
CS61C L30 Parallel Computing (1) Beamer, Summer 2007 © UCB

Scott Beamer, Instructor

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures
 Lecture #30 Parallel Computing

2007-8-15

Ion Wind Cooling Developed by
Researchers at Purdue

www.bbc.co.uk CS61C L30 Parallel Computing (2) Beamer, Summer 2007 © UCB

Review of Software Parallelism
• Parallelism is necessary

• It looks like the future of computing…
• It is unlikely that serial computing will
ever catch up with parallel computing

• Software parallelism
• Grids and clusters, networked computers
• Two common ways to program:

 Message Passing Interface (lower level)
 MapReduce (higher level, more constrained)

• Parallelism is often difficult
• Speedup is limited by serial portion of
code and communication overhead
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A New Hope: Google’s MapReduce
• Remember CS61A?

(reduce + (map square '(1 2 3)) ⇒
(reduce + '(1 4 9)) ⇒
14

• We told you “the beauty of pure functional programming is that
it’s easily parallelizable”

• Do you see how you could parallelize this?
• What if the reduce function argument were associative, would that

help?

• Imagine 10,000 machines ready to help you compute anything
you could cast as a MapReduce problem!

• This is the abstraction Google is famous for authoring
(but their reduce not the same as the CS61A’s or MPI’s reduce)

 Builds a reverse-lookup table
• It hides LOTS of difficulty of writing parallel code!
• The system takes care of load balancing, dead machines, etc.
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MapReduce Programming Model
Input & Output: each a set of key/value pairs
Programmer specifies two functions:
map (in_key, in_value) 
    list(out_key, intermediate_value)

• Processes input key/value pair
• Produces set of intermediate pairs

reduce (out_key, list(intermediate_value)) 
       list(out_value)

• Combines all intermediate values for a particular key
• Produces a set of merged output values (usu just one)

code.google.com/edu/parallel/mapreduce-tutorial.html
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MapReduce Code Example
map(String input_key,
    String input_value):
    // input_key  : document name
    // input_value: document contents
    for each word w in input_value:
        EmitIntermediate(w, "1");

reduce(String output_key,
       Iterator intermediate_values):
    // output_key   : a word
    // output_values: a list of counts
    int result = 0;
    for each v in intermediate_values:
        result += ParseInt(v);
    Emit(AsString(result));

• “Mapper” nodes are responsible for the map function
• “Reducer” nodes are responsible for the reduce function
• Data on a distributed file system (DFS)
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MapReduce Example Diagram

ah ah er ah if or or uh or ah if

ah:1,1,1,1

ah:1 if:1 or:1 or:1 uh:1 or:1 ah:1 if:1

er:1 if:1,1or:1,1,1 uh:1

ah:1 ah:1 er:1

4 1 2 3 1

file1 file2 file3 file4 file5 file6 file7

(ah) (er) (if) (or) (uh)

map(String input_key,
    String input_value):    
    // input_key  : doc name    
    // input_value: doc contents    
    for each word w in input_value:
        EmitIntermediate(w, "1");

reduce(String output_key, 
       Iterator intermediate_values):
    // output_key   : a word
    // output_values: a list of counts
    int result = 0;
    for each v in intermediate_values:
        result += ParseInt(v);
    Emit(AsString(result));
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MapReduce Advantages/Disadvantages
• Now it’s easy to program for many CPUs

• Communication management effectively gone
 I/O scheduling done for us

• Fault tolerance, monitoring
 machine failures, suddenly-slow machines, other issues are

handled
• Can be much easier to design and program!

• But… it further restricts solvable problems
• Might be hard to express some problems in a MapReduce

framework
• Data parallelism is key

 Need to be able to break up a problem by data chunks
• MapReduce is closed-source – Hadoop!
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Introduction to Hardware Parallelism

• Given many threads (somehow generated
by software), how do we implement this in
hardware?

• Recall the performance equation:
Execution Time = (Inst. Count)(CPI)(Cycle Time)
• Hardware Parallelism improves:

• Instruction Count - If the equation is applied to each
CPU, each CPU needs to do less

• CPI - If the equation is applied to system as a whole,
more is done per cycle

• Cycle Time - Will probably be made worse in process

CS61C L30 Parallel Computing (9) Beamer, Summer 2007 © UCB

Disclaimers

• Please don’t let today’s material
confuse what you have already
learned about CPU’s and pipelining

• When programmer is mentioned
today, it means whoever is generating
the assembly code (so it is probably a
compiler)

• Many of the concepts described today
are difficult to implement, so if it
sounds easy, think of possible
hazards
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Flynn’s Taxonomy
• Classifications of parallelism types

wwww.wikipedia.org

Single Data

Multiple Data

Single Instruction Multiple Instruction
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Superscalar

• Add more functional units or pipelines
to CPU

• Directly reduces CPI by doing more
per cycle

• Consider what if we:
• Added another ALU
• Added 2 more read ports to the RegFile
• Added 1 more write port to the RegFile
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Simple Superscalar MIPS CPU
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Simple Superscalar MIPS CPU (cont.)

• Considerations
• ISA now has to be changed
• Forwarding for pipelining now harder

• Limitations
• Programmer must explicitly generate
parallel code

• Improvement only if other instructions
can fill slots

• Doesn’t scale well
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Single Instruction Multiple Data (SIMD)

• Often done in a vector form, so all
data has the same operation applied
to it

• Example: AltiVec (like SSE)
• 128bit registers can hold:

 4 floats, 4 ints, 8 shorts, 16 chars, etc.
• Processes whole vector
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Superscalar in Practice

• ISA’s have extensions for these vector
operations

• One thread, that has parallelism
internally

• Performance improvement depends
on program and programmer being
able to fully utilize all slots

• Can be parts other than ALU (like load)
• Usefulness will be more apparent
when combined with other parallel
techniques
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Administrivia

• Put in regrade requests now for any
assignment past HW2

• Final: Thursday 7-10pm @ 10 Evans
• NO backpacks, cells, calculators, pagers, PDAs
• 2 writing implements (we’ll provide write-in

exam booklets) – pencils ok!
• Two pages of notes (both sides) 8.5”x11” paper
• One green sheet

• Course Survey last lecture, 2pts for doing it
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Thread Review

• A Thread is a single stream of
instructions

• It has its own registers, PC, etc.
• Threads from the same process operate
in the same virtual address space

• Are an easy way to describe/think about
parallelism

• A single CPU can execute many
threads by Time Division Multipexing

CPU

Time

Thread0
Thread1
Thread2

CS61C L30 Parallel Computing (18) Beamer, Summer 2007 © UCB

Multithreading

• Multithreading is running multiple
threads through the same hardware

• Could we do Time Division
Multipexing better in hardware?

• Consider if we gave the OS the
abstraction of having 4 physical CPU’s
that share memory and each executes
one thread, but we did it all on 1
physical CPU?
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Static Multithreading Example

ALU

Introduced in 1964
by Seymour
Cray

Pipeline Stage

Appears to
be 4 CPU’s
at 1/4 clock
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Static Multithreading Example Analyzed

• Results:
• 4 Threads running in hardware
• Pipeline hazards reduced

 No more need to forward
 No control issues
 Less structural hazards

• Depends on being able to fully generate 4
threads evenly
 Example if 1 Thread does 75% of the work

– Utilization = (% time run)(% work done)
  = (.25)(.75) + (.75)(.25) = .375
  = 37.5%
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Dynamic Multithreading

• Adds flexibility in choosing time to
switch thread

• Simultaneous Multithreading (SMT)
• Called Hyperthreading by Intel
• Run multiple threads at the same time
• Just allocate functional units when
available

• Superscalar helps with this
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Dynamic Multithreading Example
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Multicore

• Put multiple CPU’s on the same die
• Why is this better than multiple dies?

• Smaller
• Cheaper
• Closer, so lower inter-processor latency
• Can share a L2 Cache (details)
• Less power      (power ~ freq^2)

• Cost of multicore: complexity and
slower single-thread execution
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Two CPUs, two caches, shared DRAM ...
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Multicore Example (IBM Power5)

Core #1

Core #2

Shared
Stuff
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Real World Example 1: Cell Processor

• Multicore, and more….
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Real World Example 1: Cell Processor

• 9 Cores (1PPE, 8SPE) at 3.2GHz
• Power Processing Element (PPE)

• Supervises all activities, allocates work
• Is multithreaded (2 threads)

• Synergystic Processing Element (SPE)
• Where work gets done
• Very Superscalar
• No Cache, only Local Store
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Real World Example 1: Cell Processor

• Great for other
multimedia
applications
such as HDTV,
cameras, etc…

• Really
dependent on
programmer use
of SPE’s and
Local Store to
get the most out
of it
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Real World Example 2: Niagara Processor

• Multithreaded and
Multicore

• 32 Threads (8 cores, 4
threads each) at 1.2GHz

• Designed for low power

• Has simpler pipelines to fit more on
• Maximizes thread level parallelism
• Project Blackbox
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Real World Example 2: Niagara Processor

• Each thread runs slower (1.2GHz), and
there is less number crunching ability
(no FP unit), but tons of threads

• This is great for webservers, where
there are typically many simple
requests, and many data stalls

•Can beat “faster”
and more
expensive CPU’s,
while using less
power
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Rock: Niagara’s Successor
• Released last week
• 64 Threads (8 cores,

8 threads each)
• 8 FPU’s, 8 Crypto Co-

processors
• Integrated 10GbE and

PCIe hardware
• Supports 64 Logical

Domains (for 64
virtual OS’s)

• Only 20 months later
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Peer Instruction

1. The majority of PS3’s processing
power comes from the Cell processor

2. A computer that has max utilization
can get more done multithreaded

3. Current multicore techniques can
scale well to many (32+) cores

   ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT
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Summary

• Superscalar: More functional units
• Multithread: Multiple threads
executing on same CPU

• Multicore: Multiple CPU’s on the same
die

• The gains from all these parallel
hardware techniques relies heavily on
the programmer being able to map
their task well to multiple threads

• Hit up CS150, CS152, CS162, 194-3,
198-5 and wikipedia for more info


