loads

T
a
s
k

O
r
d
e
r

B

C
D

A
30
Time

3030 3030 30 3030 3030 3030 3030 3030

6 PM 7 8 9 10 11 12 1 2 AM

CS61C L21 CPU Design : Pipelining to Improve Performance (8) Beamer, Summer 2007 © UCB

Pipelined Laundry

•Pipelined laundry takes
3.5 hours for 4 loads!
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General Definitions

•Latency: time to completely execute a
certain task (delay)

• for example, time to read a sector from
disk is disk access time or disk latency

•Throughput: amount of work that can
be done over a period of time (rate)
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Pipelining Lessons (1/2)
• Pipelining doesn’t help

latency of single task, it
helps throughput of entire
workload
• Multiple tasks operating

simultaneously using
different resources
• Potential speedup =

Number pipe stages
• Time to “fill” pipeline and

time to “drain” it reduces
speedup:
2.3X v. 4X in this example
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Pipelining Lessons (2/2)
•Suppose new
Washer takes 20
minutes, new
Stasher takes 20
minutes. How
much faster is
pipeline?
•Pipeline rate
limited by slowest
pipeline stage
•Unbalanced
lengths of pipe
stages reduces
speedup
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Steps in Executing MIPS

1) IFtch: Instruction Fetch, Increment PC
2) Dcd: Instruction Decode, Read Registers
3) Exec:
  Mem-ref: Calculate Address
  Arith-log: Perform Operation

4) Mem:
  Load: Read Data from Memory
  Store: Write Data to Memory

5) WB: Write Data Back to Register
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Pipelined Execution Representation

•Every instruction must take same number
of steps, also called pipeline “stages”, so
some will go idle sometimes

IFtch Dcd Exec Mem WB
IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB
IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB
IFtch Dcd Exec Mem WB

Time
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Review: Datapath for MIPS

•Use datapath figure to represent pipeline
IFtch Dcd Exec Mem WB
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Graphical Pipeline Representation
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Example
•Suppose 2 ns for memory access, 2 ns
for ALU operation, and 1 ns for register
file read or write; compute instr rate
•Nonpipelined Execution:
•lw : IF + Read Reg + ALU + Memory + Write
Reg = 2 + 1 + 2 + 2 + 1 = 8 ns
•add: IF + Read Reg + ALU + Write Reg
= 2 + 1 + 2 + 1 = 6 ns
(recall 8ns for single-cycle processor)

•Pipelined Execution:
• Max(IF,Read Reg,ALU,Memory,Write Reg)
= 2 ns
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Administrivia
•Assignments

• HW7 due 8/2
• Proj3 due 8/5

•Midterm Regrades due Wed 8/1
•Logisim in lab is now 2.1.6
•Valerie’s OH on Thursday moved to 10-
11 for this week
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Pipeline Hazard: Matching socks in later load

A depends on D; stall since folder tied up
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Problems for Pipelining CPUs

• Limits to pipelining: Hazards prevent next
instruction from executing during its
designated clock cycle

• Structural hazards: HW cannot support some
combination of instructions (single person to
fold and put clothes away)

• Control hazards: Pipelining of branches causes
later instruction fetches to wait for the result of
the branch

• Data hazards: Instruction depends on result of
prior instruction still in the pipeline (missing
sock)

• These might result in pipeline stalls or
“bubbles” in the pipeline.
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Structural Hazard #1: Single Memory (1/2)

Read same memory twice in same clock cycle
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Structural Hazard #1: Single Memory (2/2)

•Solution:
• infeasible and inefficient to create
second memory

• (We’ll learn about this more next week)
• so simulate this by having two Level 1
Caches (a temporary smaller [of usually
most recently used] copy of memory)

• have both an L1 Instruction Cache and
an L1 Data Cache

• need more complex hardware to control
when both caches miss
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Structural Hazard #2: Registers (1/2)

Can we read and write to registers simultaneously?
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Structural Hazard #2: Registers (2/2)

•Two different solutions have been
used:

1) RegFile access is VERY fast: takes less
than half the time of ALU stage
 Write to Registers during first half of each

clock cycle
 Read from Registers during second half of

each clock cycle
2) Build RegFile with independent read
and write ports

•Result: can perform Read and Write
during same clock cycle
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Data Hazards (1/2)

add $t0, $t1, $t2

sub $t4, $t0 ,$t3

and $t5, $t0 ,$t6

or  $t7, $t0 ,$t8

xor $t9, $t0 ,$t10

•Consider the following sequence of
instructions
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 Data-flow backward in time are hazards
Data Hazards (2/2)

sub $t4,$t0,$t3

A
LUI$ Reg  D$ Reg

and $t5,$t0,$t6

A
LUI$ Reg  D$ Reg

or   $t7,$t0,$t8 I$

A
LUReg  D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg  D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

LUI$ Reg  D$ Reg
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• Forward result from one stage to another
Data Hazard Solution: Forwarding

sub $t4,$t0,$t3
A

LUI$ Reg  D$ Reg

and $t5,$t0,$t6

A
LUI$ Reg  D$ Reg

or   $t7,$t0,$t8 I$

A
LUReg  D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg  D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

LUI$ Reg  D$ Reg

 “or” hazard solved by register hardware

CS61C L21 CPU Design : Pipelining to Improve Performance (27) Beamer, Summer 2007 © UCB

• Dataflow backwards in time are hazards

Data Hazard: Loads (1/4)

sub $t3,$t0,$t2
A

LUI$ Reg  D$ Reg

lw $t0,0($t1)
IF ID/RF EX MEM WBA

LUI$ Reg  D$ Reg

• Can’t solve all cases with forwarding
• Must stall instruction dependent on
load, then forward (more hardware)

CS61C L21 CPU Design : Pipelining to Improve Performance (28) Beamer, Summer 2007 © UCB

• Hardware stalls pipeline
• Called “interlock”

Data Hazard: Loads (2/4)

sub $t3,$t0,$t2

A
LUI$ Reg  D$ Regbub

ble

and $t5,$t0,$t4

A
LUI$ Reg  D$ Regbub

ble

or   $t7,$t0,$t6 I$

A
LUReg  D$bub

ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

LUI$ Reg  D$ Reg
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Data Hazard: Loads (3/4)

• Instruction slot after a load is called
“load delay slot”
• If that instruction uses the result of the
load, then the hardware interlock will
stall it for one cycle.
• If the compiler puts an unrelated
instruction in that slot, then no stall
•Letting the hardware stall the instruction
in the delay slot is equivalent to putting
a nop in the slot  (except the latter uses
more code space)
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Data Hazard: Loads (4/4)
•Stall is equivalent to nop

sub $t3,$t0,$t2

and $t5,$t0,$t4

or   $t7,$t0,$t6 I$

A
LUReg  D$

lw $t0, 0($t1) A
LUI$ Reg  D$ Reg

bub
ble

bub
ble

bub
ble

bub
ble

bub
ble

A
LUI$ Reg  D$ Reg

A
LUI$ Reg  D$ Reg

nop
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 Historical Trivia

•First MIPS design did not interlock and
stall on load-use data hazard
•Real reason for name behind MIPS:
Microprocessor without
Interlocked
Pipeline
Stages

• Word Play on acronym for
Millions of Instructions Per Second,
also called MIPS
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Peer Instruction

A. Thanks to pipelining, I have reduced the time it
took me to wash my shirt.

B. Longer pipelines are always a win (since less
work per stage & a faster clock).

C. We can rely on compilers to help us avoid data
hazards by reordering instrs.

   ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT
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Things to Remember
•Optimal Pipeline

• Each stage is executing part of an
instruction each clock cycle.

• One instruction finishes during each clock
cycle.

• On average, execute far more quickly.

•What makes this work?
• Similarities between instructions allow us
to use same stages for all instructions
(generally).

• Each stage takes about the same amount of
time as all others: little wasted time.


