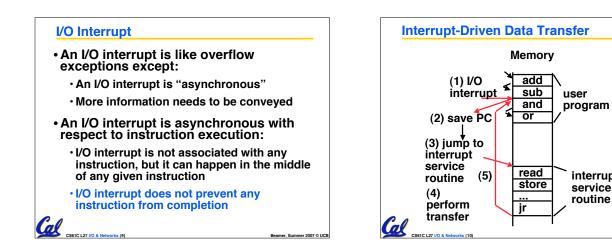
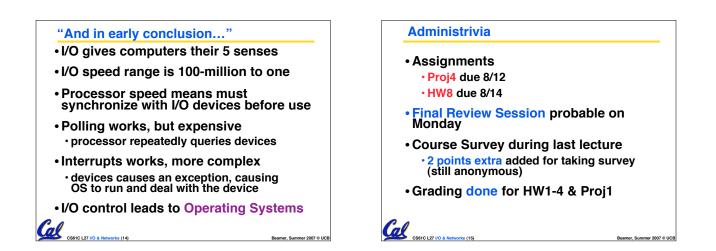
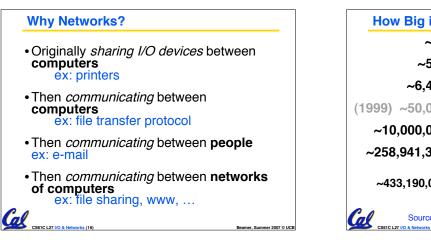

SPIM I/O

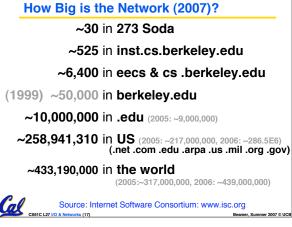

CS61C L27 1/O & Net

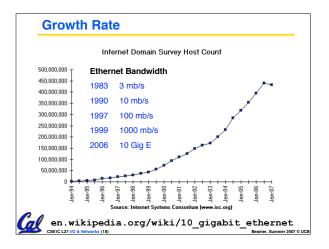
rks (6)

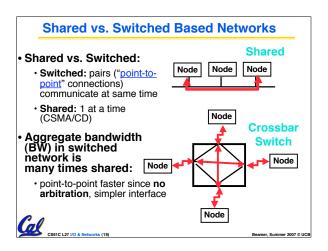
I/O Example	•			
Input: Read from keyboard into \$v0				
Waitloop:	lw andi beq	<pre>\$t0, 0xffff #ffff0000 \$t1, 0(\$t0) #control \$t1,\$t1,0x1 \$t1,\$zero, Waitloop \$v0, 4(\$t0) #data</pre>		
Output: Write to display from \$a0				
Waitloop:	lw andi	<pre>\$t0, 0xffff #ffff0000 \$t1, <u>8</u>(\$t0) #control \$t1,\$t1,0x1 \$t1,\$zero, Waitloop <u>\$a0</u>, <u>12</u>(\$t0) #data</pre>		
 Processor waiting for I/O called "Polling" 				
"Ready" bit is from processor's point of view!				

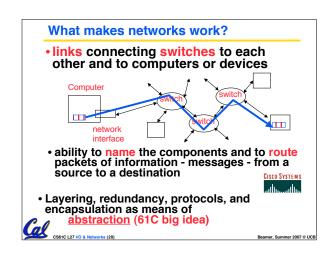

	Peer Instruction		
A .	A faster CPU will result in faster I/O.		ABC
_		Δ.	
	Hardwara dagignara bandla mayoa input	0: 1·	FFF
В.	Hardware designers handle mouse input	0: 1: 2:	
В.	with interrupts since it is better than	1:	FFT
В.		1:	FFT FTF
	with interrupts since it is better than polling in almost all cases.	1:	FFT FTF FTT
	with interrupts since it is better than	1: 2: 3: 4:	FFT FTF FTT TFF

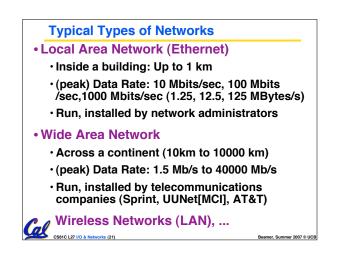

interrupt

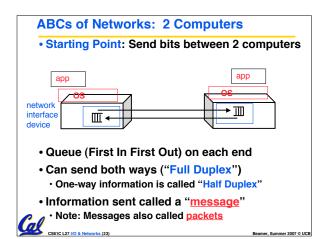

er 2007 © UCB

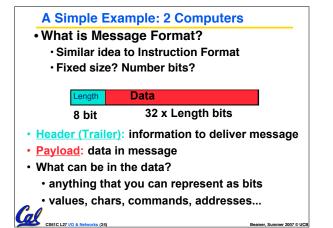

service

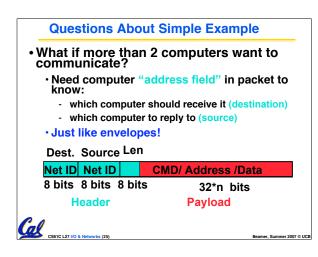

routine

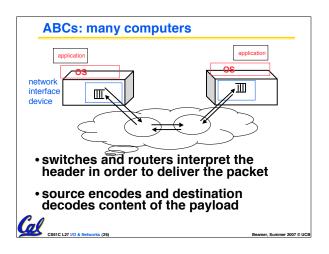


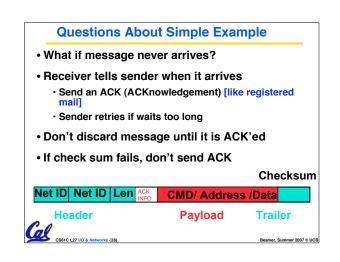


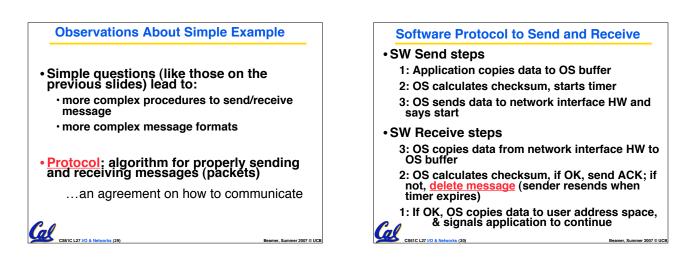


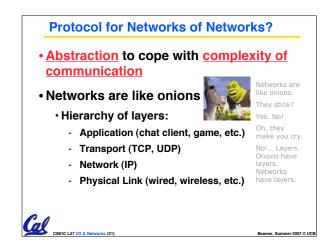


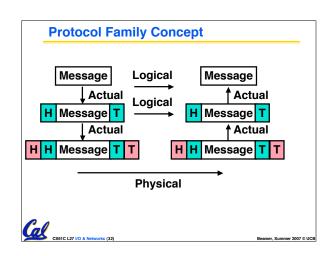












Questions About Simple Example						
What if message is garbled in transit?						
 Add redundant information that is checked when message arrives to be sure it is OK 						
 8-bit sum of other bytes: called "Check sum"; upon arrival compare check sum to sum of rest of information in message. xor also popular. 						
		Checksum				
Net ID Net ID Len	CMD/ Address	/Data				
Header	Payload	Trailer				
Learn about Checksums in Math 55/CS 70 CSSTC L27 U0 & Methods (27) Beamer, Summer 2007 © UCB						

Protocol Family Concept

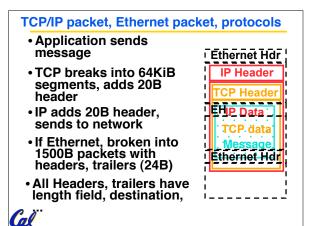
 Key to protocol families is that communication occurs logically at the same level of the protocol, called peer-topeer...

...but is implemented via services at the next lower level

- Encapsulation: carry higher level information within lower level "envelope"
- Fragmentation: break packet into multiple smaller packets and reassemble CS61C L27 I/O & Networks (33)

Beamer, Summer 2007 © UCB

Protocol for Network of Networks IP: Best-Effort Packet Delivery (Network Laver) Packet switching · Send data in packets · Header with source & destination address "Best effort" delivery · Packets may be lost · Packets may be corrupted · Packets may be delivered out of order CS61C L27 I/O & Networks (34)


Beamer, Summer 2007 © UCB

Protocol for Network of Networks

- Transmission Control Protocol/Internet Protocol (TCP/IP) (TCP :: a Transport Layer)
 - This protocol family is the basis of the Internet, a WAN protocol
 - · IP makes best effort to deliver
 - TCP guarantees delivery

CS61C L27 I/O & Networks (35)

• TCP/IP so popular it is used even when communicating locally: even across homogeneous LAN

Overhead vs. Bandwidth

- Networks are typically advertised using peak bandwidth of network link: e.g., 100 Mbits/sec Ethernet ("100 base T")
- Software overhead to put message into network or get message out of network often limits useful bandwidth
- Assume overhead to send and receive = 320 microseconds (μ s), want to send 1000 Bytes over "100 Mbit/s" Ethernet
 - Network transmission time: 1000Bx8b/B /100Mb/s $= 8000 b / (100 b / \mu s) = 80 \mu s$

CS61C L27 I/O & Networks (38)

Get Effective bandwidth: 8000b/(320+80)μs = 20 Mb/s

And in conclusion...

CS61C L27 I/O & Networks (36)

- Protocol suites allow networking of heterogeneous components
 - · Another form of principle of abstraction
 - Protocols \Rightarrow operation in presence of failures
 - Standardization key for LAN, WAN
- Integrated circuit ("Moore's Law") revolutionizing network switches as well as processors
 - Switch just a specialized computer
- Trend from shared to switched networks to get faster links and scalable bandwidth

Interested?

EE122 (CS-based in Fall, EE – based in Spring)