inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures

Lecture #28 Networking & Disks

2007-8-13

Scott Beamer, Instructor

Court Rules in favor of Novell: Linux is Safe

Novell.

CS61C L28 Networks & Disks (1)

www.nytimes.com

Recap of Networking Intro

- Networks are essential in the modern age
- Can span large distances and can contain many nodes
- Our attempt at a simple networking protocol:
 - •SW Send steps
 - 1: Application copies data to OS buffer
 - 2: OS calculates checksum, starts timer
 - 3: OS sends data to network interface HW and says start
 - •SW Receive steps

3: OS copies data from network interface HW to OS buffer

2: OS calculates checksum, if OK, send ACK; if not, delete message (sender resends when timer expires)

1: If OK, OS copies data to user address space, & signals application to continue

Checksum

Payload

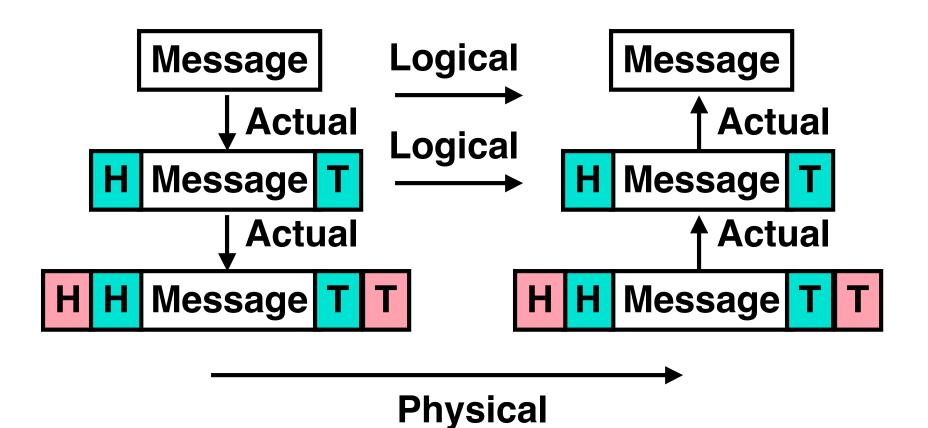
CS61C L28 Networks & Disks (2)

Beamer, Summer 2007 © UCB

Trailer

Protocol for Networks of Networks?

- <u>Abstraction</u> to cope with <u>complexity of</u> <u>communication</u>
- Networks are like onions
 - Hierarchy of layers:
 - Application (chat client, game, etc.)
 - Transport (TCP, UDP)
 - Network (IP)
 - Physical Link (wired, wireless, etc.)


Networks are like onions. They stink? Yes. No!

Oh, they make you cry.

No!... Layers. Onions have layers. Networks have layers.

Protocol Family Concept

Protocol Family Concept

 Key to protocol families is that communication occurs logically at the same level of the protocol, called peer-to-peer...

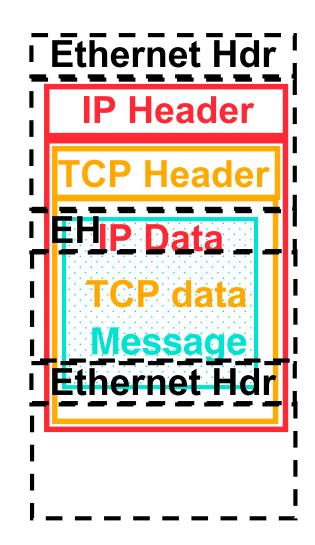
...but is implemented via services at the next lower level

- Encapsulation: carry higher level information within lower level "envelope"
- Fragmentation: break packet into multiple smaller packets and reassemble

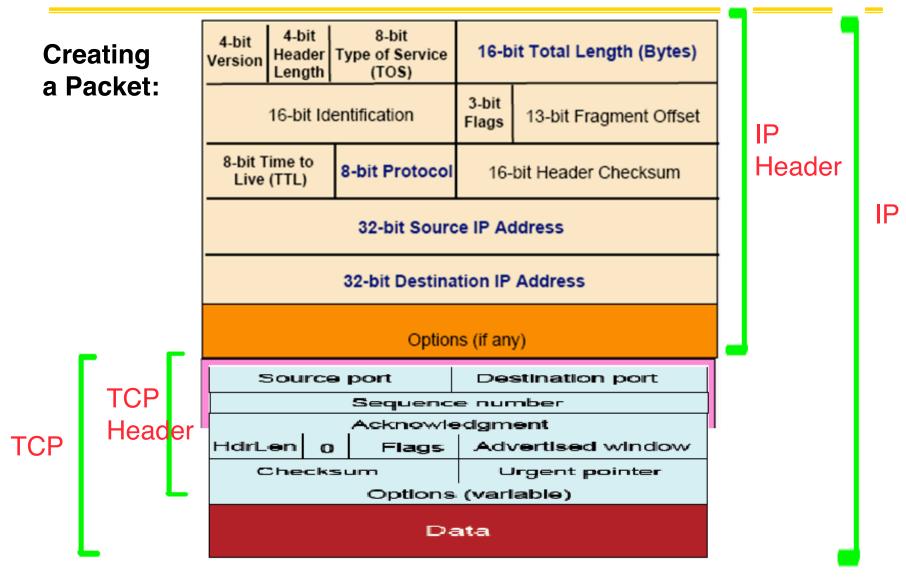
Protocol for Network of Networks

• IP: Best-Effort Packet Delivery (Network Layer)

- Packet switching
 - Send data in packets
 - Header with source & destination address
- "Best effort" delivery
 - Packets may be lost
 - Packets may be corrupted
 - Packets may be delivered out of order


Protocol for Network of Networks

- <u>Transmission Control Protocol/Internet</u> <u>Protocol (TCP/IP)</u> (TCP :: a Transport Layer)
 - This protocol family is the basis of the Internet, a WAN protocol
 - IP makes best effort to deliver
 - TCP guarantees delivery
 - TCP/IP so popular it is used even when communicating locally: even across homogeneous LAN


TCP/IP packet, Ethernet packet, protocols

- Application sends message
- TCP breaks into 64KiB segments, adds 20B header
- IP adds 20B header, sends to network
- If Ethernet, broken into 1500B packets with headers, trailers (24B)
- All Headers, trailers have length field, destination,

TCP/IP in action

Overhead vs. Bandwidth

- Networks are typically advertised using peak bandwidth of network link: e.g., 100 Mbits/sec Ethernet ("100 base T")
- Software overhead to put message into network or get message out of network often limits useful bandwidth
- Assume overhead to send and receive = 320 microseconds (μs), want to send 1000 Bytes over "100 Mbit/s" Ethernet
 - Network transmission time: 1000Bx8b/B /100Mb/s = 8000b / (100b/μs) = 80 μs

And in early conclusion...

- Protocol suites allow networking of heterogeneous components
 - Another form of principle of abstraction
 - Protocols \Rightarrow operation in presence of failures
 - Standardization key for LAN, WAN
- Integrated circuit ("Moore's Law") revolutionizing network switches as well as processors
 - Switch just a specialized computer
- Trend from shared to switched networks to get faster links and scalable bandwidth

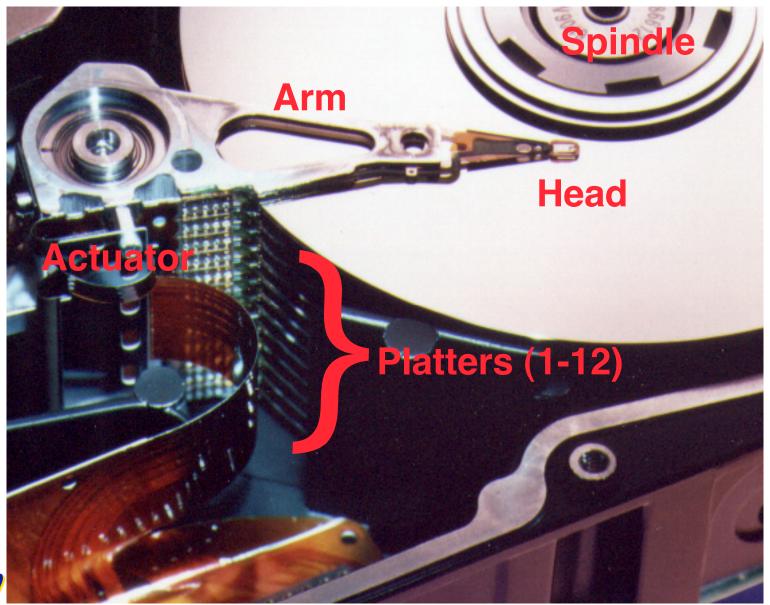
Upcoming Calendar

Time	Monday	Tuesday	Wednesday	Thursday
Lecture	I/O Networks & I/O Disks	Performance & Parallel Intro	Parallel	Summary & Course Evaluations
Afternoon/ Evening	Review Session 4-7pm @ 60 Evans	Networking Lab	Last Discussion Section	FINAL 7-10pm @ 10 Evans

Administrivia

•Scott's OH today moved to 1-2pm in 329 Soda

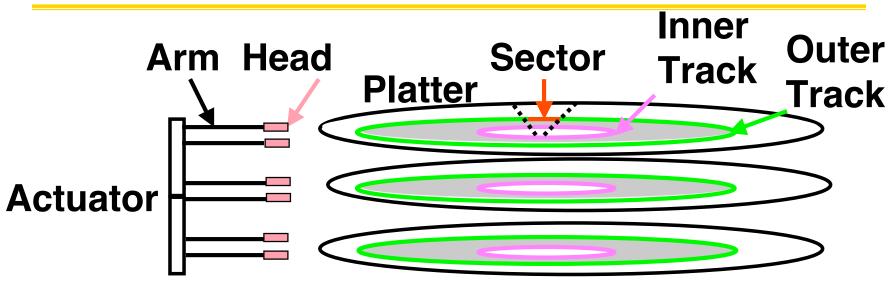
•HW8 due tomorrow @ 11:59pm (no slip)



Magnetic Disk – common I/O device

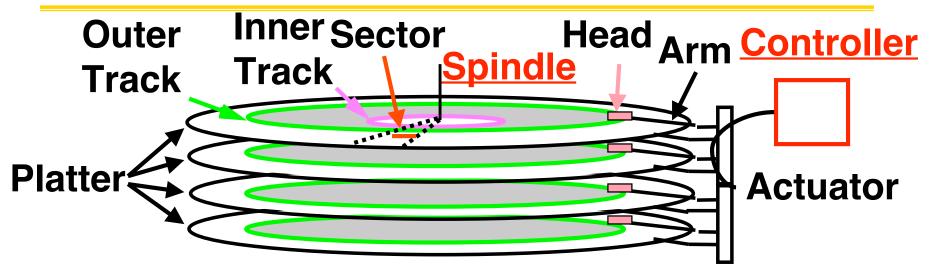
- A kind of computer memory
 - Information sorted by magnetizing ferrite material on surface of rotating disk (similar to tape recorder except digital rather than analog data)
- Nonvolatile storage
 - retains its value without applying power to disk.
- Two Types
 - Floppy disks slower, less dense, removable.
 - Hard Disk Drives (HDD) faster, more dense, nonremovable.
- Purpose in computer systems (Hard Drive):
 - Long-term, inexpensive storage for files
 - "Backup" for main-memory. Large, inexpensive, slow level in the memory hierarchy (virtual memory)

Photo of Disk Head, Arm, Actuator



CS61C L28 Networks & Disks (14)

Beamer, Summer 2007 © UCB


Disk Device Terminology

- Several <u>platters</u>, with information recorded magnetically on both <u>surfaces</u> (usually)
- Bits recorded in <u>tracks</u>, which in turn divided into <u>sectors</u> (e.g., 512 Bytes)
- <u>Actuator</u> moves <u>head</u> (end of <u>arm</u>) over track (<u>"seek"</u>), wait for <u>sector</u> rotate under <u>head</u>, then read or write

Disk Device Performance (1/2)

- Disk Latency = Seek Time + Rotation Time + Transfer Time + Controller Overhead
 - Seek Time? depends on no. tracks to move arm, speed of actuator
 - Rotation Time? depends on speed disk rotates, how far sector is from head
 - Transfer Time? depends on data rate (bandwidth) of disk (f(bit density,rpm)), size of request

Disk Device Performance (2/2)

- Average distance of sector from head?
- 1/2 time of a rotation
 - 7200 Revolutions Per Minute ⇒ 120 Rev/sec
 - 1 revolution = $1/120 \sec \Rightarrow 8.33$ milliseconds
 - 1/2 rotation (revolution) \Rightarrow 4.17 ms
- Average no. tracks to move arm?
 - Disk industry standard benchmark:
 - Sum all time for all possible seek distances from all possible tracks / # possible
 - Assumes average seek distance is random

Size of Disk cache can strongly affect perf!

Cache built into disk system, OS knows nothing

CS61C L28 Networks & Disks (17)

Data Rate: Inner vs. Outer Tracks

- To keep things simple, originally same number of sectors per track
 - Since outer track longer, lower bits per inch
- Competition ⇒ decided to keep bits per inch (BPI) high for all tracks ("constant bit density")
 - ⇒ More capacity per disk
 - ⇒ More sectors per track towards edge
 - ⇒ Since disk spins at constant speed, outer tracks have faster data rate
- Bandwidth outer track 1.7x inner track!

Early Disk History (IBM)

Data density Mbit/sq. in. Capacity of unit shown Megabytes

1973: 1. 7 Mbit/sq. in 140 MBytes 1979: 7. 7 Mbit/sq. in 2,300 MBytes

source: New York Times, 2/23/98, page C3,

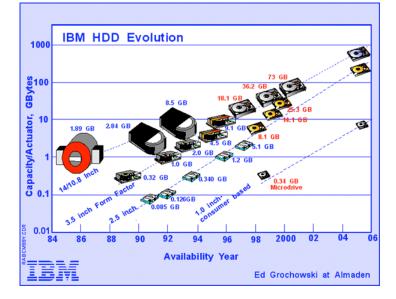
"Makers of disk drives crowd even more data into even smaller spaces"

CS61C L28 Networks & Disks (19)

Early Disk History

1989: 63 Mbit/sq. in 60,000 MBytes 1997: 1450 Mbit/sq. in 1600 MBytes 1997: 3090 Mbit/sq. in 8100 MBytes

source: New York Times, 2/23/98, page C3, "Makers of disk drives crowd even more data into even smaller spaces"


Disk Performance Model /Trends

• Capacity : + 100% / year (2X / 1.0 yrs)

Over time, grown so fast that # of platters has reduced (some even use only 1 now!)

- Transfer rate (BW) : + 40%/yr (2X / 2 yrs)
- Rotation+Seek time : 8%/yr (1/2 in 10 yrs)
- Areal Density
 - Bits recorded along a track: <u>Bits/Inch</u> (BPI)
 - # of tracks per surface: <u>Tracks/Inch</u> (<u>TPI</u>)
 - We care about bit density per unit area Bits/Inch²
 - Called <u>Areal Density</u> = BPI x TPI
 - "~120 Gb/In² is longitudinal limit"
 - "230 Gb/In² now with perpendicular"
- GB/\$: > 100%/year (2X / 1.0 yrs)
 - Fewer chips + areal density

State of the Art: Two camps (2006)

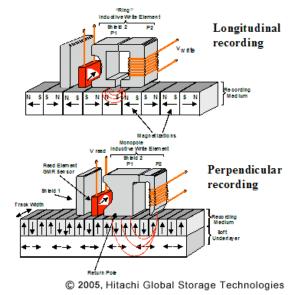
- Performance
 - Enterprise apps, servers
- E.g., Seagate Cheetah 15K.5
 - Ultra320 SCSI, 3 Gbit/sec, Serial Attached SCSI (SAS), 4Gbit/sec Fibre Channel (FC)
 - 300 GB, 3.5-inch disk
 - 15,000 RPM
 - 13 watts (idle)
 - 3.5 ms avg. seek
 - 125 MB/s transfer rate
 - 5 year warrantee
 - \$1000 = \$3.30 / GB

- Capacity
 - Mainstream, home uses
- E.g., Seagate Barracuda 7200.10
 - Serial ATA 3Gb/s (SATA/300), Serial ATA 1.5Gb/s (SATA/150), Ultra ATA/100
 - 750 GB, 3.5-inch disk
 - 7,200 RPM
 - 9.3 watts (idle)
 - 8.5 ms avg. seek
 - 78 MB/s transfer rate
 - 5 year warrantee
 - \$350 = \$0.46 / GB
- Uses Perpendicular Magnetic Recording (PMR)!!
 - What's that, you ask?

Hitachi now has a 1TB drive! (Deskstar 7K1000)

source: www.seagate.com

CS61C L28 Networks & Disks (22)


Beamer, Summer 2007 © UCB

1 inch disk drive!

- Hitachi 2007 release
 - Development driven by iPods & digital cameras
 - 20GB, 5-10MB/s (higher?)
 - 42.8 x 36.4 x 5 mm
- Perpendicular Magnetic Recording (PMR)
 - FUNDAMENTAL new technique
 - Evolution from Logitudinal
 - Starting to hit physical limit due to superparamagnetism
 - They say 10x improvement

www.hitachi.com/New/cnews/050405.html www.hitachigst.com/hdd/research/recording_head/pr/ CS61C L28 Networks & Disks (23) Beamer, Summer 2007 © UCB

Where does Flash memory come in?

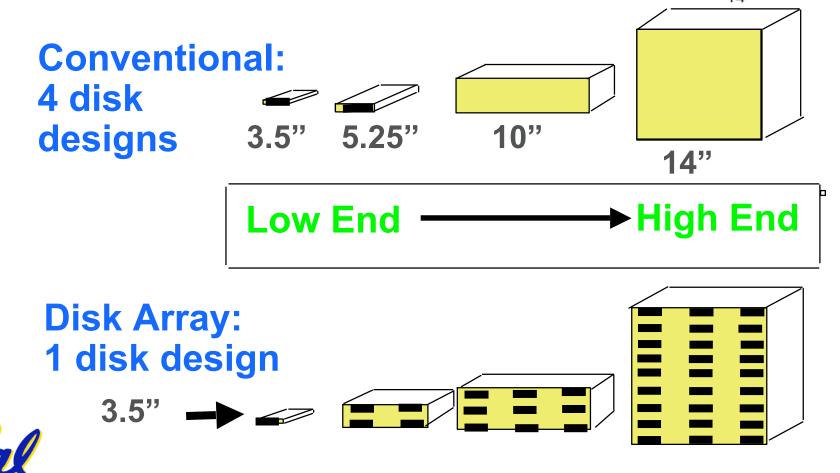
- Microdrives and Flash memory (e.g., CompactFlash) are going head-to-head
 - Both non-volatile (no power, data ok)
 - Flash benefits: durable & lower power (no moving parts, need to spin µdrives up/down)
 - Flash limitations: finite number of write cycles (wear on the insulating oxide layer around the charge storage mechanism)
- How does Flash memory work?
 - NMOS transistor with an additional conductor between gate and source/drain which "traps" electrons. The presence/absence is a 1 or 0.

en.wikipedia.org/wiki/Flash_memory

CS61C L28 Networks & Disks (24)

27 GB

What does Apple put in its iPods?



CS61C L28 Networks & Disks (25)

Beamer, Summer 2007 © UCB

Use Arrays of Small Disks...

- Katz and Patterson asked in 1987:
 - Can smaller disks be used to close gap in performance between disks and CPUs?

Beamer, Summer 2007 © UCB

Replace Small Number of Large Disks with Large Number of Small Disks! (1988 Disks)

	IBM 3390K	IBM 3.5" 0061	x70
Capacity	20 GBytes	320 MBytes	23 GBytes
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft. <mark>9X</mark>
Power	3 KW	11 W	1 KW 3X
Data Rate	15 MB/s	1.5 MB/s	120 MB/s ^{8X}
I/O Rate	600 I/Os/s	55 I/Os/s	3900 IOs/s <mark>6X</mark>
MTTF	250 KHrs	50 KHrs	??? Hrs
Cost	\$250K	\$2K	\$150K

Disk Arrays potentially high performance, high MB per cu. ft., high MB per KW, but what about reliability?

CS61C L28 Networks & Disks (27)

Array Reliability

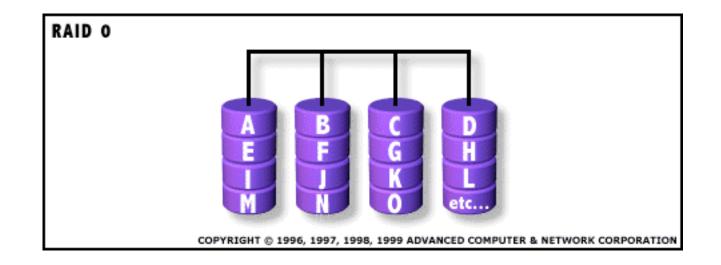
- <u>Reliability</u> whether or not a component has failed
 - measured as Mean Time To Failure (MTTF)
- - 50,000 Hours ÷ 70 disks = 700 hour
- Disk system MTTF: Drops from 6 years to 1 month!
- Disk arrays too unreliable to be useful!

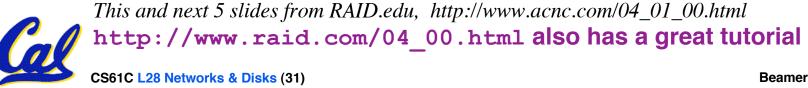
<u>Redundant</u> Arrays of (Inexpensive) Disks

- Files are "striped" across multiple disks
- Redundancy yields high data availability
 - <u>Availability</u>: service still provided to user, even if some components failed
- Disks will still fail
- Contents reconstructed from data redundantly stored in the array
 - ⇒ Capacity penalty to store redundant info
 - ⇒ Bandwidth penalty to update redundant info

Berkeley History, RAID-I

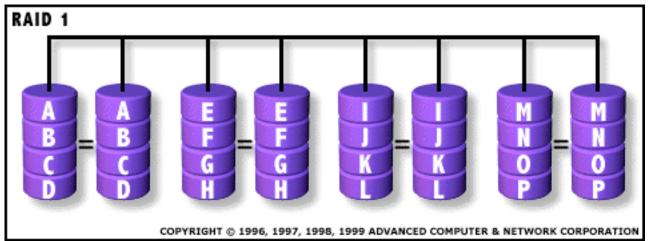
• RAID-I (1989)


- Consisted of a Sun 4/280 workstation with 128 MB of DRAM, four dual-string SCSI controllers, 28 5.25inch SCSI disks and specialized disk striping software
- Today RAID is > tens billion dollar industry, 80% non-PC disks sold in RAIDs



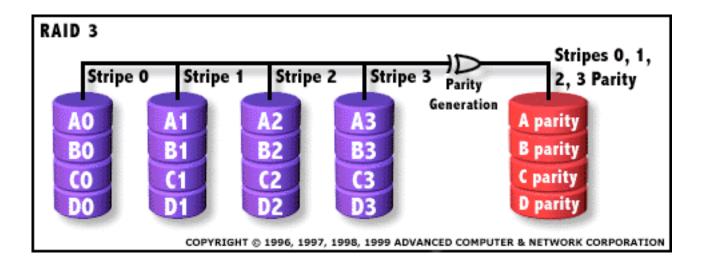
Beamer, Summer 2007 © UCB

"RAID 0": No redundancy = "AID"



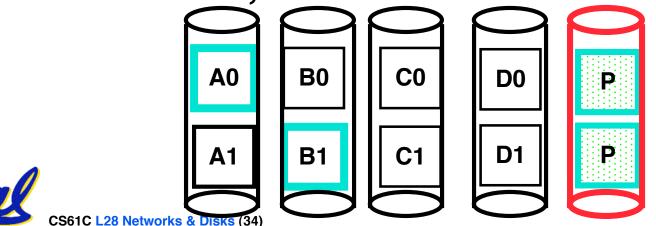
- Assume have 4 disks of data for this example, organized in blocks
- Large accesses faster since transfer from several disks at once

Beamer, Summer 2007 © UCB

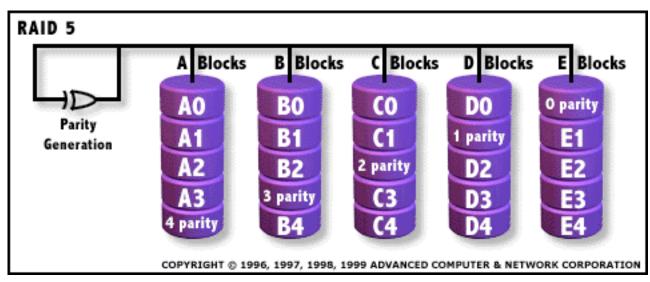

RAID 1: Mirror data

- Each disk is fully duplicated onto its "mirror"
 - Very high availability can be achieved
- Bandwidth reduced on write:
 - 1 Logical write = 2 physical writes
- Most expensive solution: 100% capacity overhead

RAID 3: Parity



- Parity computed across group to protect against hard disk failures, stored in P disk
- Logically, a single high capacity, high transfer rate disk
- 25% capacity cost for parity in this example vs. 100% for RAID 1 (5 disks vs. 8 disks)



Inspiration for RAID 5 (RAID 4 block-striping) Small writes (write to one disk):

- Option 1: read other data disks, create new sum and write to Parity Disk (access all disks)
- Option 2: since P has old sum, compare old data to new data, add the difference to P: 1 logical write = 2 physical reads + 2 physical writes to 2 disks
- Parity Disk is bottleneck for Small writes:
 Write to A0, B1 => both write to P disk

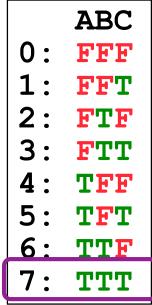
RAID 5: Rotated Parity, faster small writes

- Independent writes possible because of interleaved parity
 - Example: write to A0, B1 uses disks 0, 1, 4, 5, so can proceed in parallel
 - Still 1 small write = 4 physical disk accesses

en.wikipedia.org/wiki/Redundant_array_of_independent_disks

CS61C L28 Networks & Disks (35)

- 1. RAID 1 (mirror) and 5 (rotated parity) help with performance and availability
- 2. RAID 1 has higher cost than RAID 5
- 3. Small writes on RAID 5 are slower than on RAID 1



ABC

Beamer, Summer 2007 © UCB

Peer Instruction Answer

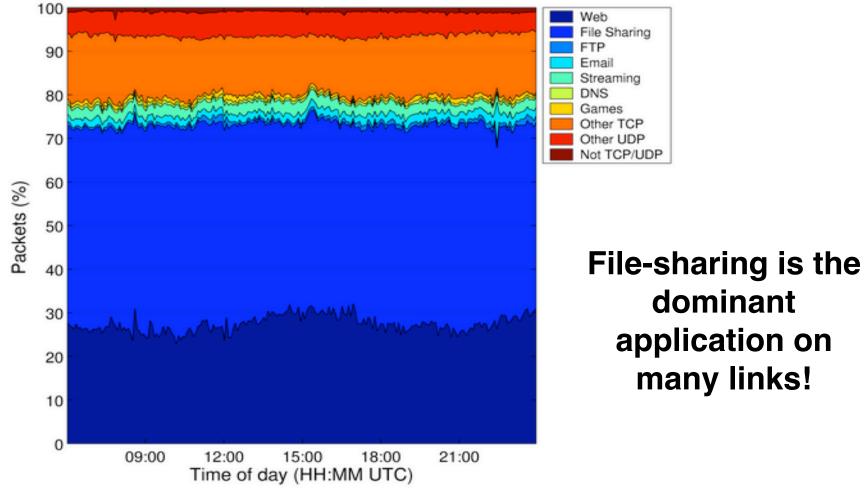
- 1. <u>All RAID (0-5) helps with performance, only</u> RAID0 doesn't help availability. TRUE
- 2. Surely! Must buy 2x disks rather than 1.25x (from diagram, in practice even less) TRUE
- 3. RAID5 (2R,2W) vs. RAID1 (2W). Latency worse, throughput (II writes) better. TRUE
 - 1. RAID 1 (mirror) and 5 (rotated parity) help with performance and availability
- 2. RAID 1 has higher cost than RAID 5
- 3. Small writes on RAID 5 are slower than on RAID 1

"And In conclusion..."

- Magnetic Disks continue rapid advance: 60%/yr capacity, 40%/yr bandwidth, slow on seek, rotation improvements, MB/\$ improving 100%/yr?
 - Designs to fit high volume form factor
 - PMR a fundamental new technology
 - breaks through barrier
- RAID
 - Higher performance with more disk arms per \$
 - Adds option for small # of extra disks
 - Can nest RAID levels
 - Today RAID is > tens-billion dollar industry, 80% nonPC disks sold in RAIDs,

Bonus slides

- These are extra slides that used to be included in lecture notes, but have been moved to this, the "bonus" area to serve as a supplement.
- The slides will appear in the order they would have in the normal presentation

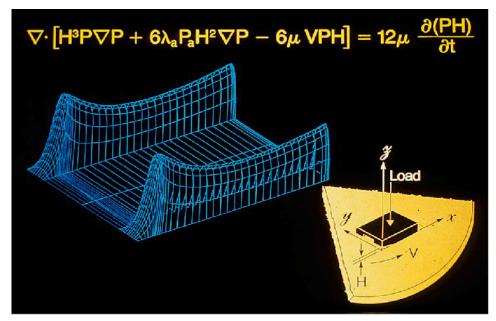


CS61C L28 Networks & Disks (39)

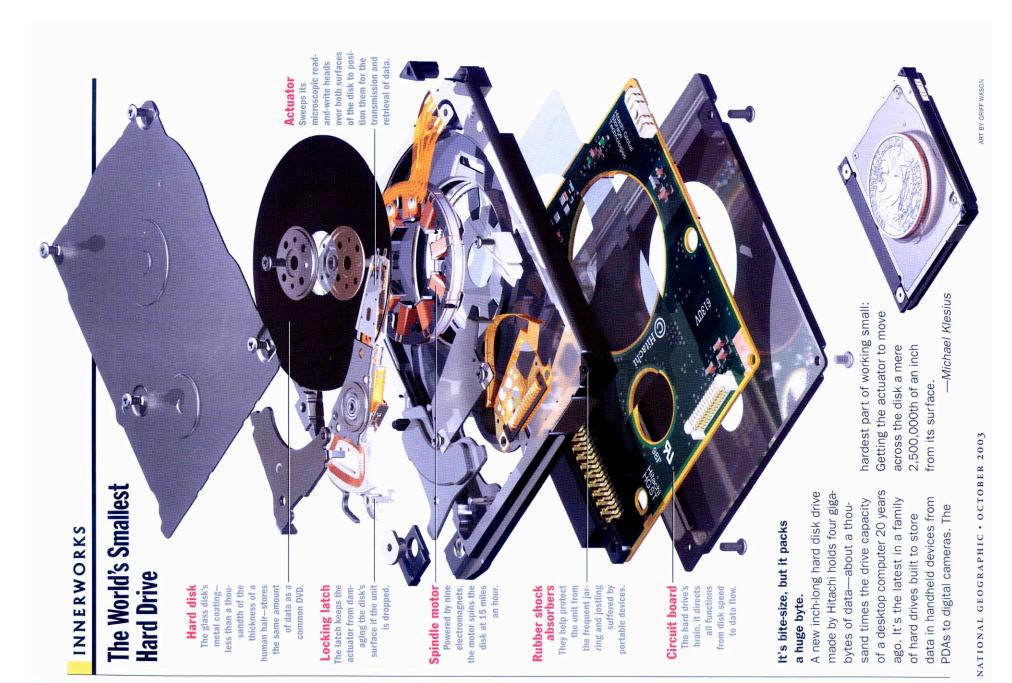
Beamer, Summer 2007 © UCB

[Bonus] Backbone Link App Composition

Beamer, Summer 2007 © UCB


[Bonus] Example: Network Media

Twisted Pair Copper, 1mm think, twisted to ("Cat 5"): avoid antenna effect Light: 3 parts are cable, light Total internal **Fiber Optics** Air source, reflection light **Transmitter** Is L.E.D or **Receiver detector** Laser Diode Photodiode light source Silica: glass or Cladding plastic; actually < 1/10 **Buffer** diameter of copper



BONUS : Hard Drives are Sealed. Why?

- The closer the head to the disk, the smaller the "spot size" and thus the denser the recording.
 - Measured in Gbit/in². ~60 is state of the art.
 - Disks are sealed to keep the dust out.
 - Heads are designed to "fly" at around 5-20nm above the surface of the disk.
 - 99.999% of the head/arm weight is supported by the air bearing force (air cushion) developed between the disk and the head.

Historical Perspective

- Form factor and capacity are more important in the marketplace than is performance
- Form factor evolution:

1970s: Mainframes \Rightarrow **14 inch diameter disks**

- 1980s: Minicomputers, Servers ⇒ 8", 5.25" diameter disks
- Late 1980s/Early 1990s:
 - PCs \Rightarrow 3.5 inch diameter disks
 - Laptops, notebooks \Rightarrow 2.5 inch disks
 - Palmtops didn't use disks, so 1.8 inch diameter disks didn't make it
- Early 2000s:

Disk Performance Example

- Calculate time to read 1 sector (512B) for Deskstar using advertised performance; sector is on outer track
- Disk latency = average seek time + average rotational delay + transfer time + controller overhead
- = 8.5 ms + 0.5 * 1/(7200 RPM) + 0.5 KB / (100 MB/s) + 0.1 ms
- = 8.5 ms + 0.5 /(7200 RPM/(60000ms/M)) + 0.5 KB / (100 KB/ms) + 0.1 ms
- = 8.5 + 4.17 + 0.005 + 0.1 ms = 12.77 ms
- How many CPU clock cycles is this?

