

	Two Notions of "Performance"						
	Plane	DC to Paris	Top Speed	Passen- gers	Throughput (pmph)		
	Boeing 747	6.5 hours	610 mph	470	286,700		
	BAD/Sud Concorde	3 hours	1350 mph	132	178,200		
 Which has higher performance? Interested in time to deliver 100 passengers? Interested in delivering as many passengers per day as possible? In a computer, time for one task called <u>Response Time</u> or <u>Execution Time</u> In a computer, tasks per unit time called <u>Throughput or Bandwidth</u> 							
	CS61C L29 Performance & Parallel (6) Beamer, Summer 2007						

Example of Response Time v. Throughput

- Time of Concorde vs. Boeing 747?
 Concord is 6.5 hours / 3 hours
- = <u>2.2 times faster</u> • Throughput of Boeing vs. Concorde?
- Boeing 747: 286,700 pmph / 178,200 pmph = <u>1.6 times faster</u>
- Boeing is 1.6 times ("60%") faster in terms of throughput
- Concord is 2.2 times ("120%") faster in terms of flying time (response time)

We will focus primarily on response

execution time and <u>increased</u> performance, to reduce confusion we will (and you should) use "improve execution time" or

"improve performance"

Cal

Words, Words, Words...

What is Time? **How to Measure Time?** Straightforward definition of time: Real Time ⇒ Actual time elapsed Total time to complete a task, including disk CPU Time: Computers constructed accesses, memory accesses, I/O activities, using a clock that runs at a constant operating system overhead, ... rate and determines when events take "real time", "response time" or place in the hardware "elapsed time These discrete time intervals called clock cycles (or informally clocks or Alternative: just time processor (CPU) cycles) is working only on your program (since multiple processes running at same time) • Length of <u>clock period</u>: <u>clock cycle time</u> (e.g., 2 nanoseconds or 2 ns) and <u>clock</u> "CPU execution time" or "CPU time" rate (e.g., 500 megahertz, or 500 MHz), Often divided into system CPU time (in OS) which is the inverse of the clock period; and user CPU time (in user program) use these! Cal Cal

Example (RISC processor)						
Ор	Freq _i	CPI _i	Prod	(% Time)		
ALU	50%	1	.5	(23%)		
Load	20%	5	1.0	(45%)		
Store	10%	3	.3	(14%)		
Branch	20%	2	.4	(18%)		
Instruction Mix 2.2(Where time spent)						
 What if Branch instructions twice as fast? 						
Cal						
CS61C L29 Performance 8	& Parallel (18)			Beamer, Summer 2007 © U		

Performance E	Performance Evaluation: An Aside Demo					
If we're talking about performance, let's discuss the ways shady salespeople have fooled consumers (so you don't get taken!)						
5. Never let the u	5. Never let the user touch it					
4. Only run the de	4. Only run the demo through a script					
3. Run it on a sto expense was	3. Run it on a stock machine in which "no expense was spared"					
2. Preprocess all	2. Preprocess all available data					
1. Play a movie	OUR NEW CHIP IS SLOLER THAN OUR THE FASTEST. IF ANY- COMPETITIONS PRODUCTS.					
CSSIC 12 Performance & Parallel (24)						

_	Peer Instruction		
Δ.	Barely does a company selling a product give		
	unbiased performance data.	0:	ABC FFF
в.	The <u>Sieve of Eratosthenes</u> and <u>Quicksort</u> were early	1:	FFT
_	effective benchmarks.	2: 3:	FTF
C.	A program runs in 100 sec. on a machine, mult accounts for 80 sec. of that. If we want to make the	4:	TFF
	program run 6 times faster, we need to up the speed of mults by AT I FAST 6.	5: 6:	TTF
Cal		7:	TTT

CPU time	= Instructions	x Cycles	X	Seconds
	Program	Instructio	on 🗌	Cycle
 Latenc 	y v. Throughput			
 Performance doesn't depend on any single factor: need Instruction Count, Clocks Per Instruction (CPI) and Clock Rate to get valid estimations 				
 User Time: time user waits for program to execute: depends heavily on how OS switches between tasks 				
 CPU Time: time spent executing a single program: depends solely on design of processor (datapath, pipelining effectiveness, caches, etc.) 				
 Bench 	marks			
Atter	npt to predict per	f, Updated ev	very	few years
• Meas grap	sure everything fr	om simulatio battery life	on of	desktop
Megal	nertz Myth ≠ performance, i	t's just one fa	acto	r

 Writing & managing SETI@Home is relatively straightforward; just hand out & gather data Most parallel programs that, when run on N (N big) identical supercomputer processors will yield close to N x performance increase The majority of the world's computing power lives in supercomputer centers 		Peer Instruction of Assumptions		
 Writing & managing SETI@Home is relatively straightforward; just hand out & gather data Most parallel programs that, when run on N (N big) identical supercomputer processors will yield close to N x performance increase The majority of the world's computing power lives in supercomputer centers 				
 Writing & managing SETI@Home is relatively straightforward; just hand out & gather data Most parallel programs that, when run on N (N big) identical supercomputer processors will yield close to N x performance increase The majority of the world's computing power lives in supercomputer centers 				
 Writing & managing SETI@Home is relatively straightforward; just hand out & gather data Most parallel programs that, when run on N (N big) identical supercomputer processors will yield close to N x performance increase The majority of the world's computing power lives in supercomputer centers 				
 Writing & managing SETI@Home is relatively straightforward; just hand out & gather data Most parallel programs that, when run on N (N big) identical supercomputer processors will yield close to N x performance increase The majority of the world's computing power lives in supercomputer centers 				
 Writing & managing SETI@Home is relatively straightforward; just hand out & gather data Most parallel programs that, when run on N (N big) identical supercomputer processors will yield close to N x performance increase The majority of the world's computing power lives in supercomputer centers 				
 Writing & managing SE Herhome is relatively straightforward; just hand out & gather data Most parallel programs that, when run on N (N big) identical supercomputer processors will yield close to N x performance increase The majority of the world's computing power lives in supercomputer centers 				ARC
 Most parallel programs that, when run on N (N big) identical supercomputer processors will yield close to N x performance increase The majority of the world's computing power lives in supercomputer centers 	1.	straightforward; just hand out & gather data	1:	FFF
identical supercomputer processors will yield close to N x performance increase 3. The majority of the world's computing power lives in supercomputer centers Conf	2.	Most parallel programs that, when run on N (N big)	2:	FFT
N x performance increase 4: FTT 3. The majority of the world's computing power lives in supercomputer centers 5: TFT 6: TFT 7: TTF 8: TTT 8: TTT		identical supercomputer processors will yield close to	3:	FTF
3. The majority of the world's computing power lives in supercomputer centers Col		N x performance increase	4:	TEE
Coll 7: TTF 8: TTT	3.	The majority of the world's computing power lives in	6:	TFT
8: TTT		supercomputer centers		TTF
	Cal		8:	TTT

