
CS61C L29 Performance & Parallel (1) Beamer, Summer 2007 © UCB

Scott Beamer, Instructor

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture #29 Performance & Parallel Intro

2007-8-14

“Paper” Battery Developed
by Researchers at

Rensselaer

www.bbc.co.uk
CS61C L29 Performance & Parallel (2) Beamer, Summer 2007 © UCB

“Last time…”

• Magnetic Disks continue rapid advance: 60%/yr capacity,
40%/yr bandwidth, slow on seek, rotation improvements,
MB/$ improving 100%/yr?
• Designs to fit high volume form factor
• PMR a fundamental new technology

 breaks through barrier

• RAID
• Higher performance with more disk arms per $
• Adds option for small # of extra disks
• Can nest RAID levels
• Today RAID is > tens-billion dollar industry,

80% nonPC disks sold in RAIDs,
started at Cal

CS61C L29 Performance & Parallel (3) Beamer, Summer 2007 © UCB

Peer Instruction

1. RAID 1 (mirror) and 5 (rotated parity) help
with performance and availability

2. RAID 1 has higher cost than RAID 5
3. Small writes on RAID 5 are slower than on

RAID 1

 ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L29 Performance & Parallel (5) Beamer, Summer 2007 © UCB

Why Performance? Faster is better!
• Purchasing Perspective: given a
collection of machines (or upgrade
options), which has the

 best performance ?
 least cost ?
 best performance / cost ?

• Computer Designer Perspective: faced
with design options, which has the

 best performance improvement ?
 least cost ?
 best performance / cost ?

• All require basis for comparison and
metric for evaluation!
•Solid metrics lead to solid progress!

CS61C L29 Performance & Parallel (6) Beamer, Summer 2007 © UCB

Two Notions of “Performance”
Plane

Boeing
747

BAD/Sud
Concorde

Top
Speed

DC to
Paris

Passen-
gers

Throughput
(pmph)

610
mph

6.5
hours 470 286,700

1350
mph

3
hours 132 178,200

•Which has higher performance?
•Interested in time to deliver 100 passengers?
•Interested in delivering as many passengers per day as possible?
•In a computer, time for one task called

Response Time or Execution Time
•In a computer, tasks per unit time called

Throughput or Bandwidth
CS61C L29 Performance & Parallel (7) Beamer, Summer 2007 © UCB

Definitions
• Performance is in units of things per sec
• bigger is better

• If we are primarily concerned with
response time
• performance(x) = 1

execution_time(x)

" F(ast) is n times faster than S(low) " means…
 performance(F) execution_time(S)
n = =

 performance(S) execution_time(F)

CS61C L29 Performance & Parallel (8) Beamer, Summer 2007 © UCB

Example of Response Time v. Throughput
• Time of Concorde vs. Boeing 747?
• Concord is 6.5 hours / 3 hours

= 2.2 times faster
• Throughput of Boeing vs. Concorde?
• Boeing 747: 286,700 pmph / 178,200 pmph

= 1.6 times faster
• Boeing is 1.6 times (“60%”) faster in

terms of throughput
• Concord is 2.2 times (“120%”) faster in

terms of flying time (response time)
We will focus primarily on response

time.
CS61C L29 Performance & Parallel (9) Beamer, Summer 2007 © UCB

Words, Words, Words…

• Will (try to) stick to “n times faster”;
its less confusing than “m % faster”

• As faster means both decreased
execution time and increased
performance, to reduce confusion we
will (and you should) use
 “improve execution time” or

 “improve performance”

CS61C L29 Performance & Parallel (10) Beamer, Summer 2007 © UCB

What is Time?
• Straightforward definition of time:
• Total time to complete a task, including disk
accesses, memory accesses, I/O activities,
operating system overhead, ...
• “real time”, “response time” or
“elapsed time”

• Alternative: just time processor (CPU)
is working only on your program (since
multiple processes running at same time)
• “CPU execution time” or “CPU time”
•Often divided into system CPU time (in OS)
and user CPU time (in user program)

CS61C L29 Performance & Parallel (11) Beamer, Summer 2007 © UCB

How to Measure Time?
• Real Time ⇒ Actual time elapsed
• CPU Time: Computers constructed
using a clock that runs at a constant
rate and determines when events take
place in the hardware
• These discrete time intervals called
clock cycles (or informally clocks or
cycles)
• Length of clock period: clock cycle time
(e.g., 2 nanoseconds or 2 ns) and clock
rate (e.g., 500 megahertz, or 500 MHz),
which is the inverse of the clock period;
use these!

CS61C L29 Performance & Parallel (12) Beamer, Summer 2007 © UCB

Measuring Time using Clock Cycles (1/2)

• or

= Clock Cycles for a program
Clock Rate

• CPU execution time for a program
 = Clock Cycles for a program

 x Clock Period

CS61C L29 Performance & Parallel (13) Beamer, Summer 2007 © UCB

Measuring Time using Clock Cycles (2/2)

• One way to define clock cycles:
Clock Cycles for program
 = Instructions for a program

(called “Instruction Count”)

 x Average Clock cycles Per Instruction
 (abbreviated “CPI”)

• CPI one way to compare two machines
with same instruction set, since
Instruction Count would be the same

CS61C L29 Performance & Parallel (14) Beamer, Summer 2007 © UCB

Performance Calculation (1/2)

• CPU execution time for program
= Clock Cycles for program

 x Clock Cycle Time
• Substituting for clock cycles:

CPU execution time for program
= (Instruction Count x CPI)

 x Clock Cycle Time
= Instruction Count x CPI x Clock Cycle Time

CS61C L29 Performance & Parallel (15) Beamer, Summer 2007 © UCB

Performance Calculation (2/2)

CPU time = Instructions x Cycles x Seconds
Program Instruction Cycle

CPU time = Instructions x Cycles x Seconds
Program Instruction Cycle

CPU time = Instructions x Cycles x Seconds
Program Instruction Cycle

CPU time = Seconds
Program

• Product of all 3 terms: if missing a term, can’t
predict time, the real measure of performance

CS61C L29 Performance & Parallel (16) Beamer, Summer 2007 © UCB

How Calculate the 3 Components?
• Clock Cycle Time: in specification of
computer (Clock Rate in advertisements)

• Instruction Count:
•Count instructions in loop of small program
•Use simulator to count instructions
•Hardware counter in spec. register

 (Pentium II,III,4)
• CPI:
•Calculate: Execution Time / Clock cycle time

Instruction Count
•Hardware counter in special register (PII,III,4)

CS61C L29 Performance & Parallel (17) Beamer, Summer 2007 © UCB

Calculating CPI Another Way

• First calculate CPI for each individual
instruction (add, sub, and, etc.)

• Next calculate frequency of each
individual instruction

• Finally multiply these two for each
instruction and add them up to get
final CPI (the weighted sum)

CS61C L29 Performance & Parallel (18) Beamer, Summer 2007 © UCB

Example (RISC processor)
Op Freqi CPIi Prod (% Time)
ALU 50% 1 .5 (23%)
Load 20% 5 1.0 (45%)
Store 10% 3 .3 (14%)
Branch 20% 2 .4 (18%)
 2.2

• What if Branch instructions twice as fast?

Instruction Mix (Where time spent)

CS61C L29 Performance & Parallel (19) Beamer, Summer 2007 © UCB

What Programs Measure for Comparison?
• Ideally run typical programs with
typical input before purchase,
or before even build machine
•Called a “workload”; For example:
•Engineer uses compiler, spreadsheet
•Author uses word processor, drawing
program, compression software

• In some situations its hard to do
•Don’t have access to machine to
“benchmark” before purchase
•Don’t know workload in future

CS61C L29 Performance & Parallel (20) Beamer, Summer 2007 © UCB

Benchmarks
• Obviously, apparent speed of
processor depends on code used to
test it

• Need industry standards so that
different processors can be fairly
compared

• Companies exist that create these
benchmarks: “typical” code used to
evaluate systems

• Need to be changed every ~5 years
since designers could (and do!) target
for these standard benchmarks

CS61C L29 Performance & Parallel (21) Beamer, Summer 2007 © UCB

Example Standardized Benchmarks (1/2)

• Standard Performance Evaluation
Corporation (SPEC) SPEC CPU2006
•CINT2006 12 integer (perl, bzip, gcc, go, ...)
•CFP2006 17 floating-point (povray, bwaves, ...)
•All relative to base machine (which gets 100)
Sun Ultra Enterprise 2 w/296 MHz UltraSPARC II
• They measure

 System speed (SPECint2006)
 System throughput (SPECint_rate2006)

•www.spec.org/osg/cpu2006/

CS61C L29 Performance & Parallel (22) Beamer, Summer 2007 © UCB

Example Standardized Benchmarks (2/2)
• SPEC
•Benchmarks distributed in source code
•Members of consortium select workload

 30+ companies, 40+ universities, research labs
•Compiler, machine designers target
benchmarks, so try to change every 5 years
•SPEC CPU2006:

CFP2006
bwaves Fortran Fluid Dynamics
gamess Fortran Quantum Chemistry
milc C Physics / Quantum Chromodynamics
zeusmp Fortran Physics / CFD
gromacs C,Fortran Biochemistry / Molecular Dynamics
cactusADM C,Fortran Physics / General Relativity
leslie3d Fortran Fluid Dynamics
namd C++ Biology / Molecular Dynamics
dealll C++ Finite Element Analysis
soplex C++ Linear Programming, Optimization
povray C++ Image Ray-tracing
calculix C,Fortran Structural Mechanics
GemsFDTD Fortran Computational Electromegnetics
tonto Fortran Quantum Chemistry
lbm C Fluid Dynamics
wrf C,Fortran Weather
sphinx3 C Speech recognition

CINT2006
perlbench C Perl Programming language
bzip2 C Compression
gcc C C Programming Language Compiler
mcf C Combinatorial Optimization
gobmk C Artificial Intelligence : Go
hmmer C Search Gene Sequence
sjeng C Artificial Intelligence : Chess
libquantum C Simulates quantum computer
h264ref C H.264 Video compression
omnetpp C++ Discrete Event Simulation
astar C++ Path-finding Algorithms
xalancbmk C++ XML Processing

CS61C L29 Performance & Parallel (24) Beamer, Summer 2007 © UCB

Performance Evaluation: An Aside Demo
If we’re talking about performance, let’s
discuss the ways shady salespeople have
fooled consumers (so you don’t get taken!)

5. Never let the user touch it
4. Only run the demo through a script
3. Run it on a stock machine in which “no

expense was spared”
2. Preprocess all available data
1. Play a movie

CS61C L29 Performance & Parallel (25) Beamer, Summer 2007 © UCB

Peer Instruction

A. Rarely does a company selling a product give
unbiased performance data.

B. The Sieve of Eratosthenes and Quicksort were early
effective benchmarks.

C. A program runs in 100 sec. on a machine, mult
accounts for 80 sec. of that. If we want to make the
program run 6 times faster, we need to up the speed of
mults by AT LEAST 6.

 ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L29 Performance & Parallel (27) Beamer, Summer 2007 © UCB

“And in conclusion…”

• Latency v. Throughput
• Performance doesn’t depend on any single factor:

need Instruction Count, Clocks Per Instruction (CPI)
and Clock Rate to get valid estimations

• User Time: time user waits for program to execute:
depends heavily on how OS switches between tasks

• CPU Time: time spent executing a single program:
depends solely on design of processor (datapath,
pipelining effectiveness, caches, etc.)

• Benchmarks
• Attempt to predict perf, Updated every few years
• Measure everything from simulation of desktop

graphics programs to battery life
• Megahertz Myth
• MHz ≠ performance, it’s just one factor

CPU time = Instructions x Cycles x Seconds
Program Instruction Cycle

CS61C L29 Performance & Parallel (28) Beamer, Summer 2007 © UCB

Administrivia

• HW8 due tonight at 11:59pm (no slip)
• Put in regrade requests now for any

assignment past HW2
• Final: Thursday 7-10pm @ 10 Evans

• NO backpacks, cells, calculators, pagers, PDAs
• 2 writing implements (we’ll provide write-in

exam booklets) – pencils ok!
• Two pages of notes (both sides) 8.5”x11” paper
• One green sheet

• Scott is holding extra OH today 4-6 in 329
Soda

• Course Survey last lecture, 2pts for doing it

CS61C L29 Performance & Parallel (29) Beamer, Summer 2007 © UCB

Big Problems Show Need for Parallel
• Simulation: the Third Pillar of Science

• Traditionally perform experiments or build systems
• Limitations to standard approach:

 Too difficult – build large wind tunnels
 Too expensive – build disposable jet
 Too slow – wait for climate or galactic evolution
 Too dangerous – weapons, drug design

• Computational Science:
 Simulate the phenomenon on computers
 Based on physical laws and efficient numerical methods

• Search engines needs to build an index for the
entire Internet

• Pixar needs to render movies
• Desire to go green and use less power
• Intel, Microsoft, Apple, Dell, etc. would like to sell

you a new computer next year

CS61C L29 Performance & Parallel (30) Beamer, Summer 2007 © UCB

What Can We Do?
• Wait for our machines to get faster?

• Moore’s law tells us things are getting better; why not
stall for the moment?

• Moore on last legs!
• Many believe so … thus push for multi-core (Friday)!

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
c
e

 (
v
s
.

V
A

X
-1

1
/7

8
0

)

25%/year

52%/year

??%/year

From Hennessy and Patterson, Computer Architecture:
A Quantitative Approach, 4th edition, October, 2006

CS61C L29 Performance & Parallel (31) Beamer, Summer 2007 © UCB

Let’s Put Many CPUs Together!
• Distributed computing (SW parallelism)

• Many separate computers (each with independent
CPU, RAM, HD, NIC) that communicate through a
network
• Grids (home computers across Internet) and Clusters

(all in one room)
• Can be “commodity” clusters, 100K+ nodes
• About being able to solve “big” problems, not

“small” problems faster

• Multiprocessing (HW parallelism)
• Multiple processors “all in one box” that often

communicate through shared memory
• Includes multicore (many new CPUs)

CS61C L29 Performance & Parallel (32) Beamer, Summer 2007 © UCB

Performance Requirements
• Performance terminology

• the FLOP: FLoating point OPeration
• Computing power in FLOPS (FLOP per Second)

• Example: Global Climate Modeling
• Divide the world into a grid (e.g. 10 km spacing)
• Solve fluid dynamics equations for each point & minute

 Requires about 100 Flops per grid point per minute
• Weather Prediction (7 days in 24 hours):

 56 Gflops
• Climate Prediction (50 years in 30 days):

 4.8 Tflops

• Perspective
• Pentium 4 3GHz Desktop Processor

 ~6-12 Gflops
 Climate Prediction would take ~50-100 years

www.epm.ornl.gov/chammp/chammp.html

Reference:http://www.hpcwire.com/hpcwire/hpcwireWWW/04/0827/108259.html
CS61C L29 Performance & Parallel (35) Beamer, Summer 2007 © UCB

The Future of Parallelism

“Parallelism is the biggest challenge since
high level programming languages. It’s the
biggest thing in 50 years because industry is
betting its future that parallel programming
will be useful.”

– David Patterson

CS61C L29 Performance & Parallel (36) Beamer, Summer 2007 © UCB

Distributed Computing Themes

• Let’s network many disparate machines
into one compute cluster

• These could all be the same (easier) or
very different machines (harder)

• Common themes
• “Dispatcher” gives jobs & collects results
• “Workers” (get, process, return) until done

• Examples
•SETI@Home, BOINC, Render farms
•Google clusters running MapReduce

CS61C L29 Performance & Parallel (37) Beamer, Summer 2007 © UCB

Distributed Computing Challenges
• Communication is fundamental difficulty

• Distributing data, updating shared resource,
communicating results

• Machines have separate memories, so no usual inter-
process communication – need network

• Introduces inefficiencies: overhead, waiting, etc.

• Need to parallelize algorithms
• Must look at problems from parallel standpoint
• Tightly coupled problems require frequent

communication (more of the slow part!)
• We want to decouple the problem

 Increase data locality
 Balance the workload

CS61C L29 Performance & Parallel (38) Beamer, Summer 2007 © UCB

Things to Worry About: Parallelizing Code
• Applications can almost never be completely parallelized; some

serial code remains

• s is serial fraction of program, P is # of processors
• Amdahl’s law:
Speedup(P) = Time(1) / Time(P)
 ≤ 1 / (s + ((1-s) / P)), and as P  ∞
 ≤ 1/s
• Even if the parallel portion of your application speeds up perfectly,

your performance may be limited by the sequential portion
CS61C L29 Performance & Parallel (39) Beamer, Summer 2007 © UCB

But… What About Overhead?

• Amdahl’s law ignores overhead
•E.g. from communication, synchronization

• Amdahl’s is useful for bounding a
program’s speedup, but cannot predict
speedup

CS61C L29 Performance & Parallel (40) Beamer, Summer 2007 © UCB

Peer Instruction of Assumptions

1. Writing & managing SETI@Home is relatively
straightforward; just hand out & gather data

2. Most parallel programs that, when run on N (N big)
identical supercomputer processors will yield close to
N x performance increase

3. The majority of the world’s computing power lives in
supercomputer centers

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L29 Performance & Parallel (42) Beamer, Summer 2007 © UCB

Summary
• Parallelism is necessary
• It looks like the future of computing…
• It is unlikely that serial computing will
ever catch up with parallel computing

• Software parallelism
•Grids and clusters, networked computers
• Two common ways to program:

 Message Passing Interface (lower level)
 MapReduce (higher level, more constrained)

• Parallelism is often difficult
•Speedup is limited by serial portion of
code and communication overhead

