
CS61C L22 CPU Design : Pipelining to Improve Performance II (1) Beamer, Summer 2007 © UCB

Scott Beamer, Instructor

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture #22 CPU Design: Pipelining to
Improve Performance II

2007-8-1

CS61C L22 CPU Design : Pipelining to Improve Performance II (2) Beamer, Summer 2007 © UCB

Review: Processor Pipelining (1/2)
• “Pipeline registers” are added to the

datapath/controller to neatly divide the single
cycle processor into “pipeline stages”.
•Optimal Pipeline

• Each stage is executing part of an instruction
each clock cycle.

• One inst. finishes during each clock cycle.
• On average, execute far more quickly.

•What makes this work well?
• Similarities between instructions allow us to use

same stages for all instructions (generally).
• Each stage takes about the same amount of time

as all others: little wasted time.

CS61C L22 CPU Design : Pipelining to Improve Performance II (3) Beamer, Summer 2007 © UCB

Review: Pipeline (2/2)
• Pipelining is a BIG IDEA

• widely used concept

•What makes it less than perfect?
• Structural hazards: Conflicts for resources.

Suppose we had only one cache?
⇒ Need more HW resources

• Control hazards: Branch instructions effect
which instructions come next.
 ⇒ Delayed branch

• Data hazards: Data flow between instructions.
⇒ Forwarding

CS61C L22 CPU Design : Pipelining to Improve Performance II (4) Beamer, Summer 2007 © UCB

Graphical Pipeline Representation

I
n
s
t
r.

O
r
d
e
r

Load

Add

Store

Sub

Or

 I$

Time (clock cycles)

 I$

A
LU

Reg

Reg

 I$

 D$

A
LU

A
LU

Reg

 D$

Reg

 I$

 D$

Reg

A
LU

Reg Reg

Reg

 D$

Reg

 D$

A
LU

(In Reg, right half highlight read, left half write)

Reg

 I$

CS61C L22 CPU Design : Pipelining to Improve Performance II (5) Beamer, Summer 2007 © UCB

Control Hazard: Branching (1/8)

Where do we do the compare for the branch?

 I$

beq

Instr 1

Instr 2

Instr 3

Instr 4

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg

A
LU I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L22 CPU Design : Pipelining to Improve Performance II (6) Beamer, Summer 2007 © UCB

Control Hazard: Branching (2/8)
•We had put branch decision-making
hardware in ALU stage

• therefore two more instructions after the
branch will always be fetched, whether or
not the branch is taken

•Desired functionality of a branch
• if we do not take the branch, don’t waste
any time and continue executing
normally

• if we take the branch, don’t execute any
instructions after the branch, just go to
the desired label

CS61C L22 CPU Design : Pipelining to Improve Performance II (7) Beamer, Summer 2007 © UCB

Control Hazard: Branching (3/8)

• Initial Solution: Stall until decision is
made

• insert “no-op” instructions (those that
accomplish nothing, just take time) or
hold up the fetch of the next instruction
(for 2 cycles).

• Drawback: branches take 3 clock cycles
each (assuming comparator is put in ALU
stage)

CS61C L22 CPU Design : Pipelining to Improve Performance II (8) Beamer, Summer 2007 © UCB

Control Hazard: Branching (4/8)
•Optimization #1:

• insert special branch comparator in
Stage 2

• as soon as instruction is decoded
(Opcode identifies it as a branch),
immediately make a decision and set the
new value of the PC

• Benefit: since branch is complete in
Stage 2, only one unnecessary
instruction is fetched, so only one no-op
is needed

• Side Note: This means that branches are
idle in Stages 3, 4 and 5.

CS61C L22 CPU Design : Pipelining to Improve Performance II (9) Beamer, Summer 2007 © UCB

Control Hazard: Branching (5/8)

Branch comparator moved to Decode stage.

 I$

beq

Instr 1

Instr 2

Instr 3

Instr 4
A

LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg

A
LU I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS61C L22 CPU Design : Pipelining to Improve Performance II (10) Beamer, Summer 2007 © UCB

• User inserting no-op instruction

Control Hazard: Branching (6a/8)

add

beq

nop

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg I$

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

bub
ble

• Impact: 2 clock cycles per branch
instruction ⇒ slow

lw

bub
ble

bub
ble

bub
ble

bub
ble

CS61C L22 CPU Design : Pipelining to Improve Performance II (11) Beamer, Summer 2007 © UCB

• Controller inserting a single bubble

Control Hazard: Branching (6b/8)

add

beq

lw

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg I$

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

bub
ble

• Impact: 2 clock cycles per branch
instruction ⇒ slow

CS61C L22 CPU Design : Pipelining to Improve Performance II (12) Beamer, Summer 2007 © UCB

Control Hazard: Branching (7/8)

•Optimization #2: Redefine branches
• Old definition: if we take the branch,
none of the instructions after the branch
get executed by accident

• New definition: whether or not we take
the branch, the single instruction
immediately following the branch gets
executed (called the branch-delay slot)

•The term “Delayed Branch” means
we always execute inst after branch
•This optimization is used on the MIPS

CS61C L22 CPU Design : Pipelining to Improve Performance II (13) Beamer, Summer 2007 © UCB

Control Hazard: Branching (8/8)
•Notes on Branch-Delay Slot

• Worst-Case Scenario: can always put a
no-op in the branch-delay slot

• Better Case: can find an instruction
preceding the branch which can be
placed in the branch-delay slot without
affecting flow of the program
 re-ordering instructions is a common

method of speeding up programs
 compiler must be very smart in order to find

instructions to do this
 usually can find such an instruction at least

50% of the time
 Jumps also have a delay slot…

CS61C L22 CPU Design : Pipelining to Improve Performance II (14) Beamer, Summer 2007 © UCB

Example: Nondelayed vs. Delayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Nondelayed Branch
add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Delayed Branch

Exit: Exit:

CS61C L22 CPU Design : Pipelining to Improve Performance II (15) Beamer, Summer 2007 © UCB

Out-of-Order Laundry: Don’t Wait

A depends on D; rest continue; need
more resources to allow out-of-order

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B
C
D

A
303030 3030 30 30

E

F

bubble

CS61C L22 CPU Design : Pipelining to Improve Performance II (16) Beamer, Summer 2007 © UCB

Superscalar Laundry: Parallel per stage

More resources, HW to match mix of
parallel tasks?

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B
C
D

A

E

F

 (light clothing)
 (dark clothing)
 (very dirty clothing)

 (light clothing)
 (dark clothing)
 (very dirty clothing)

303030 3030

CS61C L22 CPU Design : Pipelining to Improve Performance II (17) Beamer, Summer 2007 © UCB

Superscalar Laundry: Mismatch Mix

Task mix underutilizes extra resources

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30
 (light clothing)

 (light clothing)
 (dark clothing)

 (light clothing)

A

B

D

C

CS61C L22 CPU Design : Pipelining to Improve Performance II (18) Beamer, Summer 2007 © UCB

Real-world pipelining problem

•You’re the manager of a HUGE
assembly plant to build computers.

Box

Problem:
need to
run 2 hr

test before
done..help!

•Main pipeline
• 10 minutes/
pipeline stage

• 60 stages
• Latency: 10hr

CS61C L22 CPU Design : Pipelining to Improve Performance II (19) Beamer, Summer 2007 © UCB

Real-world pipelining problem solution 1

• You remember: “a pipeline frequency
is limited by its slowest stage”, so…

Box

Problem:
need to
run 2 hr

test before
done..help!

•Main pipeline
• 10 minutes/
pipeline stage

• 60 stages
• Latency: 10hr

2hours/

120hr
CS61C L22 CPU Design : Pipelining to Improve Performance II (20) Beamer, Summer 2007 © UCB

Real-world pipelining problem solution 2

•Create a sub-pipeline!

•Main pipeline
• 10 minutes/
pipeline stage

• 60 stages

Box

2hr test
(12 CPUs

in this
pipeline)

CS61C L22 CPU Design : Pipelining to Improve Performance II (21) Beamer, Summer 2007 © UCB

Peer Instruction (1/2)

Assume 1 instr/clock, delayed branch, 5 stage
pipeline, forwarding, interlock on unresolved
load hazards (after 103 loops, so pipeline full)
Loop: lw $t0, 0($s1)

addu $t0, $t0, $s2
sw $t0, 0($s1)
addiu $s1, $s1, -4
bne $s1, $zero, Loop
nop

•How many pipeline stages (clock cycles) per
loop iteration to execute this code?

1
2
3
4
5
6
7
8
9
10

CS61C L22 CPU Design : Pipelining to Improve Performance II (23) Beamer, Summer 2007 © UCB

Peer Instruction (2/2)

Assume 1 instr/clock, delayed branch, 5 stage
pipeline, forwarding, interlock on unresolved
load hazards (after 103 loops, so pipeline full).
Rewrite this code to reduce pipeline stages
(clock cycles) per loop to as few as possible.
Loop: lw $t0, 0($s1)

addu $t0, $t0, $s2
sw $t0, 0($s1)
addiu $s1, $s1, -4
bne $s1, $zero, Loop
nop

•How many pipeline stages (clock cycles) per
loop iteration to execute this code?

1
2
3
4
5
6
7
8
9
10

CS61C L22 CPU Design : Pipelining to Improve Performance II (25) Beamer, Summer 2007 © UCB

“And in Early Conclusion..”
•Pipeline challenge is hazards

• Forwarding helps w/many data hazards
• Delayed branch helps with control hazard in
5 stage pipeline

• Load delay slot / interlock necessary

•More aggressive performance:
• Superscalar
• Out-of-order execution

CS61C L22 CPU Design : Pipelining to Improve Performance II (26) Beamer, Summer 2007 © UCB

Administrivia
•Assignments

• HW7 due 8/2
• Proj3 due 8/5

•Midterm Regrades due Today
•Logisim in lab is now 2.1.6

•java -jar ~cs61c/bin/logisim

•Valerie’s OH on Thursday moved to 10-
11 for this week

CS61C L22 CPU Design : Pipelining to Improve Performance II (27) Beamer, Summer 2007 © UCB

Why Doesn’t It Work?

•DO NOT MESS WITH THE CLOCK
• Crafty veterans may do it very rarely and
carefully

•Doing so will cause unpredictable and
hard to track errors
•Following slides are from CS 150
Lecture by Prof. Katz

CS61C L22 CPU Design : Pipelining to Improve Performance II (28) Beamer, Summer 2007 © UCB

IN

Q0

Q1

CLK

100

Cascading Edge-triggered Flip-Flops

•Shift register
• New value goes into first stage
• While previous value of first stage goes into second stage
• Consider setup/hold/propagation delays (prop must be >

hold)

CLK

IN
Q0 Q1

D Q D Q OUT

CS61C L22 CPU Design : Pipelining to Improve Performance II (29) Beamer, Summer 2007 © UCB

IN

Q0

Q1

CLK

100

Cascading Edge-triggered Flip-Flops

•Shift register
• New value goes into first stage
• While previous value of first stage goes into second stage
• Consider setup/hold/propagation delays (prop must be >

hold)

CLK

IN
Q0 Q1

D Q D Q OUT

Delay
Clk1

Clk1

CS61C L22 CPU Design : Pipelining to Improve Performance II (30) Beamer, Summer 2007 © UCB

original state: IN = 0, Q0 = 1, Q1 = 1
due to skew, next state becomes: Q0 = 0, Q1 = 0, and not Q0 = 0, Q1 = 1

CLK1 is a delayed
version of CLK

In
Q0
Q1

CLK
CLK1

100

Clock Skew

•The problem
• Correct behavior assumes next state of all storage

elements determined by all storage elements at the same
time

• Difficult in high-performance systems because time for
clock to arrive at flip-flop is comparable to delays through
logic (and will soon become greater than logic delay)

• Effect of skew on cascaded flip-flops:

CS61C L22 CPU Design : Pipelining to Improve Performance II (31) Beamer, Summer 2007 © UCB

Why Gating of Clocks is Bad!

Reg

Clk

LD

Reg

Clk
LD

GOOD BAD

Do NOT Mess With Clock Signals!

gatedClK

CS61C L22 CPU Design : Pipelining to Improve Performance II (32) Beamer, Summer 2007 © UCB

Why Gating of Clocks is Bad!

Do NOT Mess With Clock Signals!

Clk

LD
gatedClk

LD generated by FSM
shortly after rising edge of CLK

Runt pulse plays HAVOC with register internals!

Clk

LDn
gatedClk

NASTY HACK: delay LD through
negative edge triggered FF to
ensure that it won’t change during
next positive edge event

Clk skew PLUS LD delayed by half clock cycle …
What is the effect on your register transfers?

CS61C L22 CPU Design : Pipelining to Improve Performance II (33) Beamer, Summer 2007 © UCB

The Big Picture

 Processor
 (active)

Computer

Control
(“brain”)

Datapath
(“brawn”)

Memory
(passive)
(where
programs,
data live
when
running)

Devices
Input

Output

Keyboard,
Mouse

Display,
Printer

Disk,
Network

CS61C L22 CPU Design : Pipelining to Improve Performance II (34) Beamer, Summer 2007 © UCB

Memory Hierarchy

• Processor
• holds data in register file (~100 Bytes)
• Registers accessed on nanosecond timescale

• Memory (we’ll call “main memory”)
• More capacity than registers (~Gbytes)
• Access time ~50-100 ns
• Hundreds of clock cycles per memory access?!

• Disk
• HUGE capacity (virtually limitless)
• VERY slow: runs ~milliseconds

Storage in computer systems:

CS61C L22 CPU Design : Pipelining to Improve Performance II (35) Beamer, Summer 2007 © UCB

Motivation: Why We Use Caches (written $)
µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88 19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rfo

rm
an

ce

• 1989 first Intel CPU with cache on chip
• 1998 Pentium III has two levels of cache on chip

CS61C L22 CPU Design : Pipelining to Improve Performance II (36) Beamer, Summer 2007 © UCB

Memory Caching

•Mismatch between processor and
memory speeds leads us to add a new
level: a memory cache
• Implemented with same IC processing
technology as the CPU (usually
integrated on same chip): faster but
more expensive than DRAM memory.
•Cache is a copy of a subset of main
memory.
•Most processors have separate caches
for instructions and data.

CS61C L22 CPU Design : Pipelining to Improve Performance II (37) Beamer, Summer 2007 © UCB

Memory Hierarchy
Processor

Size of memory at each level

Increasing
Distance

from Proc.,
Decreasing

speed
Level 1
Level 2

Level n

Level 3
. . .

Higher

Lower

Levels in
memory

hierarchy

As we move to deeper levels the latency
goes up and price per bit goes down.

CS61C L22 CPU Design : Pipelining to Improve Performance II (38) Beamer, Summer 2007 © UCB

Memory Hierarchy

• If level closer to Processor, it is:
• smaller
• faster
• subset of lower levels (contains most
recently used data)

•Lowest Level (usually disk) contains
all available data (or does it go beyond
the disk?)
•Memory Hierarchy presents the
processor with the illusion of a very
large very fast memory.

