
CS61C L30 Parallel Computing (1) Beamer, Summer 2007 © UCB

Scott Beamer, Instructor

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures
 Lecture #30 Parallel Computing

2007-8-15

Ion Wind Cooling Developed by
Researchers at Purdue

www.bbc.co.uk CS61C L30 Parallel Computing (2) Beamer, Summer 2007 © UCB

Review of Software Parallelism
• Parallelism is necessary

• It looks like the future of computing…
• It is unlikely that serial computing will
ever catch up with parallel computing

• Software parallelism
• Grids and clusters, networked computers
• Two common ways to program:

 Message Passing Interface (lower level)
 MapReduce (higher level, more constrained)

• Parallelism is often difficult
• Speedup is limited by serial portion of
code and communication overhead

CS61C L30 Parallel Computing (3) Beamer, Summer 2007 © UCB

A New Hope: Google’s MapReduce
• Remember CS61A?

(reduce + (map square '(1 2 3)) ⇒
(reduce + '(1 4 9)) ⇒
14

• We told you “the beauty of pure functional programming is that
it’s easily parallelizable”

• Do you see how you could parallelize this?
• What if the reduce function argument were associative, would that

help?

• Imagine 10,000 machines ready to help you compute anything
you could cast as a MapReduce problem!

• This is the abstraction Google is famous for authoring
(but their reduce not the same as the CS61A’s or MPI’s reduce)

 Builds a reverse-lookup table
• It hides LOTS of difficulty of writing parallel code!
• The system takes care of load balancing, dead machines, etc.

CS61C L30 Parallel Computing (4) Beamer, Summer 2007 © UCB

MapReduce Programming Model
Input & Output: each a set of key/value pairs
Programmer specifies two functions:
map (in_key, in_value) 
 list(out_key, intermediate_value)

• Processes input key/value pair
• Produces set of intermediate pairs

reduce (out_key, list(intermediate_value)) 
 list(out_value)

• Combines all intermediate values for a particular key
• Produces a set of merged output values (usu just one)

code.google.com/edu/parallel/mapreduce-tutorial.html

CS61C L30 Parallel Computing (5) Beamer, Summer 2007 © UCB

MapReduce Code Example
map(String input_key,
 String input_value):
 // input_key : document name
 // input_value: document contents
 for each word w in input_value:
 EmitIntermediate(w, "1");

reduce(String output_key,
 Iterator intermediate_values):
 // output_key : a word
 // output_values: a list of counts
 int result = 0;
 for each v in intermediate_values:
 result += ParseInt(v);
 Emit(AsString(result));

• “Mapper” nodes are responsible for the map function
• “Reducer” nodes are responsible for the reduce function
• Data on a distributed file system (DFS)

CS61C L30 Parallel Computing (6) Beamer, Summer 2007 © UCB

MapReduce Example Diagram

ah ah er ah if or or uh or ah if

ah:1,1,1,1

ah:1 if:1 or:1 or:1 uh:1 or:1 ah:1 if:1

er:1 if:1,1or:1,1,1 uh:1

ah:1 ah:1 er:1

4 1 2 3 1

file1 file2 file3 file4 file5 file6 file7

(ah) (er) (if) (or) (uh)

map(String input_key,
 String input_value):
 // input_key : doc name
 // input_value: doc contents
 for each word w in input_value:
 EmitIntermediate(w, "1");

reduce(String output_key,
 Iterator intermediate_values):
 // output_key : a word
 // output_values: a list of counts
 int result = 0;
 for each v in intermediate_values:
 result += ParseInt(v);
 Emit(AsString(result));

CS61C L30 Parallel Computing (7) Beamer, Summer 2007 © UCB

MapReduce Advantages/Disadvantages
• Now it’s easy to program for many CPUs

• Communication management effectively gone
 I/O scheduling done for us

• Fault tolerance, monitoring
 machine failures, suddenly-slow machines, other issues are

handled
• Can be much easier to design and program!

• But… it further restricts solvable problems
• Might be hard to express some problems in a MapReduce

framework
• Data parallelism is key

 Need to be able to break up a problem by data chunks
• MapReduce is closed-source – Hadoop!

CS61C L30 Parallel Computing (8) Beamer, Summer 2007 © UCB

Introduction to Hardware Parallelism

• Given many threads (somehow generated
by software), how do we implement this in
hardware?

• Recall the performance equation:
Execution Time = (Inst. Count)(CPI)(Cycle Time)
• Hardware Parallelism improves:

• Instruction Count - If the equation is applied to each
CPU, each CPU needs to do less

• CPI - If the equation is applied to system as a whole,
more is done per cycle

• Cycle Time - Will probably be made worse in process

CS61C L30 Parallel Computing (9) Beamer, Summer 2007 © UCB

Disclaimers

• Please don’t let today’s material
confuse what you have already
learned about CPU’s and pipelining

• When programmer is mentioned
today, it means whoever is generating
the assembly code (so it is probably a
compiler)

• Many of the concepts described today
are difficult to implement, so if it
sounds easy, think of possible
hazards

CS61C L30 Parallel Computing (10) Beamer, Summer 2007 © UCB

Flynn’s Taxonomy
• Classifications of parallelism types

wwww.wikipedia.org

Single Data

Multiple Data

Single Instruction Multiple Instruction

CS61C L30 Parallel Computing (11) Beamer, Summer 2007 © UCB

Superscalar

• Add more functional units or pipelines
to CPU

• Directly reduces CPI by doing more
per cycle

• Consider what if we:
• Added another ALU
• Added 2 more read ports to the RegFile
• Added 1 more write port to the RegFile

CS61C L30 Parallel Computing (12) Beamer, Summer 2007 © UCB

Simple Superscalar MIPS CPU

clk

5

W0RaRb

Register
File

Rd

Data
In

Data
Addr Data

Memory

Inst0

Instruction
Address

Instruction
Memory

PC

5
Rs

5
Rt

32

3232

32

A

B

N
ex

t A
dd

re
ss

clk clk

A
LU

32A
LU

5
Rd

Inst1

5
Rs

5
Rt

W1RcRd

C

D
32

• Can now do 2
instructions in 1
cycle!

CS61C L30 Parallel Computing (13) Beamer, Summer 2007 © UCB

Simple Superscalar MIPS CPU (cont.)

• Considerations
• ISA now has to be changed
• Forwarding for pipelining now harder

• Limitations
• Programmer must explicitly generate
parallel code

• Improvement only if other instructions
can fill slots

• Doesn’t scale well

CS61C L30 Parallel Computing (14) Beamer, Summer 2007 © UCB

Single Instruction Multiple Data (SIMD)

• Often done in a vector form, so all
data has the same operation applied
to it

• Example: AltiVec (like SSE)
• 128bit registers can hold:

 4 floats, 4 ints, 8 shorts, 16 chars, etc.
• Processes whole vector

128A
LU

A

B
128

CS61C L30 Parallel Computing (15) Beamer, Summer 2007 © UCB

Superscalar in Practice

• ISA’s have extensions for these vector
operations

• One thread, that has parallelism
internally

• Performance improvement depends
on program and programmer being
able to fully utilize all slots

• Can be parts other than ALU (like load)
• Usefulness will be more apparent
when combined with other parallel
techniques

CS61C L30 Parallel Computing (16) Beamer, Summer 2007 © UCB

Administrivia

• Put in regrade requests now for any
assignment past HW2

• Final: Thursday 7-10pm @ 10 Evans
• NO backpacks, cells, calculators, pagers, PDAs
• 2 writing implements (we’ll provide write-in

exam booklets) – pencils ok!
• Two pages of notes (both sides) 8.5”x11” paper
• One green sheet

• Course Survey last lecture, 2pts for doing it

CS61C L30 Parallel Computing (17) Beamer, Summer 2007 © UCB

Thread Review

• A Thread is a single stream of
instructions

• It has its own registers, PC, etc.
• Threads from the same process operate
in the same virtual address space

• Are an easy way to describe/think about
parallelism

• A single CPU can execute many
threads by Time Division Multipexing

CPU

Time

Thread0
Thread1
Thread2

CS61C L30 Parallel Computing (18) Beamer, Summer 2007 © UCB

Multithreading

• Multithreading is running multiple
threads through the same hardware

• Could we do Time Division
Multipexing better in hardware?

• Consider if we gave the OS the
abstraction of having 4 physical CPU’s
that share memory and each executes
one thread, but we did it all on 1
physical CPU?

CS61C L30 Parallel Computing (19) Beamer, Summer 2007 © UCB

Static Multithreading Example

ALU

Introduced in 1964
by Seymour
Cray

Pipeline Stage

Appears to
be 4 CPU’s
at 1/4 clock

CS61C L30 Parallel Computing (20) Beamer, Summer 2007 © UCB

Static Multithreading Example Analyzed

• Results:
• 4 Threads running in hardware
• Pipeline hazards reduced

 No more need to forward
 No control issues
 Less structural hazards

• Depends on being able to fully generate 4
threads evenly
 Example if 1 Thread does 75% of the work

– Utilization = (% time run)(% work done)
 = (.25)(.75) + (.75)(.25) = .375
 = 37.5%

CS61C L30 Parallel Computing (21) Beamer, Summer 2007 © UCB

Dynamic Multithreading

• Adds flexibility in choosing time to
switch thread

• Simultaneous Multithreading (SMT)
• Called Hyperthreading by Intel
• Run multiple threads at the same time
• Just allocate functional units when
available

• Superscalar helps with this

CS61C L30 Parallel Computing (22) Beamer, Summer 2007 © UCB

Dynamic Multithreading Example

1

2

3

4

5

6

7

8

9

M M FX FX FPFPBRCCCycle

One thread, 8 units

1

2

3

4

5

6

7

8

9

M M FX FXFP FPBRCCCycle

Two threads, 8 units

CS61C L30 Parallel Computing (23) Beamer, Summer 2007 © UCB

Multicore

• Put multiple CPU’s on the same die
• Why is this better than multiple dies?

• Smaller
• Cheaper
• Closer, so lower inter-processor latency
• Can share a L2 Cache (details)
• Less power (power ~ freq^2)

• Cost of multicore: complexity and
slower single-thread execution

CS61C L30 Parallel Computing (24) Beamer, Summer 2007 © UCB

Two CPUs, two caches, shared DRAM ...

CPU0

Cache

Addr Value

CPU1

Shared Main Memory
Addr Value
16

Cache

Addr Value

5

CPU0:
LW R2, 16(R0)

516

CPU1:
LW R2, 16(R0)

16 5

Write-through caches

View of memory no
longer “coherent”.

Loads of location 16
from CPU0 and
CPU1 see different
values!

CPU1:
SW R0,16(R0)

0

0

CS61C L30 Parallel Computing (25) Beamer, Summer 2007 © UCB

Multicore Example (IBM Power5)

Core #1

Core #2

Shared
Stuff

CS61C L30 Parallel Computing (26) Beamer, Summer 2007 © UCB

Real World Example 1: Cell Processor

• Multicore, and more….

CS61C L30 Parallel Computing (27) Beamer, Summer 2007 © UCB

Real World Example 1: Cell Processor

• 9 Cores (1PPE, 8SPE) at 3.2GHz
• Power Processing Element (PPE)

• Supervises all activities, allocates work
• Is multithreaded (2 threads)

• Synergystic Processing Element (SPE)
• Where work gets done
• Very Superscalar
• No Cache, only Local Store

CS61C L30 Parallel Computing (28) Beamer, Summer 2007 © UCB

Real World Example 1: Cell Processor

• Great for other
multimedia
applications
such as HDTV,
cameras, etc…

• Really
dependent on
programmer use
of SPE’s and
Local Store to
get the most out
of it

CS61C L30 Parallel Computing (29) Beamer, Summer 2007 © UCB

Real World Example 2: Niagara Processor

• Multithreaded and
Multicore

• 32 Threads (8 cores, 4
threads each) at 1.2GHz

• Designed for low power

• Has simpler pipelines to fit more on
• Maximizes thread level parallelism
• Project Blackbox

CS61C L30 Parallel Computing (30) Beamer, Summer 2007 © UCB

Real World Example 2: Niagara Processor

• Each thread runs slower (1.2GHz), and
there is less number crunching ability
(no FP unit), but tons of threads

• This is great for webservers, where
there are typically many simple
requests, and many data stalls

•Can beat “faster”
and more
expensive CPU’s,
while using less
power

CS61C L30 Parallel Computing (31) Beamer, Summer 2007 © UCB

Rock: Niagara’s Successor
• Released last week
• 64 Threads (8 cores,

8 threads each)
• 8 FPU’s, 8 Crypto Co-

processors
• Integrated 10GbE and

PCIe hardware
• Supports 64 Logical

Domains (for 64
virtual OS’s)

• Only 20 months later

CS61C L30 Parallel Computing (32) Beamer, Summer 2007 © UCB

Peer Instruction

1. The majority of PS3’s processing
power comes from the Cell processor

2. A computer that has max utilization
can get more done multithreaded

3. Current multicore techniques can
scale well to many (32+) cores

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L30 Parallel Computing (34) Beamer, Summer 2007 © UCB

Summary

• Superscalar: More functional units
• Multithread: Multiple threads
executing on same CPU

• Multicore: Multiple CPU’s on the same
die

• The gains from all these parallel
hardware techniques relies heavily on
the programmer being able to map
their task well to multiple threads

• Hit up CS150, CS152, CS162, 194-3,
198-5 and wikipedia for more info

