CS61C : Machine Structures
Lecture #30 Parallel Computing
2007-8-15

Scott Beamer, Instructor

lon Wind Cooling Developed by
Researchers at Purdue

g CS61C L30 Parallel Computing (1)

WWW.bDC.CO. UK umer, summer 2007 6 ucs|

A New Hope: Google’s MapReduce

* Remember CS61A?

(reduce + (map square '(1 2 3)) =
(reduce + '(1 4 9)) =
14

« We told you “the beauty of pure functional programming is that
it's easily parallelizable™
« Do you see how you could parallelize this?
* What if the reduce function argument were associative, would that
help?
« Imagine 10,000 machines ready to help you compute anything
you could cast as a MapReduce problem!

« This is the abstraction Google is famous for authorin
(but their reduce not the same as the CS61A’s or MPI’s reduce)

= Builds a reverse-lookup table
- It hides LOTS of difficulty of writing parallel code!
+ The system takes care of load balancing, dead machines, etc.

g CS61C L30 Parallel Computing (3)

Beamer, Summer 2007 © UCB|

+ MapReduce Code Example

map(String input_key,
String input_value):

for each word w in input_value:
EmitIntermediate(w, "1");

reduce(String output_key,
Iterator intermediate_values):

int result = 0;

for each v in intermediate_values:
result += ParseInt(v);

Emit (AsString(result));

“Mapper” nodes are responsible for the map function

“Reducer” nodes are responsible for the reduce function
« Data on a distributed file system (DFS)

g CS61C L30 Parallel Computing (5)

Beamer, Summer 2007 © UCB|

Review of Software Parallelism

e Parallelism is necessary
« It looks like the future of computing...

« It is unlikely that serial computing will
ever catch up with parallel computing

« Software parallelism
+ Grids and clusters, networked computers
* Two common ways to program:
= Message Passing Interface (lower level)
= MapReduce (higher level, more constrained)
e Parallelism is often difficult

» Speedup is limited by serial portion of
g code and communication overhead

©S61C L30 Parallel Computing (2)

Beamer, Summer 2007 © UCB|

+ MapReduce Programming Model

Input & Output: each a set of key/value pairs
Programmer specifies two functions:

map (in_key, in_value) —
list (out_key, intermediate_value)

- Processes input key/value pair
» Produces set of intermediate pairs

reduce (out_key, list(intermediate_value)) —
list(out_value)

» Combines all intermediate values for a particular key
» Produces a set of merged output values (usu just one)

g code.google.com/edu/parallel/mapreduce-tutorial.html

©S61C L30 Parallel Computing (4)

Beamer, Summer 2007 © UCB|

++ MapReduce Example Diagram

file, file, fileg file, file, fileg file,
Input\ ahaher\ |ah\ ifor \ oruh \or \ ahif \

map(String input_key,

it G @@? @ ® ¢ @

Imemlednte‘ klv kv k2iv kl\ K3:v kv ‘ kv kv ‘ kv ‘ Klv k3
ah1ah1er1 ah'1 1 or:1 uh:tor:1 ah:tifil

,<or:1,1,1 uh:1
Grouped ‘kl SRR, ‘kz\ ‘u\ v ‘k-h v,y ‘k)\
soduen(string autput o
Crator iRtermediate_values) :
ine rosuit = o;
£ SBY fn lncomoiate vatues:
Teeutt 32 Parectnt o)y
Enit(RsSering (resit) §

g Ontput‘ ‘ 1 [2 ‘ [1 ‘
eS8t 130 Paratr computing (6) (ah) (er) (if) (0r) (Uh) seamer, summer zoor eucs

+ MapReduce Advantages/Disadvantages

* Now it's easy to program for many CPUs
« Communication management effectively gone
= /O scheduling done for us
« Fault tolerance, monitoring

= machine failures, suddenly-slow machines, other issues are
handled

« Can be much easier to design and program!

¢ But... it further restricts solvable problems

« Might be hard to express some problems in a MapReduce
framework

« Data parallelism is key
= Need to be able to break up a problem by data chunks
* MapReduce is closed-source — Hadoop!

ﬂ ©S61C L30 Parallel Computing (7)

Beamer, Summer 2007 © UCB|

Introduction to Hardware Parallelism

*Given many threads (somehow generated
by software), how do we implement this in
hardware?

*Recall the performance equation:
)(CPI)(Cycle Time)

« Hardware Parallelism improves:

- If the equation is applied to each
CPU, each CPU needs to do less

- CPI - If the equation is applied to system as a whole,
more is done per cycle

+ Cycle Time - Will probably be made worse in process

Execution Time = (

Disclaimers

*Please don’t let today’s material
confuse what you have aIreadP{
learned about CPU’s and pipelining

*When is mentioned
today, it means whoever is generating
the assembly code (so it is probably a
compiler)

*Many of the concepts described today
are difficult to implement, so if it
sounds easy, think of possible
hazards

ﬂ ©S61C L30 Parallel Computing (9)

Beamer, Summer 2007 © UCB|

ﬂ ©S61C L30 Parallel Computing (8)

Beamer, Summer 2007 © UCB|

Flynn’s Taxonomy
« Classifications of parallelism types

Single Instruction Multiple Instruction

18D [Instruction Pool | MisD [Instruction Pool |

Single Data | [P : [l Ly
s [Tnstraction ool wivtn [Tstraction Pool]

[Pl | LR

Multiple Data |2 [Pul 2 -Fo-| Lpa-

E [Pl z|~pul- Lpu

[P L-Fe-' -

Superscalar

« Add more functional units or pipelines
to CPU

Directly reduces CPI by doing more
per cycle
« Consider what if we:
+ Added another ALU
+ Added 2 more read ports to the RegFile
+ Added 1 more write port to the RegFile

ﬂ ©S61C L30 Parallel Computing (10)

wwww . wikipedia.org geamer, summer2007 © uce

ﬂ ©S61C L30 Parallel Computing (11)

Beamer, Summer 2007 © UCB|

Simple Superscalar MIPS CPU

Instruction |-125] ° _Can nOV_V do 2
Memory instructions in 1
Inst0 cycle!
Rd Rs|Rf Rd Rs[Rt

RIS 2 e 2

Instruction

Address A

2 ORaRb WIRCRA , R —

] ata
é |2 Reg?ster 2 E Memory |—|
< File B
- A A Data /I\
z . I o

clk clk 32 ¢ 3

v
ﬂ ©S61C L30 Parallel Computing (12) Beamer, Summer 2007 © UCB|

Simple Superscalar MIPS CPU (cont.)

«Considerations
+ISA now has to be changed
» Forwarding for pipelining now harder

e Limitations

* Programmer must explicitly generate
parallel code

« Improvement only if other instructions
can fill slots

* Doesn’t scale well

ﬂ ©S61C L30 Parallel Computing (13)

Beamer, Summer 2007 © ucB|

Superscalar in Practice
*ISA’s have extensions for these
operations

* One thread, that has parallelism
internally

* Performance improvement depends
on program and programmer being
able to fully utilize all slots

«Can be parts other than ALU (like load)

«Usefulness will be more apparent
when combined with other parallel

Single Instruction Multiple Data (SIMD)

*Often done in a form, so all
data has the same operation applied
to it

« Example: AltiVec (like SSE)

+ 128bit registers can hold:
= 4 floats, 4 ints, 8 shorts, 16 chars, etc.
* Processes whole vector

ﬂ ©S61C L30 Parallel Computing (14)

Beamer, Summer 2007 © ucB|

ﬂ techniques

Beamer, Summer 2007 © ucB|

Administrivia

¢ Put in regrade reci_tljests now for any
assignment past HW2
¢ Final: Thursday 7-10pm @ 10 Evans
- NO backpacks, cells, calculators, pagers, PDAs

+ 2 writing implements (we’ll provide write-in
exam booklets) — pencils ok!

» Two pages of notes (both sides) 8.5”x11” paper
» One green sheet

« Course Survey last lecture, 2pts for doing it

Thread Review

°A d is a single stream of
instructions

« It has its own registers, PC, etc.

* Threads from the same process operate
in the same virtual address space

+ Are an easy way to describe/think about
parallelism

A single CPU can execute many
threads by

cu T
M Threadl

Time >
ﬂ M Thread2
CS61C L30 Parallel Computing (17) Beamer, Summer 2007 © ucB

ﬂ ©S61C L30 Parallel Computing (16)

Beamer, Summer 2007 © ucs|

Multithreading

¢ Multithreading is running multiple
threads through the same hardware

*Could we do
better in hardware?

«Consider if we gave the OS the
abstraction of having 4 physical CPU’s
that share memory and each executes
one thread, but we did it all on 1
physical CPU?

ﬂ ©S61C L30 Parallel Computing (18)

Beamer, Summer 2007 © ucs|

Static Multithreading Example

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Appears to
be 4 CPU’s
Last instruction at 1/4 clock
in a thread

always completes
writeback before

i—next instruction

in same thread

* reads regfile

10 t1

2
T1: LW r1, 0(r2) F[D|X
T2: ADD 7,11, r4 F|D
T3: XORI r5, r4, #12 F
T4: SW 0(r7), r5
T1: LWr5, 12(r1)

Introduced in 1964
by Seymour
Cray

Q CS61C L30 Parallel Computing (19)

Beamer, Summer 2007 © UCB|

Dynamic Multithreading

¢ Adds flexibility in choosing time to
switch thread
 Simultaneous Multithreading (SMT)
« Called Hyperthreading by Intel
* Run multiple threads at the same time

+ Just allocate functional units when
available

+ Superscalar helps with this

Q CS61C L30 Parallel Computing (21)

Beamer, Summer 2007 © UCB|

Multicore

¢ Put multiple CPU’s on the same die
*«Why is this better than multiple dies?

* Smaller

+ Cheaper

+ Closer, so lower inter-processor latency
« Can share a L2 Cache (details)

- Less power (power ~ freq”2)

« Cost of multicore: complexity and
slower single-thread execution

Static Multithreading Example Analyzed

*Results:
* 4 Threads running in hardware

+ Pipeline hazards reduced
= No more need to forward
= No control issues
= Less structural hazards
- Depends on being able to fully generate 4
threads evenly

= Example if 1 Thread does 75% of the work
— Utilization = (% time run)(% work done)
=(.25)(.75) + (.75)(.25) = .375

Beamer, Summer 2007 © UCB|

Q CS61C L30 Parallel Computing (23)

Beamer, Summer 2007 © UCB|

=37.5%
CS61C L30 Parallel Computing (20)

Dynamic Multithreading Example

One thread, 8 units Two threads, 8 units

CycleM M FX FX FPFPBRCC CycleM M FXFXFPFPBRCC

1

2

woo\lcalm#-wl\)l—t

o|l ol N[l o »p| @

Two CPUs, two caches, shared DRAM ...

CPUO:
CPUO CPU1 LW R2, 16(RO)
CPU1:
I I LW R2, 16(RO)
Cache Cache
CPU1:
Addr Value Addr = Value SW RO, 16 (RO)
16 5 16 80 View of memory no

longer “coherent”.

|_|_|

Shared Main Memory from CPUO and
Addr Value CPU1 see different

16 50 values!
Q csstcusoraatacomumgan WV ITTE-trOUGN CACNES e summer or uca

Loads of location 16

Multicore Example (IBM Power5)

Core #1

Shared
Stuff

Core #2

@ CS61C L30 Parallel Computing (25)

Beamer, Summer 2007 © UCB|

Real World Example 1: Cell Processor

*9 Cores (1PPE, 8SPE) at 3.2GHz

* Power Processing Element (PPE)
« Supervises all activities, allocates work
+ Is multithreaded (2 threads)

< Synergystic Processing Element (SPE)
* Where work gets done
* Very Superscalar
*No Cache, only Local Store

@ CS61C L30 Parallel Computing (27)

Beamer, Summer 2007 © UCB|

Real World Example 2: Niagara Processor

¢ Multithreaded and
Multicore

*32 Threads (8 cores, 4
threads each) at 1.2GHz

*Designed for low power

«Has simpler pipelines to fit more on
*Maximizes thread level parallelism
*Project Blackbox

@ CS61C L30 Parallel Computing (29)

— - mer, Summer 2007 © UCB|

Real World Example 1: Cell Processor

|72

e Multicore, and more....

@ CS61C L30 Parallel Computing (26)

Beamer, Summer 2007 © UCB|

Real World Example 1: Cell Processor

* Great for other
multimedia
applications
such as HDTV,
cameras, etc...

*Really
dependent on
programmer use
of SPE’s and
Local Store to
get the most out
of it

@ CS61C L30 Parallel Computing (28)

Beamer, Summer 2007 © UCB|

Real World Example 2: Niagara Processor

«Each thread runs slower (1 .2GHZ{; and
there is less number crunching ability
(no FP unit), but tons of threads

+This is great for webservers, where
there are typically many simple
requests, and many data stalls

.can beat “faste r ” Sun Fire T2000: SPECweb2005 World Record

and more rores 5 o)
expensive CPU’s, ——
while using less e
power eres 146

(2 cores, 2 chips)

13 3000 6000 9000 12,000 15000
Simultaneous User Sessions

@ CS61C L30 Parallel Computing (30)

Beamer, Summer 2007 © UCB|

Rock: Niagara’s Successor
 Released last week

* 64 Threads (8 cores,
8 threads each)

* 8 FPU’s, 8 Crypto Co-
processors

« Integrated 10GbE and
PCle hardware

* Supports 64 Logical
Domains (for 6
virtual OS’s)

« Only 20 months later

Q CS61C L30 Parallel Computing (31)

Beamer, Summer 2007 © UCB|

Summary

* Superscalar: More functional units

e Multithread: Multiple threads
executing on same CPU

-Cl\lll_ultlcore: Multiple CPU’s on the same
ie

*The gains from all these parallel
hardware technch es relies heavily on
the programmer being able to map
their task well to multlple threads

«Hit up CS150, CS152, CS162, 194-3,
and wikipedia for more info

Q CS61C L30 Parallel Computing (34)

Beamer, Summer 2007 © UCB|

Peer Instruction

1. The majority of PS3’s processing
power comes from the Cell processor

2. A computer that has max utilization
can get more done multithreaded

3. Current multicore techniques can
scale well to many (32+) cores

©S61C L30 Parallel Computing (32)

odoulbhWN R

ABC
FFF
FFT
FTF
FTT
TFF
TFT
TTF
TTT

Beamer, Summer 2007 © UCB|

