

Disclaimers

- Please don't let today's material confuse what you have already learned about CPU's and pipelining
- When *programmer* is mentioned today, it means whoever is generating the assembly code (so it is probably a compiler)
- Many of the concepts described today are *difficult* to implement, so if it sounds easy, think of possible hazards

CS61C L30 Parallel Computing (11)

CS61C L30 Parallel Computing (9)

- Add more functional units or pipelines to CPU
- Directly reduces CPI by doing more per cycle
- Consider what if we:
 - Added another ALU
 - Added 2 more read ports to the RegFile

Beamer, Summer 2007 © UCB

Added 1 more write port to the RegFile

• 4 floats, 4 ints, 8 shorts, 16 chars, etc.

128 Z

Beamer, Summer 2007 © UCB

Beamer, Summer 2007 © UCB

Processes whole vector

Cal

- ISA's have extensions for these vector operations
- One thread, that has parallelism internally
- Performance improvement depends on program and programmer being able to fully utilize all slots
- Can be parts other than ALU (like load)
- Usefulness will be more apparent when combined with other parallel techniques

CS61C L30 Parallel

Multithreading

- Multithreading is running multiple threads through the same hardware
- Could we do Time Division **Multipexing** better in hardware?
- Consider if we gave the OS the abstraction of having 4 physical CPU's that share memory and each executes one thread, but we did it all on 1 physical CPU?

Dynamic Multithreading Adds flexibility in choosing time to switch thread • Simultaneous Multithreading (SMT) Called Hyperthreading by Intel • Run multiple threads at the same time · Just allocate functional units when available · Superscalar helps with this

Multicore

Smaller

Cheaper

Less power

CS61C L30 Parallel Computing (23)

Two CPUs, two caches, shared DRAM ... CPU0: CPU1 LW R2, 16(R0) CPU1: LW R2, 16(R0) Cache CPU1: Value SW R0,16(R0) 5 0 View of memory no longer "coherent". Loads of location 16 from CPU0 and Value CPU1 see different 5 0 values! Write-through caches Beamer, Summer 2007 © U

CS51C L30 Parallel Computing (27) Beamer, Summer 2007 © UCB

-	Peer Instruction		
1.	The majority of PS3's processing		ABC
	The majority of P55's processing		
	power comes from the Cell processor	11:	
	power comes from the Cell processor	2:	FFT
2.	power comes from the Cell processor A computer that has max utilization	1: 2: 3:	FFT
2.	power comes from the Cell processor A computer that has max utilization can get more done multithreaded	1: 2: 3: 4:	FFT FTF FTT
2.	A computer that has max utilization can get more done multithreaded	1: 2: 3: 4: 5:	FFT FTF FTT TFF
2. 3.	A computer that has max utilization can get more done multithreaded Current multicore techniques can	1: 2: 3: 4: 5: 6: 7:	FFT FTF FTT TFF TFT TTF
2. 3.	A computer that has max utilization can get more done multithreaded Current multicore techniques can scale well to many (32+) cores	1: 2: 3: 4: 5: 6: 7: 8:	FFT FTF FTT TFF TFT TTF TTT

Summary

- Superscalar: More functional units
- Multithread: Multiple threads executing on same CPU
- Multicore: Multiple CPU's on the same die
- The gains from all these parallel hardware techniques relies heavily on the programmer being able to map their task well to multiple threads
- Hit up CS150, CS152, CS162, 194-3, 198-5 and wikipedia for more info

mer 2007 © UCB