
CS61C L23 Caches I (1) Beamer, Summer 2007 © UCB

Scott Beamer, Instructor

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture #23 Cache I
2007-8-2

CS61C L23 Caches I (3) Beamer, Summer 2007 © UCB

Memory Hierarchy
Processor

Size of memory at each level

Increasing
Distance

from Proc.,
Decreasing

speed
Level 1
Level 2

Level n

Level 3
. . .

Higher

Lower

Levels in
memory

hierarchy

As we move to deeper levels the latency
goes up and price per bit goes down.

CS61C L23 Caches I (4) Beamer, Summer 2007 © UCB

Memory Hierarchy

• If level closer to Processor, it is:
• smaller
• faster
• subset of lower levels (contains most
recently used data)

•Lowest Level (usually disk) contains
all available data (or does it go beyond
the disk?)
•Memory Hierarchy presents the
processor with the illusion of a very
large very fast memory.

CS61C L23 Caches I (5) Beamer, Summer 2007 © UCB

Memory Hierarchy Analogy: Library (1/2)

•You’re writing a term paper
(Processor) at a table in Doe
•Doe Library is equivalent to disk
• essentially limitless capacity
• very slow to retrieve a book

•Table is main memory
• smaller capacity: means you must return
book when table fills up
• easier and faster to find a book there
once you’ve already retrieved it

CS61C L23 Caches I (6) Beamer, Summer 2007 © UCB

Memory Hierarchy Analogy: Library (2/2)

•Open books on table are cache
• smaller capacity: can have very few open
books fit on table; again, when table fills up,
you must close a book
•much, much faster to retrieve data

• Illusion created: whole library open on
the tabletop
•Keep as many recently used books open on
table as possible since likely to use again
•Also keep as many books on table as
possible, since faster than going to library

CS61C L23 Caches I (7) Beamer, Summer 2007 © UCB

Memory Hierarchy Basis
•Cache contains copies of data in
memory that are being used.
•Memory contains copies of data on
disk that are being used.
•Caches work on the principles of
temporal and spatial locality.
• Temporal Locality: if we use it now,
chances are we’ll want to use it again
soon.
•Spatial Locality: if we use a piece of
memory, chances are we’ll use the
neighboring pieces soon.

CS61C L23 Caches I (8) Beamer, Summer 2007 © UCB

Cache Design

•How do we organize cache?
•Where does each memory address
map to?

(Remember that cache is subset of
memory, so multiple memory addresses
map to the same cache location.)

•How do we know which elements are
in cache?
•How do we quickly locate them?

CS61C L23 Caches I (9) Beamer, Summer 2007 © UCB

Direct-Mapped Cache (1/4)

• In a direct-mapped cache, each
memory address is associated with
one possible block within the cache
• Therefore, we only need to look in a
single location in the cache for the data if
it exists in the cache
•Block is the unit of transfer between
cache and memory

CS61C L23 Caches I (10) Beamer, Summer 2007 © UCB

Direct-Mapped Cache (2/4)

 Cache Location 0 can be
 occupied by data from:
• Memory location 0, 4, 8, ...
• 4 blocks ⇒ any memory

location that is multiple of 4

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4 Byte Direct
Mapped Cache

Cache
Index

0
1
2
3

What if we wanted a block
to be bigger than one byte?

Block size = 1 byte

CS61C L23 Caches I (11) Beamer, Summer 2007 © UCB

Direct-Mapped Cache (3/4)

• When we ask for a byte, the
system finds out the right block,
and loads it all!
• How does it know right block?
• How do we select the byte?

• E.g., Mem address 11101?
• How does it know WHICH

colored block it originated from?
• What do you do at baggage claim?

MemoryMemory
Address

0
2
4
6
8
A
C
E

10
12
14
16
18
1A
1C

1E

8 Byte Direct
Mapped Cache

Cache
Index

0
1
2
3

01
23

etc
Block size = 2 bytes

45
67
89

CS61C L23 Caches I (12) Beamer, Summer 2007 © UCB

Direct-Mapped Cache (4/4)

• What should go in the tag?
• Do we need the entire address?

 What do all these tags have in
common?

• What did we do with the immediate
when we were branch addressing,
always count by bytes?

• Why not count by cache #?
• It’s useful to draw memory with the

same width as the block size

Memory
(addresses shown)

Memory Address

0
2
4
6
8
A
C
E

10
12
14
16
18
1A
1C

1E

8 Byte Direct
Mapped Cache w/Tag!

Cache
Index

0
1
2
3

01
23

etc
 Tag Data
(Block size = 2 bytes)

45
67
89

8
3

1E
140

1

2

3
Cache#

0
0

3
2

CS61C L23 Caches I (13) Beamer, Summer 2007 © UCB

Issues with Direct-Mapped

•Since multiple memory addresses
map to same cache index, how do we
tell which one is in there?
•What if we have a block size > 1 byte?
•Answer: divide memory address into
three fields

ttttttttttttttttt iiiiiiiiii oooo

tag index byte
to check to offset
if have select within
correct block block block

CS61C L23 Caches I (14) Beamer, Summer 2007 © UCB

Direct-Mapped Cache Terminology

•All fields are read as unsigned integers.
• Index: specifies the cache index (which
“row”/block of the cache we should
look in)
•Offset: once we’ve found correct block,
specifies which byte within the block
we want
•Tag: the remaining bits after offset and
index are determined; these are used to
distinguish between all the memory
addresses that map to the same
location

CS61C L23 Caches I (15) Beamer, Summer 2007 © UCB

TIO Dan’s great cache mnemonic

AREA (cache size, B)
= HEIGHT (# of blocks)
 * WIDTH (size of one block, B/block)

WIDTH
(size of one block, B/block)

HEIGHT
(# of blocks)

AREA
(cache size, B)

2(H+W) = 2H * 2W

Tag Index Offset

CS61C L23 Caches I (16) Beamer, Summer 2007 © UCB

Direct-Mapped Cache Example (1/3)

•Suppose we have a 16KB of data in a
direct-mapped cache with 4 word blocks
•Determine the size of the tag, index and
offset fields if we’re using a 32-bit
architecture
•Offset
• need to specify correct byte within a block
• block contains 4 words

 = 16 bytes
 = 24 bytes

• need 4 bits to specify correct byte
CS61C L23 Caches I (17) Beamer, Summer 2007 © UCB

Direct-Mapped Cache Example (2/3)
• Index: (~index into an “array of blocks”)
• need to specify correct block in cache
• cache contains 16 KB = 214 bytes
• block contains 24 bytes (4 words)
• # blocks/cache

 = bytes/cache
bytes/block

 = 214 bytes/cache
 24 bytes/block

 = 210 blocks/cache
• need 10 bits to specify this many blocks

CS61C L23 Caches I (18) Beamer, Summer 2007 © UCB

Direct-Mapped Cache Example (3/3)
•Tag: use remaining bits as tag
• tag length = addr length – offset - index

 = 32 - 4 - 10 bits
 = 18 bits

• so tag is leftmost 18 bits of memory address

•Why not full 32 bit address as tag?
•All bytes within block need same address (4b)
• Index must be same for every address within
a block, so it’s redundant in tag check, thus
can leave off to save memory (here 10 bits)

CS61C L23 Caches I (19) Beamer, Summer 2007 © UCB

Caching Terminology
• When we try to read memory,

3 things can happen:
1. cache hit:

cache block is valid and contains
proper address, so read desired word

2. cache miss:
nothing in cache in appropriate block,
so fetch from memory

3. cache miss, block replacement:
wrong data is in cache at appropriate
block, so discard it and fetch desired
data from memory (cache always copy)

CS61C L23 Caches I (20) Beamer, Summer 2007 © UCB

Administrivia

•Assignments
•HW7 due Tonight 8/2
•Proj3 due Sunday 8/5

•Proj3 will have face-to-face grading
•You will be able to sign up online tonight
or tomorrow for timeslots next week

•Today’s lab is “non-trivial,” so work in
groups and make sure you understand
it
•Course Survey during last lecture

CS61C L23 Caches I (21) Beamer, Summer 2007 © UCB

Block Size Tradeoff (1/3)
•Benefits of Larger Block Size
•Spatial Locality: if we access a given
word, we’re likely to access other
nearby words soon
•Very applicable with Stored-Program
Concept: if we execute a given
instruction, it’s likely that we’ll execute
the next few as well
•Works nicely in sequential array
accesses too

CS61C L23 Caches I (22) Beamer, Summer 2007 © UCB

Block Size Tradeoff (2/3)
•Drawbacks of Larger Block Size
• Larger block size means
larger miss penalty
 on a miss, takes longer time to load a new

block from next level
• If block size is too big relative to cache
size, then there are too few blocks
 Result: miss rate goes up

• In general, minimize
Average Memory Access Time (AMAT)

= Hit Time
+ Miss Penalty x Miss Rate

CS61C L23 Caches I (23) Beamer, Summer 2007 © UCB

Block Size Tradeoff (3/3)

•Hit Time = time to find and retrieve
data from current level cache
•Miss Penalty = average time to retrieve
data on a current level miss (includes
the possibility of misses on
successive levels of memory
hierarchy)
•Hit Rate = % of requests that are found
in current level cache
•Miss Rate = 1 - Hit Rate

CS61C L23 Caches I (24) Beamer, Summer 2007 © UCB

Extreme Example: One Big Block

•Cache Size = 4 bytes Block Size = 4 bytes
•Only ONE entry (row) in the cache!

• If item accessed, likely accessed again soon
•But unlikely will be accessed again immediately!

•The next access will likely to be a miss again
•Continually loading data into the cache but
discard data (force out) before use it again
•Nightmare for cache designer: Ping Pong Effect

 Cache DataValid Bit
B 0B 1B 3

Tag
B 2

CS61C L23 Caches I (25) Beamer, Summer 2007 © UCB

Block Size Tradeoff Conclusions
Miss
Penalty

Block Size

Increased Miss Penalty
& Miss Rate

Average
Access
Time

Block Size

Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Miss
Rate

Block Size

CS61C L23 Caches I (26) Beamer, Summer 2007 © UCB

Types of Cache Misses (1/2)

• “Three Cs” Model of Misses
•1st C: Compulsory Misses
• occur when a program is first started
• cache does not contain any of that
program’s data yet, so misses are bound
to occur
• can’t be avoided easily, so won’t focus
on these in this course

CS61C L23 Caches I (27) Beamer, Summer 2007 © UCB

Types of Cache Misses (2/2)

• 2nd C: Conflict Misses
• miss that occurs because two distinct memory addresses

map to the same cache location
• two blocks (which happen to map to the same location)

can keep overwriting each other
• big problem in direct-mapped caches
• how do we lessen the effect of these?

• Dealing with Conflict Misses
• Solution 1: Make the cache size bigger

 Fails at some point
• Solution 2: Multiple distinct blocks can fit in the same

cache Index?

CS61C L23 Caches I (28) Beamer, Summer 2007 © UCB

Fully Associative Cache (1/3)

•Memory address fields:
• Tag: same as before
•Offset: same as before
• Index: non-existant

•What does this mean?
• no “rows”: any block can go anywhere in
the cache
•must compare with all tags in entire cache
to see if data is there

CS61C L23 Caches I (29) Beamer, Summer 2007 © UCB

Fully Associative Cache (2/3)
•Fully Associative Cache (e.g., 32 B block)
• compare tags in parallel

Byte Offset

:

 Cache Data
B 0

0431

:

Cache Tag (27 bits long)

Valid

:

B 1B 31 :

 Cache Tag
=

=
=

=
=
:

CS61C L23 Caches I (30) Beamer, Summer 2007 © UCB

Fully Associative Cache (3/3)

•Benefit of Fully Assoc Cache
•No Conflict Misses (since data can go
anywhere)

•Drawbacks of Fully Assoc Cache
•Need hardware comparator for every
single entry: if we have a 64KB of data in
cache with 4B entries, we need 16K
comparators: infeasible

CS61C L23 Caches I (31) Beamer, Summer 2007 © UCB

Third Type of Cache Miss

•Capacity Misses
•miss that occurs because the cache has
a limited size
•miss that would not occur if we increase
the size of the cache
• sketchy definition, so just get the general
idea

•This is the primary type of miss for
Fully Associative caches.

CS61C L23 Caches I (32) Beamer, Summer 2007 © UCB

N-Way Set Associative Cache (1/3)

•Memory address fields:
• Tag: same as before
•Offset: same as before
• Index: points us to the correct “row”
(called a set in this case)

•So what’s the difference?
• each set contains multiple blocks
• once we’ve found correct set, must
compare with all tags in that set to find
our data

CS61C L23 Caches I (33) Beamer, Summer 2007 © UCB

Associative Cache Example

• Here’s a simple 2 way set
associative cache.

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache
Index

0
0
1
1

CS61C L23 Caches I (34) Beamer, Summer 2007 © UCB

N-Way Set Associative Cache (2/3)

• Basic Idea
• cache is direct-mapped w/respect to sets
• each set is fully associative
• basically N direct-mapped caches working in

parallel: each has its own valid bit and data

•Given memory address:
• Find correct set using Index value.
• Compare Tag with all Tag values in the

determined set.
• If a match occurs, hit!, otherwise a miss.
• Finally, use the offset field as usual to find the

desired data within the block.

CS61C L23 Caches I (35) Beamer, Summer 2007 © UCB

N-Way Set Associative Cache (3/3)

•What’s so great about this?
• even a 2-way set assoc cache avoids a
lot of conflict misses
• hardware cost isn’t that bad: only need N
comparators

• In fact, for a cache with M blocks,
• it’s Direct-Mapped if it’s 1-way set assoc
• it’s Fully Assoc if it’s M-way set assoc
• so these two are just special cases of the
more general set associative design

CS61C L23 Caches I (37) Beamer, Summer 2007 © UCB

Peer Instruction

A. Mem hierarchies were invented before
1950. (UNIVAC I wasn’t delivered ‘til 1951)

B. If you know your computer’s cache size,
you can often make your code run faster.

C. Memory hierarchies take advantage of
spatial locality by keeping the most recent
data items closer to the processor.

 ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L23 Caches I (39) Beamer, Summer 2007 © UCB

And in Conclusion…
•We would like to have the capacity of
disk at the speed of the processor:
unfortunately this is not feasible.
•So we create a memory hierarchy:
• each successively lower level contains
“most used” data from next higher level
• exploits temporal & spatial locality
• do the common case fast, worry less
about the exceptions
(design principle of MIPS)

•Locality of reference is a Big Idea

