
CS61C L25 Virtual Memory I (1) Beamer, Summer 2007 © UCB

Scott Beamer, Instructor

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture #25 Virtual Memory I

2007-8-7

CS61C L25 Virtual Memory I (2) Beamer, Summer 2007 © UCB

Scott Beamer, Instructor

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture #25 Virtual Memory I

2007-8-7

Vmware Fusion 1.0

www.vmware.com

CS61C L25 Virtual Memory I (3) Beamer, Summer 2007 © UCB

Review: Caches
•Cache design choices:

• size of cache: speed v. capacity
• direct-mapped v. associative
• for N-way set assoc: choice of N
• block replacement policy
• 2nd level cache?
• Write through v. write back?

•Best choice depends on programs,
technology, budget.
•Use performance model to pick
between choices.

CS61C L25 Virtual Memory I (4) Beamer, Summer 2007 © UCB

Another View of the Memory Hierarchy
Regs

L2 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Upper Level

Lower Level

Faster

Larger

Cache
Blocks

Thus far{
{Next:

Virtual
Memory

CS61C L25 Virtual Memory I (5) Beamer, Summer 2007 © UCB

Memory Hierarchy Requirements

• If Principle of Locality allows caches
to offer (close to) speed of cache
memory with size of DRAM memory,
then recursively why not use at next
level to give speed of DRAM memory,
size of Disk memory?
•While we’re at it, what other things do
we need from our memory system?

CS61C L25 Virtual Memory I (6) Beamer, Summer 2007 © UCB

Memory Hierarchy Requirements

•Allow multiple processes to
simultaneously occupy memory and
provide protection – don’t let one
program read/write memory from
another
•Address space – give each program
the illusion that it has its own private
memory

• Suppose code starts at address
0x40000000. But different processes
have different code, both residing at the
same address. So each program has a
different view of memory.

CS61C L25 Virtual Memory I (7) Beamer, Summer 2007 © UCB

Virtual Memory
• Called “Virtual Memory”
• Next level in the memory hierarchy:

• Provides program with illusion of a very large
main memory:

• Working set of “pages” reside in main memory -
others reside on disk.

• Also allows OS to share memory, protect
programs from each other
• Today, more important for protection vs.

just another level of memory hierarchy
• Each process thinks it has all the memory

to itself
• (Historically, it predates caches)

CS61C L25 Virtual Memory I (8) Beamer, Summer 2007 © UCB

Virtual to Physical Address Translation

•Each program operates in its own virtual
address space; ~only program running
•Each is protected from the other
•OS can decide where each goes in memory
•Hardware (HW) provides virtual ⇒ physical
mapping

virtual
address

(inst. fetch
load, store)

Program
operates in
its virtual
address
space

HW
mapping physical

address
(inst. fetch
load, store)

Physical
memory

(incl. caches)

CS61C L25 Virtual Memory I (9) Beamer, Summer 2007 © UCB

Analogy

•Book title like virtual address
•Library of Congress call number like
physical address
•Card catalogue like page table,
mapping from book title to call #
•On card for book, in local library vs. in
another branch like valid bit indicating
in main memory vs. on disk
•On card, available for 2-hour in library
use (vs. 2-week checkout) like access
rights

CS61C L25 Virtual Memory I (10) Beamer, Summer 2007 © UCB

Simple Example: Base and Bound Reg

0

∞

OS

User A

User B

User C

$base

$base+
$bound

•Want:
• discontinuous
mapping

• Process size >> mem

•Addition not enough!
⇒ use Indirection!

Enough space for User D,
but discontinuous
(“fragmentation problem”)

CS61C L25 Virtual Memory I (11) Beamer, Summer 2007 © UCB

Mapping Virtual Memory to Physical Memory

0

Physical Memory

∞
Virtual Memory

Code

Static

Heap

Stack

64 MB

•Divide into equal sized
chunks (about 4 KB - 8 KB)

0

•Any chunk of Virtual Memory
assigned to any chuck of
Physical Memory (“page”)

CS61C L25 Virtual Memory I (12) Beamer, Summer 2007 © UCB

Paging Organization (assume 1 KB pages)

Addr
Trans
MAP

Page is unit
of mapping

Page also unit of
transfer from disk
to physical memory

page 0 1K
1K

1K

0
1024

31744
Virtual
Memory

Virtual
Address

page 1

page 31

1K2048 page 2
...... ...

page 00
1024

7168

Physical
Address

Physical
Memory

1K
1K

1K

page 1

page 7
...... ...

CS61C L25 Virtual Memory I (13) Beamer, Summer 2007 © UCB

Virtual Memory Mapping Function
•Cannot have simple function to
predict arbitrary mapping
•Use table lookup of mappings

•Use table lookup (“Page Table”) for
mappings: Page number is index
•Virtual Memory Mapping Function

• Physical Offset = Virtual Offset
• Physical Page Number
= PageTable[Virtual Page Number]

(P.P.N. also called “Page Frame”)

Page Number Offset

CS61C L25 Virtual Memory I (14) Beamer, Summer 2007 © UCB

Address Mapping: Page Table

Virtual Address:
page no. offset

Page Table
Base Reg

Page Table located in physical memory

index
into
page
table

+

Physical
Memory
Address

Page Table

Val
-id

Access
Rights

Physical
Page
Address

.

V A.R. P. P. A.

...

...

CS61C L25 Virtual Memory I (15) Beamer, Summer 2007 © UCB

Page Table

•A page table is an operating system
structure which contains the mapping
of virtual addresses to physical
locations

• There are several different ways, all up to
the operating system, to keep this data
around

•Each process running in the operating
system has its own page table

• “State” of process is PC, all registers, plus
page table

• OS changes page tables by changing
contents of Page Table Base Register

CS61C L25 Virtual Memory I (16) Beamer, Summer 2007 © UCB

Requirements revisited

Remember the motivation for VM:
•Sharing memory with protection

• Different physical pages can be allocated
to different processes (sharing)

• A process can only touch pages in its
own page table (protection)

•Separate address spaces
• Since programs work only with virtual
addresses, different programs can have
different data/code at the same address!

What about the memory hierarchy?

CS61C L25 Virtual Memory I (17) Beamer, Summer 2007 © UCB

Page Table Entry (PTE) Format
•Contains either Physical Page Number
or indication not in Main Memory
•OS maps to disk if Not Valid (V = 0)

• If valid, also check if have permission
to use page: Access Rights (A.R.) may
be Read Only, Read/Write, Executable

...
Page Table

Val
-id

Access
Rights

Physical
Page
Number

V A.R. P. P. N.

V A.R. P. P.N.

...

P.T.E.

CS61C L25 Virtual Memory I (18) Beamer, Summer 2007 © UCB

Paging/Virtual Memory Multiple Processes
User B:

Virtual Memory
∞

Code

Static

Heap

Stack

0
Code

Static

Heap

Stack

A
Page
Table

B
Page
Table

User A:
Virtual Memory
∞

0
0

Physical
 Memory

64 MB

CS61C L25 Virtual Memory I (19) Beamer, Summer 2007 © UCB

Comparing the 2 levels of hierarchy
 Cache version Virtual Memory vers.
 Block or Line Page
 Miss Page Fault
 Block Size: 32-64B Page Size: 4K-8KB
 Placement: Fully Associative
Direct Mapped,
N-way Set Associative

 Replacement: Least Recently Used
LRU or Random (LRU)

 Write Thru or Back Write Back

CS61C L25 Virtual Memory I (20) Beamer, Summer 2007 © UCB

Notes on Page Table
• Solves Fragmentation problem: all chunks

same size, so all holes can be used
•OS must reserve “Swap Space” on disk for

each process
• To grow a process, ask Operating System

• If unused pages, OS uses them first
• If not, OS swaps some old pages to disk
• (Least Recently Used to pick pages to swap)

• Each process has own Page Table
•Will add details, but Page Table is essence

of Virtual Memory

CS61C L25 Virtual Memory I (21) Beamer, Summer 2007 © UCB

Why would a process need to “grow”?
•A program’s address
space contains 4 regions:

• stack: local variables,
grows downward

• heap: space requested for
pointers via malloc() ;
resizes dynamically,
grows upward

• static data: variables
declared outside main,
does not grow or shrink

• code: loaded when
program starts, does not
change

code
static data
heap

stack

For now, OS somehow
prevents accesses
between stack and heap
(gray hash lines).

~ FFFF FFFFhex

~ 0hex

CS61C L25 Virtual Memory I (22) Beamer, Summer 2007 © UCB

Administrivia

•Proj4 due Sunday
•Proj3 Face-to-Face grading started
yesterday

• Make an appointment (and show up)

•Final Review Session in works
•Course Survey during last lecture

• 2 points extra added for taking survey
(still anonymous)

• I don’t see results until long after grades
due

CS61C L25 Virtual Memory I (23) Beamer, Summer 2007 © UCB

Virtual Memory Problem #1
•Map every address ⇒ 1 indirection via
Page Table in memory per virtual
address ⇒ 1 virtual memory accesses =
2 physical memory accesses ⇒ SLOW!
•Observation: since locality in pages of
data, there must be locality in virtual
address translations of those pages
•Since small is fast, why not use a small
cache of virtual to physical address
translations to make translation fast?
•For historical reasons, cache is called a
Translation Lookaside Buffer, or TLB

CS61C L25 Virtual Memory I (24) Beamer, Summer 2007 © UCB

Translation Look-Aside Buffers (TLBs)
•TLBs usually small, typically 128 - 256 entries

• Like any other cache, the TLB can be direct
mapped, set associative, or fully associative

Processor TLB
Lookup Cache Main

Memory

VA PA
miss

hit data
Trans-
lation

hit

miss

On TLB miss, get page table entry from main memory

CS61C L25 Virtual Memory I (25) Beamer, Summer 2007 © UCB

Review Address Mapping: Page Table
Virtual Address:

page no. offset

Page Table
Base Reg

Page Table located in physical memory

index
into
page
table

+

Physical
Memory
Address

Page Table

Val
-id

Access
Rights

Physical
Page
Address

.

V A.R. P. P. A.

...

...

CS61C L25 Virtual Memory I (26) Beamer, Summer 2007 © UCB

Address Translation using TLB

PPN Offset
Physical Address

VPN
Offset

Virtual Address

INDEX

TLB

Physical
Page
Number
P. P. N.

P. P. N.
...

TLB Tag
(Tag used
just like

in cache)
TLB Tag

Tag OffsetINDEX
Data Cache

Tag Data
Tag Data

TLB Tag

CS61C L25 Virtual Memory I (27) Beamer, Summer 2007 © UCB

Typical TLB Format
Physical Dirty Ref Valid Access

Tag Page # Rights

• TLB just a cache on the page table mappings

• TLB access time comparable to cache
 (much less than main memory access time)
• Dirty: since use write back, need to know whether
or not to write page to disk when replaced
•Ref: Used to help calculate LRU on replacement

• Cleared by OS periodically, then checked to
see if page was referenced

CS61C L25 Virtual Memory I (28) Beamer, Summer 2007 © UCB

What if not in TLB?

•Option 1: Hardware checks page table
and loads new Page Table Entry into
TLB
•Option 2: Hardware traps to OS, up to
OS to decide what to do

• MIPS follows Option 2: Hardware knows
nothing about page table

CS61C L25 Virtual Memory I (29) Beamer, Summer 2007 © UCB

What if the data is on disk?

•We load the page off the disk into a
free block of memory, using a DMA
transfer (Direct Memory Access –
special hardware support to avoid
processor)

• Meantime we switch to some other
process waiting to be run

•When the DMA is complete, we get an
interrupt and update the process's
page table

• So when we switch back to the task, the
desired data will be in memory

CS61C L25 Virtual Memory I (30) Beamer, Summer 2007 © UCB

What if we don’t have enough memory?

•We chose some other page belonging
to a program and transfer it onto the
disk if it is dirty

• If clean (disk copy is up-to-date),
just overwrite that data in memory

• We chose the page to evict based on
replacement policy (e.g., LRU)

•And update that program's page table
to reflect the fact that its memory
moved somewhere else
• If continuously swap between disk
and memory, called Thrashing

CS61C L25 Virtual Memory I (31) Beamer, Summer 2007 © UCB

Three Advantages of Virtual Memory
1) Translation:

• Program can be given consistent view of
memory, even though physical memory is
scrambled

• Makes multiple processes reasonable
• Only the most important part of program
(“Working Set”) must be in physical memory

• Contiguous structures (like stacks) use only
as much physical memory as necessary yet
still grow later

CS61C L25 Virtual Memory I (32) Beamer, Summer 2007 © UCB

Three Advantages of Virtual Memory
2) Protection:

• Different processes protected from each other
• Different pages can be given special behavior

 (Read Only, Invisible to user programs, etc).
• Kernel data protected from User programs
• Very important for protection from malicious
programs ⇒ Far more “viruses” under
Microsoft Windows

• Special Mode in processor (“Kernel mode”)
allows processor to change page table/TLB

3) Sharing:
• Can map same physical page to multiple users
(“Shared memory”)

CS61C L25 Virtual Memory I (33) Beamer, Summer 2007 © UCB

Peer Instruction

A. Locality is important yet different for cache and virtual
memory (VM): temporal locality for caches but spatial
locality for VM

B. Cache management is done by hardware (HW), page
table management by the operating system (OS), but
TLB management is either by HW or OS

C. VM helps both with security and cost

 ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L25 Virtual Memory I (34) Beamer, Summer 2007 © UCB

Peer Instruction Answer
A. Locality is important yet different for cache and

virtual memory (VM): temporal locality for caches
but spatial locality for VM

B. Cache management is done by hardware (HW),
page table management by the operating system
(OS), but TLB management is either by HW or OS

C. VM helps both with security and cost

T R U E
F A L S E

A. No. Both for VM and cache
B. Yes. TLB SW (MIPS) or

HW ($ HW, Page table OS)
C. Yes. Protection and

 a bit smaller memory

T R U E ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L25 Virtual Memory I (35) Beamer, Summer 2007 © UCB

And in conclusion…

•Manage memory to disk? Treat as cache
• Included protection as bonus, now critical
• Use Page Table of mappings for each user
vs. tag/data in cache

• TLB is cache of Virtual⇒Physical addr trans

•Virtual Memory allows protected sharing
of memory between processes
•Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well

