

Protocol for Networks of Networks?

- Abstraction to cope with complexity of communication
- Networks are like onions

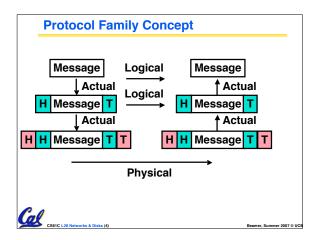
· Hierarchy of layers:

- s
- Application (chat client, game, etc.)
- Transport (TCP, UDP)
- Network (IP)
- Physical Link (wired, wireless, etc.)

Networks are like onions. They stink? Yes. No!

Oh, they

make you cry.


No!... Layers. Onions have

Onions have layers.

have layers

CS61C L28 Networks & Disks (3)

Beamer, Summer 2007 ©

Protocol Family Concept

- Key to protocol families is that communication occurs logically at the same level of the protocol, called peer-to-peer...
- ...but is implemented via services at the next lower level
- Encapsulation: carry higher level information within lower level "envelope"
- Fragmentation: break packet into multiple smaller packets and reassemble

Beamer, Summer 2007 © UCI

Protocol for Network of Networks

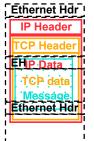
- IP: Best-Effort Packet Delivery (Network Layer)
- Packet switching
 - Send data in packets
 - Header with source & destination address
- "Best effort" delivery
 - · Packets may be lost
 - Packets may be corrupted
 - · Packets may be delivered out of order

Beamer, Summer 2007 © U

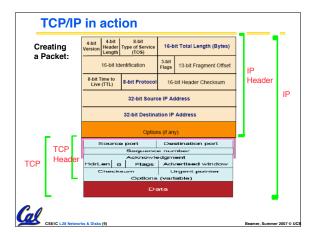
Protocol for Network of Networks

• <u>Transmission Control Protocol/Internet Protocol (TCP/IP)</u>

(TCP :: a Transport Layer)


- This protocol family is the basis of the Internet, a WAN protocol
- · IP makes best effort to deliver
- TCP guarantees delivery
- TCP/IP so popular it is used even when communicating locally: even across homogeneous LAN

mer, Summer 2007


TCP/IP packet, Ethernet packet, protocols

- Application sends message
- •TCP breaks into 64KiB segments, adds 20B header
- IP adds 20B header, sends to network
- If Ethernet, broken into 1500B packets with headers, trailers (24B)
- All Headers, trailers have length field, destination,

Beamer, Summer 2007 © U

Overhead vs. Bandwidth

- Networks are typically advertised using peak bandwidth of network link: e.g., 100 Mbits/sec Ethernet ("100 base T")
- Software overhead to put message into network or get message out of network often limits useful bandwidth
- Assume overhead to send and receive = 320 microseconds (μs), want to send 1000 Bytes over "100 Mbit/s" Ethernet
 - Network transmission time: 1000Bx8b/B /100Mb/s = 8000b / (100b/μs) = 80 μs

ffective bandwidth: 8000b/(320+80)μs = 20 Mb/s

And in early conclusion...

- Protocol suites allow networking of heterogeneous components
- · Another form of principle of abstraction
- Protocols ⇒ operation in presence of failures
- Standardization key for LAN, WAN
- Integrated circuit ("Moore's Law") revolutionizing network switches as well as processors
 - · Switch just a specialized computer
- Trend from shared to switched networks to get faster links and scalable bandwidth
- Interested?

■ EE122 (CS-based in Fall, EE –based in Spring)

CSSIC L28 Networks & Disks (11)

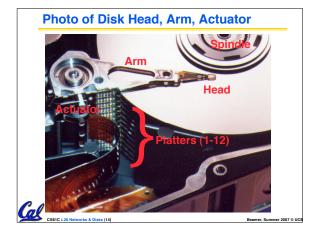
Beamer, Summer 2007 © U

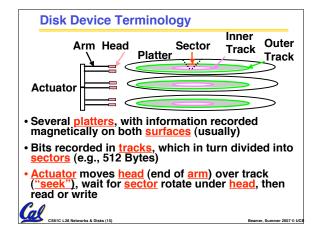
Upcoming Calendar

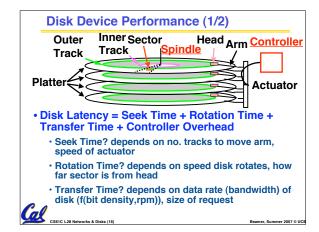
l					
	Time	Monday	Tuesday	Wednesday	Thursday
	Lecture	I/O Networks & I/O Disks	Performance & Parallel Intro	Parallel	Summary & Course Evaluations
	Afternoon/ Evening	Review Session 4-7pm @ 60 Evans	Networking Lab	Last Discussion Section	FINAL 7-10pm @ 10 Evans

Administrivia

•Scott's OH today moved to 1-2pm in 329 Soda


•HW8 due tomorrow @ 11:59pm (no slip)

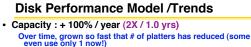

1C L28 Networks & Disks (12)


Beamer, Summer 2007 © U

Magnetic Disk - common I/O device

- A kind of computer memory
 - Information sorted by magnetizing ferrite material on surface of rotating disk (similar to tape recorder except digital rather than analog data)
- Nonvolatile storage
 - · retains its value without applying power to disk.
- Two Types
 - · Floppy disks slower, less dense, removable.
 - · Hard Disk Drives (HDD) faster, more dense, non-
- Purpose in computer systems (Hard Drive):
 - · Long-term, inexpensive storage for files
 - "Backup" for main-memory. Large, inexpensive, slow level in the memory hierarchy (virtual memory)

Disk Device Performance (2/2)


- Average distance of sector from head?
- 1/2 time of a rotation
 - · 7200 Revolutions Per Minute ⇒ 120 Rev/sec
 - 1 revolution = 1/120 sec ⇒ 8.33 milliseconds
 - · 1/2 rotation (revolution) ⇒ 4.17 ms
- · Average no. tracks to move arm?
 - · Disk industry standard benchmark:
 - Sum all time for all possible seek distances
 - from all possible tracks / # possible
 - Assumes average seek distance is random
- Size of Disk cache can strongly affect perf!

· Cache built into disk system, OS knows nothing

Data Rate: Inner vs. Outer Tracks

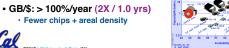
- To keep things simple, originally same number of sectors per track
 - · Since outer track longer, lower bits per inch
- Competition ⇒ decided to keep bits per inch (BPI) high for all tracks ("constant bit density")
 - ⇒ More capacity per disk
 - ⇒ More sectors per track towards edge
 - ⇒ Since disk spins at constant speed, outer tracks have faster data rate
- Bandwidth outer track 1.7x inner track!

Transfer rate (BW) : + 40%/yr (2X / 2 yrs)

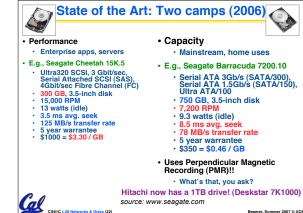
• Rotation+Seek time : - 8%/yr (1/2 in 10 yrs)

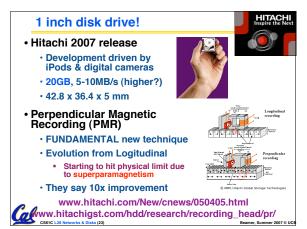
Areal Density

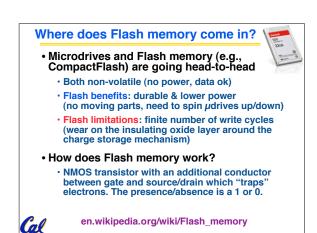
Bits recorded along a track: Bits/Inch (BPI)

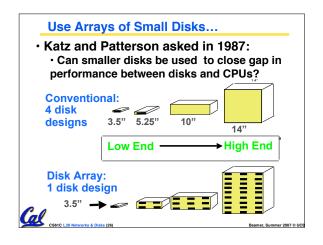

• # of tracks per surface: Tracks/Inch (TPI)

· We care about bit density per unit area Bits/Inch2


· Called Areal Density = BPI x TPI


· "~120 Gb/In² is longitudinal limit"


· "230 Gb/In2 now with perpendicular



Replace Small Number of Large Disks with Large Number of Small Disks! (1988 Disks)

	IBM 3390K	IBM 3.5" 0061	x70
Capacity	20 GBytes	320 MBytes	23 GBytes
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft. 9X
Power	3 KW	11 W	1 KW ^{3X}
Data Rate	15 MB/s	1.5 MB/s	120 MB/s 8X
I/O Rate	600 I/Os/s	55 I/Os/s	3900 IOs/s 6X
MTTF	250 KHrs	50 KHrs	??? Hrs
Cost	\$250K	\$2K	\$150K

Disk Arrays potentially high performance, high MB per cu. ft., high MB per KW,

but what about reliability?

Beamer, Summer 2007 © U

Array Reliability

- Reliability whether or not a component has failed
 - measured as Mean Time To Failure (MTTF)
- Reliability of N disks
 Reliability of 1 Disk ÷ N
 (assuming failures independent)
 - 50,000 Hours ÷ 70 disks = 700 hour
- Disk system MTTF: Drops from 6 years to 1 month!
- Disk arrays too unreliable to be useful!

CSS1C I 28 Networks & Dieks (28)

Beamer, Summer 2007 © U

Redundant Arrays of (Inexpensive) Disks

- Files are "striped" across multiple disks
- Redundancy yields high data availability
 - Availability: service still provided to user, even if some components failed
- Disks will still fail
- Contents reconstructed from data redundantly stored in the array
 - ⇒ Capacity penalty to store redundant info
 - ⇒ Bandwidth penalty to update redundant info

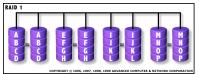
Reamer Summer 2007 © I

Berkeley History, RAID-I

- RAID-I (1989)
- Consisted of a Sun 4/280 workstation with 128 MB of DRAM, four dual-string SCSI controllers, 28 5.25inch SCSI disks and specialized disk striping software
- Today RAID is > tens billion dollar industry, 80% non-PC disks sold in RAIDs

Cal

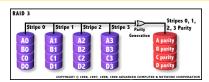
Beamer Summer 2007 (


"RAID 0": No redundancy = "AID"

- Assume have 4 disks of data for this example, organized in blocks
- Large accesses faster since transfer from several disks at once

This and next 5 slides from RAID.edu. http://www.acnc.com/04_01_00.html http://www.raid.com/04_00.html also has a great tutorial

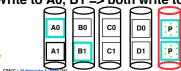
RAID 1: Mirror data



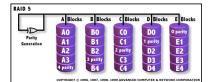
- Each disk is fully duplicated onto its "mirror"
 - · Very high availability can be achieved
- Bandwidth reduced on write:
 - 1 Logical write = 2 physical writes
- Most expensive solution: 100% capacity

Beamer, Summer 2007 © UCE

RAID 3: Parity



- Parity computed across group to protect against hard disk failures, stored in P disk
- · Logically, a single high capacity, high transfer rate
- 25% capacity cost for parity in this example vs. 100% for RAID 1 (5 disks vs. 8 disks)



Inspiration for RAID 5 (RAID 4 block-striping)

- Small writes (write to one disk):
 - Option 1: read other data disks, create new sum and write to Parity Disk (access all disks)
 - · Option 2: since P has old sum, compare old data to new data, add the difference to P: 1 logical write = 2 physical reads + 2 physical writes to 2 disks
- Parity Disk is bottleneck for Small writes: Write to A0, B1 => both write to P disk

RAID 5: Rotated Parity, faster small writes

- Independent writes possible because of interleaved parity
 - Example: write to A0, B1 uses disks 0, 1, 4, 5, so can proceed in parallel
 - Still 1 small write = 4 physical disk accesses

en.wikipedia.org/wiki/Redundant_array_of_independent_disks

Peer Instruction

- RAID 1 (mirror) and 5 (rotated parity) help with performance and availability
- RAID 1 has higher cost than RAID 5
- Small writes on RAID 5 are slower than on

ABC 0: **FFF** 1: FFT 2: FTF 3: FTT 4: TFF 5: **TFT** 6: TTF 7: TTT

"And In conclusion..."

- Magnetic Disks continue rapid advance: 60%/yr capacity, 40%/yr bandwidth, slow on seek, rotation improvements, MB/\$ improving 100%/yr?
- · Designs to fit high volume form factor
- · PMR a fundamental new technology
 - breaks through barrier

RAID

- · Higher performance with more disk arms per \$
- · Adds option for small # of extra disks
- · Can nest BAID levels
- Today RAID is > tens-billion dollar industry, 80% nonPC disks sold in RAIDs, started at Cal

Bonus slides

- These are extra slides that used to be included in lecture notes, but have been moved to this, the "bonus" area to serve as a supplément.
- The slides will appear in the order they would have in the normal presentation

