inst.eecs.berkeley.edu/~csb6lc

CS61C : Machlne Structures
Lecture #24 Cache |l

2007-8-6

Scott Beamer, Instructor

New Flow Based Routers

ANAGRAN

Go with the flow™

W

CS61C L24 Cache I (1) www.anagran.com Beamer, Summer 2007 © UCB

Caching Terminology

« When we try to read memory,
3 things can happen:

cache block is valid and contains
proper address, so read desired word

2. cache miss:

nothing in cache in appropriate block,
so fetch from memory

3. cache miss, block replacement:
wrong data is in cache at appropriate
block, so discard it and fetch desired
data from memory (cache always copy)

@ CS61C L24 Cache Il (2) Beamer, Summer 2007 © UCB

Direct-Mapped Cache Terminology

 All fields are read as unsigned integers.

e Index: srecifies the cache index (which
“row” of the cache we should look in)

» Offset: once we’ve found correct block,
specifies which byte within the block
we want -- l.e., which “column”

-Leaq: the remaining bits after offset and

index are determined; these are used to
distinguish between all the memory
addresses that map to the same
location

@ CS61C L24 Cache Il (3) Beamer, Summer 2007 © UCB

TIO Dan’s great cache mnemonic

AREA (cache size, B)

= HEIGHT (# of biocks)

(H+W) = oH * oW

* WIDTH (size of one block, B/block)

Tag|Index | Offset

<

WIDTH
(size of one block, B/block)

>

HEIGHT
(# of blocks)

(cache size, B)

AREA

@ v
CS61C L24 Cache i (4)

Beamer, Summer 2007 © UCB

16 KB Direct Mapped Cache, 16B blocks

» Valid bit: determines whether anything
is stored in that row (when computer

initially turned on, all entries invalid)
Valid
Index Tag 0x0-3 0x4-7 0x8-b Oxc-f

SNSoidkdkWMNERO
ololololo]ololo

10220 I I I I I

w CS61C L24 Cache Il (5) Beamer, Summer 2007 © UCB

1. Read 0x00000014

e 000000000000000000 000O0O0O00001 0100
Valid Tag field Index field Offset
all

Index Tag 0x0-3 0x4-7 O0x8-b Oxc-f

SNSoyoidkWNERO
ololololololo]o

10220 I I I I |
1023¢| I I I I |

w CS61C L24 Cache Il (6) Beamer, Summer 2007 © UCB

So we read block 1 (0000000001)

e 000000000000000000 0O0OOOOOOOO1 0100
Tag field_ Index field Offset

ﬁd’;ag 0x0-3 0x4-7 0x8-b Oxc-f

FHOQ

c>c>c>c>oc>c>c:'><

N WN)

10220 I I I I |
1023¢| I I I I |

@ CS61C L24 Cache Il (7) Beamer, Summer 2007 © UCB

No valid data

e 000000000000000000 0O0OOOOOOOO1 0100
Tag field_ Index field Offset

0x0-3 O0x4-7 0x8-b Oxc-£f

)
-~
&
=

c>ooooq|c>|t>'><

<NoOYORWN RO

10220] I I | I I
10230] I I I I |

@ CS61C L24 Cache Il (8) Beamer, Summer 2007 © UCB

So load that data into cache, setting tag, valid

e 000000000000000000 0000000001 0100
, Tag field Index field Offset
Valid

Index__Ta 0x0-3 0x4-7 0x8-b Oxc-f

0 a b c d

SNSoidkdkWMNERO
olololo]olol o

10220] I I | I I
10230] I I I I |

@ CS61C L24 Cache Il (9) Beamer, Summer 2007 © UCB

Read from cache at offset, return word b
« 000000000000000000 0000000001 0100

, Tag field Index fie ffset
Valid
0x0-3 0x4-7 0x8-b Oxc-f£f

Index Tag

O -
0 ad:bI)c d

NSO WNFO

=] [=] [=] [=] [=] [=] =

10220] I I I I |
10230 I I I I |

@ CS61C L24 Cache 1l (10) Beamer, Summer 2007 © UCB

2. Read 0x0000001C =0...00 0..001 1100

 000000000000000000 000O0O000O00O1 1100
. Tag field Index field Offset
Valid

Index Tag 0x0-3 0x4-7 O0x8-b Oxc-f

0 a b C d

SNSoidkdkWMNERO
olololo]olo]o

10220] I I | I I
10230] I I I I |

@ CS61C L24 Cache Il (11) Beamer, Summer 2007 © UCB

Index is Valid
e 000000000000000000 00O0OOOOOOCO1 1100
: Tag field Index field Offset
Valid

Index Tag 0x0-3 0x4-7 O0x8-b Oxc-f
0

0 a b C d

N WNIF O

@] [e] [e] [e] [=] [=] b

10220] I I | I I
10230] I I I I |

@ CS61C L24 Cache Il (12) Beamer, Summer 2007 © UCB

Index valid, Tag Matches

e 000000000000000000 0000000001 1100
: g field Index field Offset
Valid

Index__Ta 0x0-3 0x4-7 0x8-b Oxc-f

0 a b C d

NSOk WNDHFO

=] [e] [e] [e] [=] (=] Lm (=)

10220] I I | I I
10230] I I I I |

@ CS61C L24 Cache ll (13) Beamer, Summer 2007 © UCB

Index Valid, Tag Matches, return d

e 000000000000000000 0000000001 1100
: g field Index field Offset
Valid

Index__Ta 0x0-3 0x4-7 O0x8-b Okc-f

(ke 5 "

NSOk WNDHFO

@] [e] [e] [e] [=] [e] b =

10220] I | I I I
10230] I I I I I

@ CS61C L24 Cache ll (14) Beamer, Summer 2007 © UCB

Types of Cache Misses

« Compulsory Misses
- When program starts, nothing is loaded

e Conflict Misses

- Two (or more) needed blocks map to the
same cache location

* Fixed by Fully Associative Cache
e Capacity Misses

* Not enough room to hold it all

- Can be fixed by bigger cache

@ CS61C L24 Cache Il (15) Beamer, Summer 2007 © UCB

Fully Associative Cache

 Memory address fields:
- Tag: same as before
- Offset: same as before
 Index: non-existant

e What does this mean?

* no “rows”: any block can go anywhere in
the cache

- must compare with all tags In entire cache
to see if data is there

@ CS61C L24 Cache Il (16) Beamer, Summer 2007 © UCB

What to do on a write hit?

e Write-through

- update the word in cache block and
corresponding word in memory

* Write-back
- update word in cache block

- allow memory word to be “stale”

=> add ‘dirty’ bit to each block indicating

that memory needs to be updated when
block is replaced

=> OS flushes cache before 1/0...

 Performance trade-offs?

Q CS61C L24 Cache 1l (17) Beamer, Summer 2007 © UCB

N-Way Set Associative Cache (1/3)

 Memory address fields:
- Tag: same as before
- Offset: same as before

* Index: points us to the correct “row”
(called a set in this case)

S0 what’s the difference?
- each set contains multiple blocks

- once we’ve found correct set, must
compare with all tags in that set to find
our data

@ CS61C L24 Cache Il (18) Beamer, Summer 2007 © UCB

Associative Cache Example

Memory Cache
Address Memory Index
0 —2 ()
0

1
1

e Here’s a simple 2 way set
associative cache.

ﬂ CS61C L24 Cache Il (19) Beamer, Summer 2007 © UCB

N-Way Set Associative Cache (2/3)

e Basic Ildea
- cache is direct-mapped w/respect to sets
- each set is fully associative
- basically N direct-mapped caches working Iin
parallel: each has its own valid bit and data
e Given memory address:
 Find correct set using Index value.

- Compare Tag with all Tag values in the
determined set.

- If a match occurs, hit!, otherwise a miss.

- Finally, use the offset field as usual to find the
desired data within the block.

@ CS61C L24 Cache Il (20) Beamer, Summer 2007 © UCB

N-Way Set Associative Cache (3/3)

 What’s so great about this?

- even a 2-way set assoc cache avoids a
lot of conflict misses

- hardware cost isn’t that bad: only need N
comparators

In fact, for a cache with M blocks,
- it’s Direct-Mapped if it’s 1-way set assoc
- it’s Fully Assoc if it’'s M-way set assoc

* 5O these two are just special cases of the
more general set associative design

@ CS61C L24 Cache Il (21) Beamer, Summer 2007 © UCB

4-Way Set Associative Cache Circuit

Address
3130---12111098---3210

tag V& s

index

Index V Tag Data V Tag Data V Tag Data V Tag Data

Y

é-tod multipleer

¥

Hit Data

nmer 2007 © UCB

Peer Instructions

1. Inthe last 10 years, the gap between the access time ABC
of DRAMs & the cycle time of processors has 0: FFF
decreased. (l.e., is closing) 1: FET

2. A 2-way set-associative cache can be outperformed |2: EFTF
by a direct-mapped cache. 3: FTT

4: TFF

3. Larger block size = lower miss rate 5: TFT

6: TTF
7: TTT

@ CS61C L24 Cache Il (23) Beamer, Summer 2007 © UCB

Peer Instructions Answer

1. That was was one of the motivation for caches in the
first place -- that the memory gap is big and widening.

2. Sure, consider the caches from the previous slides
with the following workload: 0, 2, 0, 4, 2
2-way: 0m, 2m, Oh, 4m, 2m; DM: Om, 2m, Oh, 4m, 2h

3. Larger block size = lower miss rate, true until a
certain point, and then the ping-pong effect takes over

1. Inthe last 10 years, the gap between the access time ABC

of DRAMs & the cycle time of processors has 0: FFF

decreased. (l.e., is closing) 1: FET

2. A 2-way set-associative cache can be outperformed |2: EFTF

by a direct-mapped cache. 3: FTT

4: TFF

3. Larger block size = lower miss rate 5: TFT

6: TTF

ﬂ 7: TTT
CS61C L24 Cache Il (24) Beamer, Summer 2007 © UCB

Administrivia

* Proj4 due Sunday (will be posted
tonight)

* Proj3 Face-to-Face grading starts
today

- Make an appointment (and show up)
* Final Review Session in works

e Course Survey during last lecture

- 2 points extra added for taking survey
(still anonymous)

- | don’t see results until long after grades

@ CS61C L24 Cache Il (25) Beamer, Summer 2007 © UCB

Block Replacement Policy

* Direct-Mapped Cache: index completely
specifies position which position a block can
go in on a miss

 N-Way Set Assoc: index specifies a_set, but
Iglr?gk n::asg occupy any position within the set
|

* Fully Associative: block can be written into
any position

e Question: if we have the ch0|ce where
should we write an incoming block?

- If there are any locations with valid bit off
§emtpty), then usually write the new block into the
irst one.

- If all possible locations already have a valid
block, we must pick a replacement policy: rule by
which we determine which block gets “cached

@ out” on a miss.

CS61C L24 Cache Il (26) Beamer, Summer 2007 © UCB

Block Replacement Policy: LRU

 LRU (Least Recently Used)

- ldea: cache out block which has been
accessed (read or write) least recently

* Pro: temporal locality = recent past use

implies likely future use: in fact, this is a
very effective policy

- Con: with 2-way set assoc, easy to keep
track (one LRU bit); with 4-way or
greater, requires complicated hardware
and much time to keep track of this

Q CS61C L24 Cache Il (27) Beamer, Summer 2007 © UCB

Block Replacement Example

* We have a 2-way set associative cache
with a four word total capacity and one
word blocks. We perform the

following word accesses (ignore bytes
for this problem):

0,2,0,1,4,0,2,3,5,4

How many hits and how many misses
will there be for the LRU bloc
replacement policy?

@ CS61C L24 Cache Il (28) Beamer, Summer 2007 © UCB

Block Replacement Example: LRU 1oco 1oc 1

« Addresses 0,2,0, 1,4, 0, ... setol
0: miss, bring into set 0 (loc 0) set1
set 0 ol 2

2: miss, bring into set 0 (loc 1) __, .

0: hit std 0['2

set 1

set 0

1: miss, bring into set 1 (loc 0) ot 1

set 1

0
1
4: miss, bring into set 0 (loc 1, replace 2) 00| 4
1
0
1

_ set 0} 4
O:M set 1

@ CS61C L24 Cache Il (29) Beamer, Summer 2007 © UCB

Big Idea

e How to choose between associativity,
block size, replacement & write policy?

* Design against a performance model

* Minimize: Average Memory Access Time
= Hit Time
+ Miss Penalty x Miss Rate

* iInfluenced by technology & program
behavior

* Create the illusion of a memory that is
large, cheap, and fast - on average

Qf How can we improve miss penalty’?

cse1C L24 Cachell¢(zo¢y . Beamer, Summer 2007 © UCB

Improving Miss Penalty

* When caches first became popular, Miss
Penalty ~ 10 processor clock cycles

 Today 2400 MHz Processor (0.4 ns per

clock cycle) and 80 ns to go to DRAM
=> 200 processor clock cycles!

MEM

NVdd

Proc g—p| S $,

Solution: another cache between memory and
Z ';he processor cache: Second Level (L2) Cache

CS61C L24 Cache Il (31) Beamer, Summer 2007 © UCB

Analyzing Multi-level cache hierarchy

(d
NVdd

L2 Miss Rate

L2 Miss Penally
L1 Miss Rate

L1 Miss Penalty
Avg Mem Access Time =

L1 Hit Time + L1 Miss Rate * L1 Miss Penalty
L1 Miss Penalty =

L2 Hit Time + L2 Miss Rate * L2 Miss Penalty
Avg Mem Access Time =

L1 Hit Time + L1 Miss Rate *
@ §L2 Hit Time + L2 Miss Rate * L2 |V|ISS Penal y@m

csei1C L24 cachenl (z2zy ... Beamer, Summer

Example

e Assume
* Hit Time =1 cycle
* Miss rate = 5%
* Miss penalty = 20 cycles
- Calculate AMAT...

e Avg mem access time
=1+0.05x20
=1+ 1 cycles
=2 cycles

@ CS61C L24 Cache Il (33) Beamer, Summer 2007 © UCB

Ways to reduce miss rate

e Larger cache
- limited by cost and technology
- hit time of first level cache < cycle time
(bigger caches are slower)
* More places in the cache to put each
block of memory — associativity

- fully-associative
= any block any line

- N-way set associated
= N places for each block

@ = direct map: N=1
CS61C L24 Cache Il (34) Beamer, Summer 2007 © UCB

Typical Scale

o1
 size: tens of KB

- hit time: complete in one clock cycle
* miss rates: 1-5%

oL2:
 size: hundreds of KB

- hit time: few clock cycles
* miss rates: 10-20%

L2 miss rate is fraction of L1 misses
that also miss in L2

Q(* why so high?
CS61C L24 Cache Il (35) Beamer, Summer 2007 © UCB

Example: with L2 cache

e Assume
L1 Hit Time =1 cycle
* L1 Miss rate = 5%
- L2 Hit Time =5 cycles
- L2 Miss rate = 15% (% L1 misses that miss)
- L2 Miss Penalty = 200 cycles

L1 miss penalty =5 + 0.15 * 200 = 35

* Avg mem access time =1 + 0.05 x 35
= 2.75 cycles

@ CS61C L24 Cache Il (36) Beamer, Summer 2007 © UCB

Example: without L2 cache

e Assume
L1 Hit Time =1 cycle
* L1 Miss rate = 5%
- L1 Miss Penalty = 200 cycles

« Avg mem access time =1 + 0.05 x 200
=11 cycles

- 4x faster with L2 cache! (2.75 vs. 11)

@ CS61C L24 Cache Il (37) Beamer, Summer 2007 © UCB

An actual CPU - Early PowerPC

e Cache

« 32 KByvte Instructions

and 3

KByte Data L1
caches

- External L2 Cache

interface with integrated
controller and cache
tags, supports up to 1
MByte external L2 cache

- Dual Memory

Management Units
MMU) with Translation
ookaside Buffers (TLB)

 Pipelining

74

- Superscalar (3

inst/cycle)

- 6 execution units (2

integer and 1 double
precision IEEE floating
point)

CS61C L24 Cache I1 (38)

ﬂﬂmi'l!llfllll! ALCARAMMRRRAIARI R MR AR TYTTIN LTI A M

TEEETLNRA RS TR A

Seqx‘gjenger*_; : .

< .fFloating}
i =>Point |}
== FaUnit

11113
(DL

M1l

Instruction|Cache

FEPPYOVE IR LG LLINN YT TTRTETORTTTTRYTTYRITY PRI (1L L4 L TV P

Beamer, Summer 2007 © UCB

An Actual CPU - Pentium M

intel® Penfiumé
M Processor
- New Micro Architecture

77 Million Transistors

streaming SIMD

Extensions /!
compatible with
Pentium® 4
Processor
optimized software
Dedicated Stack
Management —
faster instruction

at lower power
levels

Micro-Ops Fusion —
fuses operations
together to enable
faster execution of
instructions at lower
power

1 100 Sad G S

Advanced Branch
Prediction — fewer re-dos
for increased performance

o

32KB I$

t
1
1
b
3
N
3
-

nhanced Intel®

SpeedStep®

Technology - Multiple
voltages & frequency

operating points

S

N

32KB D$ 1MB Power

Optimized L2 Cache
— enables higher CPU
performance

400 MHz Power

Optimized System Bus
- faster system bus to

- 1] ; - enhance performance at
Intal. I |

lower power levels

CS61C L24 Cache Il (39) Beamer, Summer 2007 © UCB

Peer Instructions

1. All caches take advantage of ABC

spatial locality. 0: FFF

1l: FET

2. All caches take advantage of temporal 2: FTF

locality. 3: FTT

_ 4: TFF

3. On aread, the return value will depend on 5. TFT

what is In the cache. 6: TTF

@ 7: TTT
CS61C L24 Cache I (40) Beamer, Summer 2007 © UCB

Peer Instruction Answer

1. iﬁﬁﬁs E(e SlaEge of spatial

2. s I?Rs E’e Eantage of temporal

> s K 5
O: FFF

1. Block size = 1, no spatial! 1. FET
2. That’s the idea of caches;

: _ : FTT
Wwe’ll need it again soon. . TEF

3

4

3. It better not! If it’s there, 5: TET
. 6: TTF

@ use it. Oth, get from mem 7

lue will depend

: TTT

CS61C L24 Cache Il (41) Beamer, Summer 2007 © UCB

And in Conclusion...

. We ve discussed memory caching in detail.
Cach |n? in genera shows up over and over in
compu er systems
- Filesystem cache
- Web page cache
« Game databases / tablebases
- Software memoization
« Others?

* Big idea: if something is expensive but we want to
do it repeatedly, do if once and cache the result.

e Cache design choices:
« Write through v. write back
- size of cache: speed v. capacity
- direct-mapped v. associative
- for N-way set assoc: choice of N
- block replacement policy
- 2nd level cache?
- 3d level cache?

* Use performance model to pick between ch0|ces
@ depending on programs, technology, budget,

CS61C L24 Cache Il (42) Beamer, Summer 2007 © UCB

Block Size Tradeoff Conclusions

Miss g;: Exploits Spatial Locality

Penalty
i / Fewer blocks:
/ compromises
X temporal locality
Block Size Block>Size
Average Increased Miss Penalty
Access , & Miss Rate
Time

> []
@ Block Size
CS61C L24 Cache Il (43) Beamer, Summer 2007 © UCB

