inst.eecs.berkeley.edu/~cs61c **CS61C : Machine Structures**

Lecture #31 Summary & Goodbye

Scott Beamer, Instructor

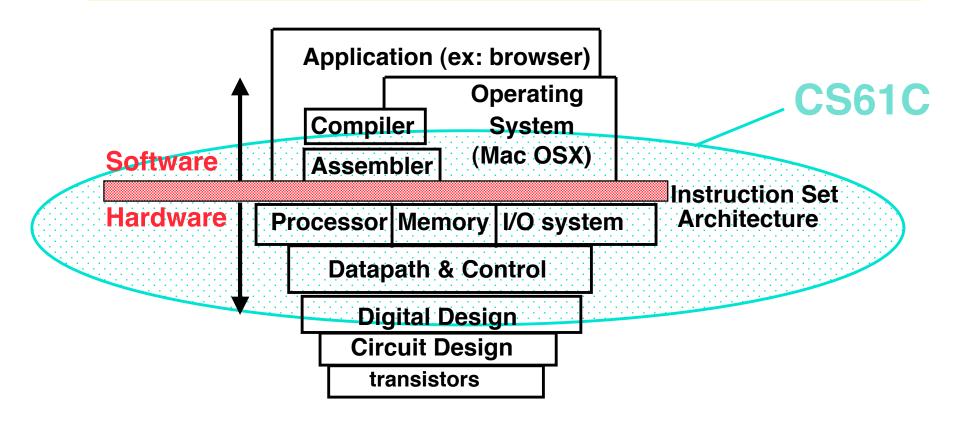
Cityware Research Project Connects Bluetooth Users on Facebook

www.bbc.co.uk Beamer, Summer 2007 © UCB

Review

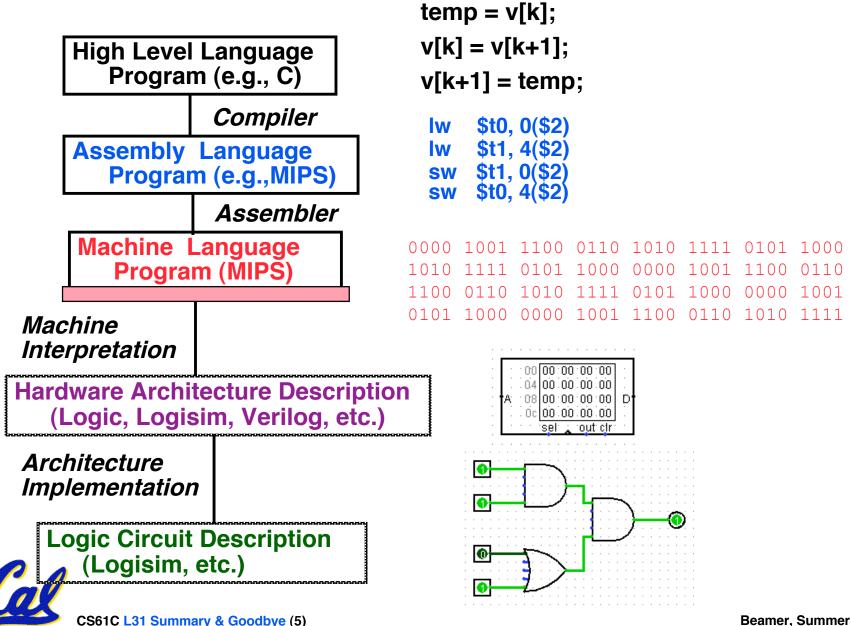
Parallelism

- Above the line (software, many machines) and below the line (hardware, multiple cores) both critical for computing's future.
- Hard to write code that fully takes advantage of all available resources to maximize performance and get fully Nx speedup.
- Distributed and Parallel computing
 - Synchronization hard, APIs help (MapReduce)
- Hardware Parallelism
 - Cache coherence makes it difficult to scale!
 - Manycore, not <u>multicore</u>!
- Berkeley EECS taking initative to make ~1000 core HW, put in researchers hands!


CS61C: So what's in it for me? (1st lecture)

Learn some of the big ideas in CS & engineering:

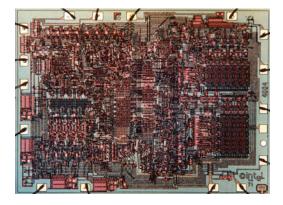
- 5 Classic components of a Computer
- Principle of abstraction, systems built as layers
- Data can be anything (integers, floating point, characters): a program determines what it is
- Stored program concept: instructions just data
- Compilation v. interpretation thru system layers
- Principle of Locality, exploited via a memory hierarchy (cache)
- Greater performance by exploiting parallelism (pipelining, superscalar, MapReduce, multi-..)

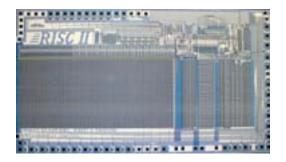

What are "Machine Structures"?

Coordination of many *levels (layers) of <u>abstraction</u>*

61C Levels of Representation

Beamer, Summer 2007 © UCB




Conventional Wisdom (CW) in Comp Arch

- Old CW: Power free, Transistors expensive
- New CW: Power expensive, Transistors free
 - Can put more on chip than can afford to turn on
- Old CW: Chips reliable internally, errors at pins
- New CW: \leq 45 nm \Rightarrow high error rates
- Old CW: CPU manufacturers minds closed
- New CW: Power wall + Memory gap = Brick wall
 - New idea receptive environment
- Old CW: Uniprocessor performance 2X / 1.5 yrs
- New CW: 2X CPUs per socket / ~ 2 to 3 years
 - More simpler processors more power efficient

Massively Parallel Socket

- Processor = new transistor?
 - Does it only help power/cost/performance?
- Intel 4004 (1971): 4-bit processor, 2312 transistors, 0.4 MHz, 10 μm PMOS, 11 mm² chip
- RISC II (1983): 32-bit, 5 stage pipeline, 40,760 transistors, 3 MHz, 3 µm NMOS, 60 mm² chip
 - 4004 shrinks to ~ 1 mm² at 3 micron
- 125 mm² chip, 65 nm CMOS = 2312 RISC IIs + Icache + Dcache
 - RISC II shrinks to ~ 0.02 mm² at 65 nm
 - Caches via DRAM or 1 transistor SRAM (www.t-ram.com)?
 - Proximity Communication at > 1 TB/s ?
 - Ivan Sutherland @ Sun spending time in Berkeley!

20th vs. 21st Century IT Targets

- 20th Century Measure of Success
 - Performance (peak vs. delivered)
 - Cost (purchase cost vs. ownership cost, power)
- 21st Century Measure of Success? "SPUR"
 - Security
 - Privacy
 - Usability
 - Reliability
- Massive parallelism greater chance (this time) if
 - Measure of success is SPUR vs. only cost-perf
 - Uniprocessor performance improvement decelerates

Other Implications

- Need to revisit chronic unsolved problem
 - Parallel programming!!
- Implications for applications:
 - Computing power >>> CDC6600, Cray XMP (choose your favorite) on an economical die inside your watch, cell phone or PDA
 - On your body health monitoring
 - Google + library of congress on your PDA
- As devices continue to shrink...
 - The need for great HCI critical as ever!

Regrade requests due TODAY at 7

Only for assignments after HW2

Only for grading mistakes

Final Exam <u>Only</u> bring pen{,cil}s, two 8.5"x11" <u>handwritten</u> sheets + green. Leave backpacks, books, calculators, cells & pagers home! Everyone must take ALL of the final!

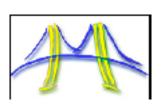
Join Us...

- If you did well in CS3 or 61{A,B,C}
 (A- or above) and want to be on staff?
 - Usual path: Lab assistant \Rightarrow Reader \Rightarrow TA
 - Contact Jenny Jones in 395 Soda before first week of semester for LA signup...
 - Reader/TA forms: www.cs/~juliea/
 - I (Dan) strongly encourage anyone who gets an A- or above in the class to follow this path...
 - It will help you internalize the material
 - Help fellow students, (and get paid for it)

Taking advantage of Cal Opportunities

- Why are we the #2 Univ in the WORLD? So says the 2004 ranking from the "Times Higher Education Supplement"
 - Research, research, research!
 - Whether you want to go to grad school or industry, you need someone to vouch for you! (as is the case with the Mob)
- Techniques
 - Find out what you like, do lots of web research (read published papers), hit OH of Prof, show enthusiasm & initiative
- •research.berkeley.edu/

www.eecs.berkeley.edu/Research/


Some Current Research

- RADLab (Reliable Adaptive Distributed)
 - Looking at datacenter architectures
- RAMP (Research Accelerator for Multiple Processors)
 - Use FPGA's to get many cores
 - Picture on right is 1008 cores in 1 rack
- Berkeley View
 - Vision for future of parallel

Upper Div's that Build on CS61C

- CS150 Design Techniques for SDS
- CS152 Computer Architecture
- CS162 Operating Systems
- CS164 Prog. Lang. & Compilers
- CS194-3 Intro to Computer Systems
- CS198-5 Networked Computing
- EE122 Networking

Penultimate slide: Thanks to the staff!

- TAs
 - Valerie Ishida
 - Clark Leung

- Readers
 - Michael Shuh
 - Abhishek Karwa

- Thanks to all the past CS61C Instructors, who have:
 - Trained myself and the staff
 - Made these notes and other course material

The Future for Future Cal Alumni

- What's The Future?
- New Millennium
 - Wireless, Nanotechnology, Quantum Computing, 10 M "volunteer" CPUs, the Parallel revolution...
 - Rapid Changes in Technology
 - World's ... Best Education
 - Never Give Up!

"The best way to predict the future is to invent it" – Alan Kay

CS61C L31 Summary & Goodbye (16)