
CS61C L24 Cache II (1) Beamer, Summer 2007 © UCB

Scott Beamer, Instructor

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture #24 Cache II

2007-8-6

New Flow Based Routers

www.anagran.com

CS61C L24 Cache II (2) Beamer, Summer 2007 © UCB

Caching Terminology
• When we try to read memory,

3 things can happen:
1. cache hit:

cache block is valid and contains
proper address, so read desired word

2. cache miss:
nothing in cache in appropriate block,
so fetch from memory

3. cache miss, block replacement:
wrong data is in cache at appropriate
block, so discard it and fetch desired
data from memory (cache always copy)

CS61C L24 Cache II (3) Beamer, Summer 2007 © UCB

Direct-Mapped Cache Terminology

•All fields are read as unsigned integers.
• Index: specifies the cache index (which
“row” of the cache we should look in)
•Offset: once we’ve found correct block,
specifies which byte within the block
we want -- I.e., which “column”
•Tag: the remaining bits after offset and
index are determined; these are used to
distinguish between all the memory
addresses that map to the same
location

CS61C L24 Cache II (4) Beamer, Summer 2007 © UCB

TIO Dan’s great cache mnemonic

AREA (cache size, B)
= HEIGHT (# of blocks)
 * WIDTH (size of one block, B/block)

WIDTH
(size of one block, B/block)

HEIGHT
(# of blocks)

AREA
(cache size, B)

2(H+W) = 2H * 2W

Tag Index Offset

CS61C L24 Cache II (5) Beamer, Summer 2007 © UCB

16 KB Direct Mapped Cache, 16B blocks
• Valid bit: determines whether anything

is stored in that row (when computer
initially turned on, all entries invalid)

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

Index
0
0
0
0
0
0
0
0

0
0

CS61C L24 Cache II (6) Beamer, Summer 2007 © UCB

1. Read 0x00000014

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

• 000000000000000000 0000000001 0100

Index

Tag field Index field Offset

0
0
0
0
0
0
0
0

0
0

CS61C L24 Cache II (7) Beamer, Summer 2007 © UCB

So we read block 1 (0000000001)

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

• 000000000000000000 0000000001 0100

Index

Tag field Index field Offset

0
0
0
0
0
0
0
0

0
0

CS61C L24 Cache II (8) Beamer, Summer 2007 © UCB

No valid data

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

• 000000000000000000 0000000001 0100

Index

Tag field Index field Offset

0
0
0
0
0
0
0
0

0
0

CS61C L24 Cache II (9) Beamer, Summer 2007 © UCB

So load that data into cache, setting tag, valid

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000001 0100

Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0

CS61C L24 Cache II (10) Beamer, Summer 2007 © UCB

Read from cache at offset, return word b
• 000000000000000000 0000000001 0100

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0

CS61C L24 Cache II (11) Beamer, Summer 2007 © UCB

2. Read 0x0000001C = 0…00 0..001 1100

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000001 1100

Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0

CS61C L24 Cache II (12) Beamer, Summer 2007 © UCB

Index is Valid

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000001 1100

Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0

CS61C L24 Cache II (13) Beamer, Summer 2007 © UCB

Index valid, Tag Matches

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000001 1100

Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0

CS61C L24 Cache II (14) Beamer, Summer 2007 © UCB

Index Valid, Tag Matches, return d

...

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
4
5
6
7

1022
1023

...

1 0 a b c d

• 000000000000000000 0000000001 1100

Index

Tag field Index field Offset

0

0
0
0
0
0
0

0
0

CS61C L24 Cache II (15) Beamer, Summer 2007 © UCB

Types of Cache Misses

•Compulsory Misses
• When program starts, nothing is loaded

•Conflict Misses
• Two (or more) needed blocks map to the
same cache location

• Fixed by Fully Associative Cache

•Capacity Misses
• Not enough room to hold it all
• Can be fixed by bigger cache

CS61C L24 Cache II (16) Beamer, Summer 2007 © UCB

Fully Associative Cache

•Memory address fields:
• Tag: same as before
• Offset: same as before
• Index: non-existant

•What does this mean?
• no “rows”: any block can go anywhere in
the cache

• must compare with all tags in entire cache
to see if data is there

CS61C L24 Cache II (17) Beamer, Summer 2007 © UCB

What to do on a write hit?

•Write-through
• update the word in cache block and
corresponding word in memory

•Write-back
• update word in cache block
• allow memory word to be “stale”
⇒ add ‘dirty’ bit to each block indicating
that memory needs to be updated when
block is replaced
⇒ OS flushes cache before I/O…

•Performance trade-offs?

CS61C L24 Cache II (18) Beamer, Summer 2007 © UCB

N-Way Set Associative Cache (1/3)

•Memory address fields:
• Tag: same as before
• Offset: same as before
• Index: points us to the correct “row”
(called a set in this case)

•So what’s the difference?
• each set contains multiple blocks
• once we’ve found correct set, must
compare with all tags in that set to find
our data

CS61C L24 Cache II (19) Beamer, Summer 2007 © UCB

Associative Cache Example

• Here’s a simple 2 way set
associative cache.

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache
Index

0
0
1
1

CS61C L24 Cache II (20) Beamer, Summer 2007 © UCB

N-Way Set Associative Cache (2/3)

• Basic Idea
• cache is direct-mapped w/respect to sets
• each set is fully associative
• basically N direct-mapped caches working in

parallel: each has its own valid bit and data

•Given memory address:
• Find correct set using Index value.
• Compare Tag with all Tag values in the

determined set.
• If a match occurs, hit!, otherwise a miss.
• Finally, use the offset field as usual to find the

desired data within the block.

CS61C L24 Cache II (21) Beamer, Summer 2007 © UCB

N-Way Set Associative Cache (3/3)

•What’s so great about this?
• even a 2-way set assoc cache avoids a
lot of conflict misses

• hardware cost isn’t that bad: only need N
comparators

• In fact, for a cache with M blocks,
• it’s Direct-Mapped if it’s 1-way set assoc
• it’s Fully Assoc if it’s M-way set assoc
• so these two are just special cases of the
more general set associative design

CS61C L24 Cache II (22) Beamer, Summer 2007 © UCB

4-Way Set Associative Cache Circuit

tag
index

CS61C L24 Cache II (23) Beamer, Summer 2007 © UCB

Peer Instructions

1. In the last 10 years, the gap between the access time
of DRAMs & the cycle time of processors has
decreased. (I.e., is closing)

2. A 2-way set-associative cache can be outperformed
by a direct-mapped cache.

3. Larger block size ⇒ lower miss rate

 ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L24 Cache II (24) Beamer, Summer 2007 © UCB

Peer Instructions Answer

1. In the last 10 years, the gap between the access time
of DRAMs & the cycle time of processors has
decreased. (I.e., is closing)

2. A 2-way set-associative cache can be outperformed
by a direct-mapped cache.

3. Larger block size ⇒ lower miss rate

1. That was was one of the motivation for caches in the
first place -- that the memory gap is big and widening.

2. Sure, consider the caches from the previous slides
with the following workload: 0, 2, 0, 4, 2
2-way: 0m, 2m, 0h, 4m, 2m; DM: 0m, 2m, 0h, 4m, 2h

3. Larger block size ⇒ lower miss rate, true until a
certain point, and then the ping-pong effect takes over

 ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L24 Cache II (25) Beamer, Summer 2007 © UCB

Administrivia

•Proj4 due Sunday (will be posted
tonight)
•Proj3 Face-to-Face grading starts
today

• Make an appointment (and show up)

•Final Review Session in works
•Course Survey during last lecture

• 2 points extra added for taking survey
(still anonymous)

• I don’t see results until long after grades
due

CS61C L24 Cache II (26) Beamer, Summer 2007 © UCB

Block Replacement Policy
• Direct-Mapped Cache: index completely

specifies position which position a block can
go in on a miss
• N-Way Set Assoc: index specifies a set, but

block can occupy any position within the set
on a miss
• Fully Associative: block can be written into

any position
•Question: if we have the choice, where

should we write an incoming block?
• If there are any locations with valid bit off

(empty), then usually write the new block into the
first one.

• If all possible locations already have a valid
block, we must pick a replacement policy: rule by
which we determine which block gets “cached
out” on a miss.

CS61C L24 Cache II (27) Beamer, Summer 2007 © UCB

Block Replacement Policy: LRU

•LRU (Least Recently Used)
• Idea: cache out block which has been
accessed (read or write) least recently

• Pro: temporal locality ⇒ recent past use
implies likely future use: in fact, this is a
very effective policy

• Con: with 2-way set assoc, easy to keep
track (one LRU bit); with 4-way or
greater, requires complicated hardware
and much time to keep track of this

CS61C L24 Cache II (28) Beamer, Summer 2007 © UCB

Block Replacement Example
•We have a 2-way set associative cache
with a four word total capacity and one
word blocks. We perform the
following word accesses (ignore bytes
for this problem):

0, 2, 0, 1, 4, 0, 2, 3, 5, 4
How many hits and how many misses
will there be for the LRU block
replacement policy?

CS61C L24 Cache II (29) Beamer, Summer 2007 © UCB

Block Replacement Example: LRU
•Addresses 0, 2, 0, 1, 4, 0, ... 0 lru

2

1 lru

loc 0 loc 1
set 0
set 1

0 2lruset 0
set 1

 0: miss, bring into set 0 (loc 0)

 2: miss, bring into set 0 (loc 1)

 0: hit

 1: miss, bring into set 1 (loc 0)

 4: miss, bring into set 0 (loc 1, replace 2)

 0: hit

0set 0
set 1

lrulru

0 2set 0
set 1

lru lru

set 0
set 1

0
1 lru

lru24lru

set 0
set 1

0 4
1 lru

lru lru

CS61C L24 Cache II (30) Beamer, Summer 2007 © UCB

Big Idea
•How to choose between associativity,
block size, replacement & write policy?

•Design against a performance model
• Minimize: Average Memory Access Time
 = Hit Time
 + Miss Penalty x Miss Rate

• influenced by technology & program
behavior

•Create the illusion of a memory that is
large, cheap, and fast - on average
•How can we improve miss penalty?

CS61C L24 Cache II (31) Beamer, Summer 2007 © UCB

Improving Miss Penalty
•When caches first became popular, Miss
Penalty ~ 10 processor clock cycles
•Today 2400 MHz Processor (0.4 ns per
clock cycle) and 80 ns to go to DRAM
⇒ 200 processor clock cycles!

Proc $2

DRAM$

MEM

Solution: another cache between memory and
the processor cache: Second Level (L2) Cache

CS61C L24 Cache II (32) Beamer, Summer 2007 © UCB

Analyzing Multi-level cache hierarchy

Proc $2

DRAM$

L1 hit
time

L1 Miss Rate
L1 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty =
L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate *
(L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)

L2 hit
time L2 Miss Rate

L2 Miss Penalty

CS61C L24 Cache II (33) Beamer, Summer 2007 © UCB

Example

•Assume
• Hit Time = 1 cycle
• Miss rate = 5%
• Miss penalty = 20 cycles
• Calculate AMAT…

•Avg mem access time
= 1 + 0.05 x 20
= 1 + 1 cycles
= 2 cycles

CS61C L24 Cache II (34) Beamer, Summer 2007 © UCB

Ways to reduce miss rate

•Larger cache
• limited by cost and technology
• hit time of first level cache < cycle time
(bigger caches are slower)

•More places in the cache to put each
block of memory – associativity

• fully-associative
 any block any line

• N-way set associated
 N places for each block
 direct map: N=1

CS61C L24 Cache II (35) Beamer, Summer 2007 © UCB

Typical Scale

•L1
• size: tens of KB
• hit time: complete in one clock cycle
• miss rates: 1-5%

•L2:
• size: hundreds of KB
• hit time: few clock cycles
• miss rates: 10-20%

•L2 miss rate is fraction of L1 misses
that also miss in L2

• why so high?

CS61C L24 Cache II (36) Beamer, Summer 2007 © UCB

Example: with L2 cache

•Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L2 Hit Time = 5 cycles
• L2 Miss rate = 15% (% L1 misses that miss)
• L2 Miss Penalty = 200 cycles

•L1 miss penalty = 5 + 0.15 * 200 = 35
•Avg mem access time = 1 + 0.05 x 35

= 2.75 cycles

CS61C L24 Cache II (37) Beamer, Summer 2007 © UCB

Example: without L2 cache

•Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L1 Miss Penalty = 200 cycles

•Avg mem access time = 1 + 0.05 x 200
= 11 cycles

•4x faster with L2 cache! (2.75 vs. 11)

CS61C L24 Cache II (38) Beamer, Summer 2007 © UCB

An actual CPU – Early PowerPC
• Cache

• 32 KByte Instructions
and 32 KByte Data L1
caches

• External L2 Cache
interface with integrated
controller and cache
tags, supports up to 1
MByte external L2 cache

• Dual Memory
Management Units
(MMU) with Translation
Lookaside Buffers (TLB)

• Pipelining
• Superscalar (3

inst/cycle)
• 6 execution units (2

integer and 1 double
precision IEEE floating
point)

CS61C L24 Cache II (39) Beamer, Summer 2007 © UCB

An Actual CPU – Pentium M

32KB I$

32KB D$

CS61C L24 Cache II (40) Beamer, Summer 2007 © UCB

Peer Instructions

1. All caches take advantage of
spatial locality.

2. All caches take advantage of temporal
locality.

3. On a read, the return value will depend on
what is in the cache.

 ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L24 Cache II (41) Beamer, Summer 2007 © UCB

Peer Instruction Answer
1. All caches take advantage of spatial

locality.
2. All caches take advantage of temporal

locality.
3. On a read, the return value will depend

on what is in the cache.

T R U E
F A L S E

1. Block size = 1, no spatial!
2. That’s the idea of caches;

We’ll need it again soon.
3. It better not! If it’s there,

use it. Oth, get from mem

F A L S E ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L24 Cache II (42) Beamer, Summer 2007 © UCB

And in Conclusion…
• We’ve discussed memory caching in detail.

Caching in general shows up over and over in
computer systems

• Filesystem cache
• Web page cache
• Game databases / tablebases
• Software memoization
• Others?

• Big idea: if something is expensive but we want to
do it repeatedly, do it once and cache the result.
• Cache design choices:

• Write through v. write back
• size of cache: speed v. capacity
• direct-mapped v. associative
• for N-way set assoc: choice of N
• block replacement policy
• 2nd level cache?
• 3rd level cache?

• Use performance model to pick between choices,
depending on programs, technology, budget, ...

CS61C L24 Cache II (43) Beamer, Summer 2007 © UCB

Block Size Tradeoff Conclusions
Miss
Penalty

Block Size

Increased Miss Penalty
& Miss Rate

Average
Access

Time

Block Size

Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Miss
Rate

Block Size

