New-School Machine Structures
(It's a bit more complicated!)

- Parallel Requests
 Assigned to computer
 e.g., Search "Katz"
- Parallel Threads
 Assigned to core
 e.g., Lookup, Ads
- Parallel Instructions
 >1 instruction @ one time
 e.g., 5 pipelined instructions
- Parallel Data
 >1 data item @ one time
 e.g., Add of 4 pairs of words
- Hardware descriptions
 All gates @ one time

Review: Direct Mapped Cache Layout

- 8 bit address space, 32 byte cache with 8 byte (2 word) blocks.
- Offset – 3 bits, Index – 2 bits, Tag – 3 bits

<table>
<thead>
<tr>
<th>Offset</th>
<th>Index</th>
<th>Tag</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>00</td>
<td>001</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>01</td>
<td>001</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>001</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>001</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
</tr>
</tbody>
</table>

- Remember, MIPS operates with words (4 bytes), so the only offsets we'll see in a MIPS system are multiples of 4. Entire words will be transferred to and from the CPU.

Handling Cache Misses
(Single Word Blocks)

- Read misses (I$ and D$)
 - Stall execution, fetch the block from the next level in the memory hierarchy, install it in the cache, send requested word to processor, and then let execution resume
- Write misses (D$ only)
 - Write allocate: Stall execution, fetch the block from next level in the memory hierarchy, install it in cache, write the word from processor to cache, also update memory, then let execution resume
 - No-write allocate: skip the cache write and just write the word to memory

Cache-Memory Consistency? (1/2)

- Need to make sure cache and memory are consistent (know about all updates)
 1) Write-Through Policy: write cache and write through the cache to memory
 - Every write eventually gets to memory
 - Too slow, so include Write Buffer to allow processor to continue once data in Buffer, Buffer updates memory in parallel to processor
Cache-Memory Consistency? (2/2)

• Need to make sure cache and memory are consistent (know about all updates)

2) Write-Back Policy: write only to cache and then write cache block back to memory when evict block from cache
 – Writes collected in cache, only single write to memory per block
 – Include bit to see if wrote to block or not, and then only write back if bit is set
 • Called “Dirty” bit (writing makes it “dirty”)

Recall: Average Memory Access Time (AMAT)

• Average Memory Access Time (AMAT) is the average to access memory considering both hits and misses

AMAT = Time for a hit + Miss rate x Miss penalty

• How reduce Miss Penalty?

Multiple Cache Levels

• With advancing technology, have more room on die for bigger L1 caches and for second level cache – normally a unified L2 cache (i.e., it holds both instructions and data,) and in some cases even a unified L3 cache

• New AMAT Calculation:

AMAT = L1 Hit Time + L1 Miss Rate * L1 Miss Penalty
L1 Miss Penalty = L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

and so forth (final miss penalty is Main Memory access time)

New AMAT Example

• 1 cycle L1 Hit Time, 2% L1 Miss Rate, 5 cycle L2 Hit Time, 5% L2 Miss Rate.
• 100 cycle Main Memory access time
• No L2 Cache: AMAT = 1 + .02*100 = 3
• With L2 Cache: AMAT = 1 + .02*(5 + .05*100) = 1.2!
Local vs. Global Miss Rates

- **Local miss rate** – the fraction of references to one level of a cache that miss
- Local Miss rate $L2 = L2$ Misses / $L1$ Misses
- **Global miss rate** – the fraction of references that miss out of all accesses in system.
 - $L2$ local miss rate >> than the global miss rate
 - Global Miss rate = $L2$ Misses / Total Accesses
 - $L2$ Misses / $L1$ Misses x $L1$ Misses / Total Accesses
 - Local Miss rate $L2$ x Local Miss rate $L1$
- AMAT Calculation used Local Miss Rate.

Memory Hierarchy with Two Cache Levels
- For every 1000 CPU to memory references
 - 40 will miss in $L1$; what is the miss rate?
 - 20 will miss in $L2$; what is the miss rate?
 - Global vs. local miss rate?

CPI_{stalls} Calculation

- Assume
 - CPI_{ideal} of 2
 - 100 cycle miss penalty to main memory
 - 25 cycle miss penalty to Unified $L2$
 - 36% of instructions are load/stores
 - 2% $L1$ miss rate; 4% $L1$ miss rate
 - 0.5% global U(nified)$L2$ miss rate

 - CPI_{total} = 2 + $1x.02\times25 + .36\times.04\times25$
 - $1x.005\times100 + .36\times.005\times100$
 - = 3.54 (vs. 5.44 with no L2$)

Design Considerations

- Different design considerations for $L1$ and $L2$
 - $L1$ focuses on fast access: minimize hit time to achieve shorter clock cycle, e.g., smaller S
 - $L2$, $L3$ focus on low miss rate: reduce penalty of long main memory access times: e.g., Larger S with larger block sizes/higher levels of associativity

 - Miss penalty of $L1$ is significantly reduced by presence of $L2$, so can be smaller/faster even with higher miss rate
 - For the $L2$, fast hit time is less important than low miss rate
 - $L2$ hit time determines $L1$'s miss penalty
 - $L2$ local miss rate >> than the global miss rate

Agenda

- Cache Reads and Writes, Consistency
- More Cache Performance
- Administrivia
- Set Associative Caches
- Break
- Set Associative Caches (Cont'd)

Administrivia

- Midterm
 - Friday 7/15, 9am-12pm, 2050 VLSB
 - How to study:
 - Studying in groups can help.
 - Take old exams for practice (link at top of main webpage)
 - Look at lectures, section notes, projects, hw, labs, etc.
 - Will cover up to today's material.

- Mid-Session Survey
 - Short survey to complete as part of Lab 7.
 - Let us know how we're doing, and what we can do to improve!
Agenda

- Cache Reads and Writes, Consistency
- More Cache Performance
- Administrivia
- Set Associative Caches
- Break
- Set Associative Caches (Cont’d)

Sources of Cache Misses: The 3Cs

- Compulsory (cold start or process migration, 1st reference):
 - First access to block impossible to avoid; small effect for long running programs
 - Solution: increase block size (increases miss penalty; very large blocks could increase miss rate)
- Capacity:
 - Cache cannot contain all blocks accessed by the program
 - Solution: increase cache size (may increase access time)
- Conflict (collision):
 - Multiple memory locations mapped to the same cache location
 - Solution 1: increase cache size
 - Solution 2: increase associativity (may increase access time)

Reducing Cache Misses

- Allow more flexible block placement in cache
- Direct mapped S: memory block maps to exactly one cache block
- Fully associative S: allow a memory block to be mapped to any cache block
- Compromise: divide S into sets, each of which consists of n “ways” (n-way set associative) to place memory block
 - Memory block maps to unique set determined by index field and is placed in any of the n-ways of that set
 - Calculation: (block address) modulo (# sets in the cache)

Alternative Block Placement Schemes

- DM placement:
 - mem block 12 in 8 block cache: only one cache block where mem block 12 can be found
 - (12 modulo 8) = 4
- SA placement:
 - Four sets x 2-ways (8 cache blocks), memory block 12 in set (12 mod 4) = 0; either element of the set
- FA placement:
 - mem block 12 can appear in any cache blocks

Example: 4-Word Direct-Mapped S

Worst-Case Reference String

- Consider the sequence of memory accesses
 - Start with an empty cache - all blocks initially marked as not valid
 - 8 requests, 8 misses
 - Ping pong effect due to conflict misses - two memory locations that map into the same cache block

Example: 2-Way Set Associative S

(4 words = 2 sets x 2 ways per set)

- Main Memory:
 - One word blocks
 - Two low order bits define the byte in the word (320 words)
 - Q: How do we find it?
 - Use next 1 low order memory address bit to determine which cache set (i.e., modulo the number of sets in the cache)

Example:

<table>
<thead>
<tr>
<th>Cache</th>
<th>Main Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set</td>
<td>Tag</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Q: Is it there?

Compare all the cache tags in the set to the high order 3 memory address bits to tell if the memory block is in the cache
Example: 4-Word 2-Way SA $ Same Reference String

- Consider the sequence of memory accesses 0 4 0 4 0 4 0 4
- Start with an empty cache - all blocks initially marked as not valid.

<table>
<thead>
<tr>
<th>0 miss</th>
<th>4 miss</th>
<th>0 hit</th>
<th>4 hit</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 Mem(0)</td>
<td>000 Mem(0)</td>
<td>000 Mem(0)</td>
<td>000 Mem(0)</td>
</tr>
<tr>
<td>010 Mem(4)</td>
<td>010 Mem(4)</td>
<td>010 Mem(4)</td>
<td>010 Mem(4)</td>
</tr>
</tbody>
</table>

- 8 requests, 2 misses
- Solves the ping pong effect in a direct mapped cache due to conflict misses since now two memory locations that map into the same cache set can co-exist!

Example: Eight-Block Cache with Different Organizations

- Total size of $ in blocks is equal to number of sets x associativity. For fixed $ size, increasing associativity decreases number of sets while increasing number of elements per set. With eight blocks, an 8-way set-associative $ is same as a fully associative $.

Four-Way Set-Associative Cache

- $^4 = 256$ sets each with four ways (each with one block)
- 32 bit address space, 32KB 4-way set associative cache with 8 word blocks. What is the TIO breakdown?

Peer Instruction

- 32 bit address space, 32KB 4-way set associative cache with 8 word blocks. What is the TIO breakdown?

Peer Instruction

- 32 bit address space, 32KB 4-way set associative cache with 8 word blocks. What is the TIO breakdown?

Agenda

- Cache Reads and Writes, Consistency
- More Cache Performance
- Administrivia
- Set Associative Caches
- Break
- Set Associative Caches (Cont’d)
Agenda

- Cache Reads and Writes, Consistency
- More Cache Performance
- Administivia
- Set Associative Caches
- Break
- Set Associative Caches (Cont’d)

Range of Set-Associative Caches

- For a fixed-size cache, each increase by a factor of two in associativity doubles the number of blocks per set (i.e., the number or ways) and halves the number of sets – decreases the size of the index by 1 bit and increases the size of the tag by 1 bit

Costs of Set-Associative Caches

- When miss occurs, which way’s block selected for replacement?
 - Least Recently Used (LRU): one that has been unused the longest
 - Must track when each way’s block was used relative to other blocks in the set
 - For 2-way SA S, one bit per set → set to 1 when a block is referenced; reset the other way's bit (i.e., "last used")
 - N-way set-associative cache costs
 - N comparators for tag comparisons
 - Must choose appropriate set (multiplexer) before data is available

Benefits of Set-Associative Caches

- Choice of DM S or SA S depends on the cost of a miss versus the cost of implementation

Cache Block Replacement Policies

- Random Replacement
 - Hardware randomly selects a cache item and throw it out
- Least Recently Used
 - Hardware keeps track of access history
 - Replace the entry that has not been used for the longest time

Example of a Simple "Pseudo" LRU Implementation

- Assume 64 Fully Associative entries in a set.
- Hardware replacement pointer points to one cache entry
- Whenever access is made to the entry the pointer points to:
 - Move the pointer to the next entry
 - Otherwise: do not move the pointer

How to Calculate 3C’s using Cache Simulator

1. Compulsory: set cache size to infinity and fully associative, and count number of misses
2. Capacity: Change cache size from infinity, usually in powers of 2, and count misses for each reduction in size
 - 16 MB, 8 MB, 4 MB, ..., 128 KB, 64 KB, 16 KB
3. Conflict: Change from fully associative to n-way set associative while counting misses
 - Fully associative, 16-way, 8-way, 4-way, 2-way, 1-way
3Cs Revisted

• Three sources of misses (SPEC2000 integer and floating-point benchmarks)
 – Compulsory misses 0.006%, not visible
 – Capacity misses, function of cache size
 – Conflict portion depends on associativity and cache size

Improving Cache Performance: Summary

1. Reduce the time to hit in the cache
 – Smaller cache
 – 1 word blocks (no multiplexor/selector to pick word)
2. Reduce the miss rate
 – Bigger cache
 – Larger blocks (16 to 64 bytes typical)
 – (Later in semester: More flexible placement by increasing associativity)

Improving Cache Performance: Summary

3. Reduce the miss penalty
 – Smaller blocks
 – Use multiple cache levels
 • L2 cache not tied to processor clock rate
 – Use a write buffer to hold dirty blocks being replaced so don’t have to wait for the write to complete before reading
 – Check write buffer on read miss – may get lucky
 – Faster backing store/improved memory bandwidth
 • (Later in lecture)

The Cache Design Space

• Several interacting dimensions
 – Cache size
 – Block size
 – Write-through vs. write-back
 – Write allocation
 – Later Associativity
 – Replacement policy
• Optimal choice is a compromise
 – Depends on access characteristics
 • Workload
 • Use (L1-cache, D-cache)
 – Depends on technology / cost
 – Simplicity often wins

Intel Nehalem Die Photo

• 4 cores, 32KB I$/32:KB D$, 512KB L2$
• Share one 8-MB L3$
Summary

- Multi-level caches - Reduce Cache Miss Penalty
 - Optimize first level to be fast!
 - Optimize 2nd and 3rd levels to minimize the memory access penalty
- Set-associativity - Reduce Cache Miss Rate
 - Memory block maps into more than 1 cache block
 - N-way: n possible places in cache to hold a memory block
- Lots and lots of cache parameters!
 - Write-back vs. write through, write allocation, block size, cache size, associativity, etc.

Bonus slides

- Note: These slides will be very useful for understanding lab 7 and especially project 2!
- The slides will appear in the order they would have in the normal presentation

Performance Programming: Adjust software accesses to improve miss rate

- Now that understand how caches work, can revise program to improve cache utilization
 - Cache size
 - Block size
 - Multiple levels

Performance of Loops and Arrays

- Array performance often limited by memory speed
- OK if access memory different order as long as get correct result
- Goal: Increase performance by minimizing traffic from cache to memory
 - That is, reduce Miss rate by getting better reuse of data already in cache
- One approach called Cache Blocking:
 "shrink" problem by performing multiple iterations within smaller cache blocks
- Use Matrix Multiply as example: Next Lab and Project 3

Matrix Multiplication

\[c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \]

Simple Matrix Multiply - www.youtube.com/watch?v=l0LTcDlhxc
100 x 100 Matrix, Cache 1000 blocks, 1 word/block
The simplest algorithm

Assumption: the matrices are stored as 2-D NxN arrays

```c
for (i=0; i<N; i++)
  for (j=0; j<N; j++)
    for (k=0; k<N; k++)
      c[i][j] += a[i][k] * b[k][j];
```

Advantage: code simplicity
Disadvantage: Marches through memory and caches

Note on Matrix in Memory

- A matrix is a 2-D array of elements, but memory addresses are “1-D”
- Conventions for matrix layout
 - by column, or “column major” (Fortran default); A(i,j) at A+i+j*n
 - by row, or “row major” (C default) A(i,j) at A+i*n+j

Improving reuse via Blocking:

1st “Naive” Matrix Multiply

(Implements C = C + A*B)

```c
for i = 1 to n
  (read row of A into cache)
  for j = 1 to n
    (read c(i,j) into cache)
    for k = 1 to n
      (read column j of B into cache)
      c(i,j) = c(i,j) + a(i,k) * b(k,j)
```

Linear Algebra to the Rescue!

- Instead of Multiplying two, say, 6x6 matrices

```c
A = \[\begin{bmatrix}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{bmatrix}\]
B = \[\begin{bmatrix}
B_{11} & B_{12} & B_{13} & B_{14} \\
B_{21} & B_{22} & B_{23} & B_{24} \\
B_{31} & B_{32} & B_{33} & B_{34} \\
B_{41} & B_{42} & B_{43} & B_{44}
\end{bmatrix}\]
```

- Thus, can get same result as multiplication of a set of submatrices

Blocked Matrix Multiply

Consider A, B, C to be N-by-N matrices of b-by-b subblocks where b=n/N is called the block size

```c
for i = 1 to N
  (read block C(i,i) into cache)
  for j = 1 to N
    (read block A(i,j) into cache)
    for k = 1 to N
      (read block B(k,k) into cache)
      c(i,j) = c(i,j) + A(i,k) * B(k,j)  \text{(do a matrix multiply on blocks)}
      (write block C(i,j) back to main memory)
```

Another View of “Blocked” Matrix Multiplication

Consider matrices C, A, B with block sizes

```
C = \[\begin{bmatrix}
C_{11} & C_{12} & C_{13} & C_{14} \\
C_{21} & C_{22} & C_{23} & C_{24} \\
C_{31} & C_{32} & C_{33} & C_{34} \\
C_{41} & C_{42} & C_{43} & C_{44}
\end{bmatrix}\]
A = \[\begin{bmatrix}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}\end{bmatrix}\]
B = \[\begin{bmatrix}
B_{11} & B_{12} & B_{13} & B_{14} \\
B_{21} & B_{22} & B_{23} & B_{24} \\
B_{31} & B_{32} & B_{33} & B_{34} \\
B_{41} & B_{42} & B_{43} & B_{44}\end{bmatrix}\]
```

```
C_{ij} = C_{ij} + A_{ik} * B_{kj} \text{ for } k = 1 \text{ to } N \text{ and } i = 1 \text{ to } N
```

C_{22} = A_{12}B_{12} + A_{22}B_{22} + A_{32}B_{32} + A_{42}B_{42} = \sum_{k=1}^{N} A_{2k} * B_{k2}

- Main Point: each multiplication operates on small “block” matrices, whose size may be chosen so that they fit in the cache.
 Blocked Algorithm

- The blocked version of the i-j-k algorithm is written simply as (A,B,C are submatrices of a, b, c)

```
for (i=0;i<N/r;i++)
  for (j=0;j<N/r;j++)
    for (k=0;k<N/r;k++)
      C[i][j] += A[i][k]*B[k][j]
```

- \(r \times r \) matrix addition
- \(r \times r \) matrix multiplication
- \(r = \) block (sub-matrix) size (Assume r divides N)
- \(X[i][j] \) = a sub-matrix of X, defined by block row i and block column j

 Maximum Block Size

- The blocking optimization works only if the blocks fit in cache.
- That is, 3 blocks of size \(r \times r \) must fit in memory (for A, B, and C)
- \(M = \) size of cache (in elements/words)
- We must have: \(3r^2 \approx M \), or \(r \approx \sqrt{M/3} \)
- Ratio of cache misses blocked vs. unblocked up to \(\approx \sqrt{M} \)

1x1 blocks: 1,020,000 misses = read A once, read B 100 times, read C once

30x30 blocks: 90,000 misses = read A and B four times, read C once

"Only" 11x vs 30X Matrix small enough that row of A in simple version fits completely in cache; other things