CS 61C: Great Ideas in Computer Architecture

Dependability: Parity, RAID, ECC

Instructor: Justin Hsia
Review of Last Lecture

• MapReduce Data Level Parallelism
 – Framework to divide up data to be processed in parallel
 – Mapper outputs intermediate (key, value) pairs
 – Optional Combiner in-between for better load balancing
 – Reducer “combines” intermediate values with same key
 – Handles worker failure and does redundant execution
Agenda

• Dependability
• Administrivia
• RAID
• Error Correcting Codes
Six Great Ideas in Computer Architecture

1. Layers of Representation/Interpretation
2. Technology Trends
3. Principle of Locality/Memory Hierarchy
4. Parallelism
5. Performance Measurement & Improvement
6. Dependability via Redundancy
Great Idea #6: Dependability via Redundancy

• Redundancy so that a failing piece doesn’t make the whole system fail

2 of 3 agree

FAIL!
Great Idea #6: Dependability via Redundancy

• Applies to everything from datacenters to memory
 – Redundant datacenters so that can lose 1 datacenter but Internet service stays online
 – Redundant routes so can lose nodes but Internet doesn’t fail
 – Redundant disks so that can lose 1 disk but not lose data (Redundant Arrays of Independent Disks/RAID)
 – Redundant memory bits of so that can lose 1 bit but no data (Error Correcting Code/ECC Memory)
Dependability

- **Fault**: failure of a component
 - May or may not lead to **system failure**
 - Applies to *any* part of the system
Dependability Measures

- **Reliability**: Mean Time To Failure (MTTF)
- **Service interruption**: Mean Time To Repair (MTTR)
- Mean Time Between Failures (MTBF)
 - MTBF = MTTR + MTTF
- **Availability** = MTTF / (MTTF + MTTR) = MTTF / MTBF
- Improving Availability
 - Increase MTTF: more reliable HW/SW + fault tolerance
 - Reduce MTTR: improved tools and processes for diagnosis and repair
Reliability Measures

1) MTTF, MTBF measured in hours/failure
 - e.g. average MTTF is 100,000 hr/failure

2) Annualized Failure Rate (AFR)
 - Average rate of failures per year (%)
 - \[
 AFR = \left(\frac{\text{Disks}}{\text{MTTF}} \times 8760 \frac{\text{hr}}{\text{yr}} \right) \times \frac{1}{\text{Disks}} = \frac{8760 \text{ hr/yr}}{\text{MTTF}}
 \]
 - Total disk failures/yr
Availability Measures

• Availability = MTTF / (MTTF + MTTR) usually written as a percentage (%)

• Want high availability, so categorize by “number of 9s of availability per year”
 – 1 nine: 90% => 36 days of repair/year
 – 2 nines: 99% => 3.6 days of repair/year
 – 3 nines: 99.9% => 526 min of repair/year
 – 4 nines: 99.99% => 53 min of repair/year
 – 5 nines: 99.999% => 5 min of repair/year
Dependability Example

• 1000 disks with MTTF = 100,000 hr and MTTR = 100 hr
 – MTBF = MTTR + MTTF = 100,100 hr
 – Availability = MTTF/MTBF = 0.9990 = 99.9%
 • 3 nines of availability!
 – AFR = 8760/MTTF = 0.0876 = 8.76%
 • Faster repair to get 4 nines of availability?
 – 0.0001×MTTF = 0.9999×MTTR
 – MTTR = 10.001 hr
Dependability Design Principle

• No single points of failure
 – “Chain is only as strong as its weakest link”

• Dependability Corollary of Amdahl’s Law
 – Doesn’t matter how dependable you make one portion of system
 – Dependability limited by part you do not improve
Question: There’s a hardware glitch in our system that makes the Mean Time To Failure (MTTF) *decrease*. Are the following statements TRUE or FALSE?

1) Our system’s Availability will *increase*.

2) Our system’s Annualized Failure Rate (AFR) will *increase*.

1 2

(A) F F
(B) F T
(C) T F
(D) T T
Agenda

• Dependability
• Administrivia
• RAID
• Error Correcting Codes
Administrivia

• Project 3 (individual) due Sun 8/11
• Final Review – Tue 8/13, 7-10pm in 10 Evans
• Final – Fri 8/16, 9am-12pm, 155 Dwinelle
 – 2nd half material + self-modifying MIPS
 – MIPS Green Sheet provided again
 – Two two-sided handwritten cheat sheets
 • Can re-use your midterm cheat sheet!
• “Dead Week” – WTh 8/14-15
• Optional Lab 13 (EC) due anytime next week
Agenda

• Dependability
• Administrivia
• RAID
• Error Correcting Codes
Arrays of Small Disks

Can smaller disks be used to close the gap in performance between disks and CPUs?

Conventional: 4 disk types

Disk Array: 1 disk type
Replace Large Disks with Large Number of Small Disks!
(Data from 1988 disks)

<table>
<thead>
<tr>
<th></th>
<th>IBM 3390K</th>
<th>IBM 3.5" 0061</th>
<th>x72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>20 GBytes</td>
<td>320 MBytes</td>
<td>23 GBytes</td>
</tr>
<tr>
<td>Volume</td>
<td>97 cu. ft.</td>
<td>0.1 cu. ft.</td>
<td>11 cu. ft.</td>
</tr>
<tr>
<td>Power</td>
<td>3 KW</td>
<td>11 W</td>
<td>1 KW</td>
</tr>
<tr>
<td>Data Rate</td>
<td>15 MB/s</td>
<td>1.5 MB/s</td>
<td>120 MB/s</td>
</tr>
<tr>
<td>I/O Rate</td>
<td>600 I/Os/s</td>
<td>55 I/Os/s</td>
<td>3900 IOs/s</td>
</tr>
<tr>
<td>MTTF</td>
<td>250 Khrs</td>
<td>50 Khrs</td>
<td>~700 Hrs</td>
</tr>
<tr>
<td>Cost</td>
<td>$250K</td>
<td>$2K</td>
<td>$150K</td>
</tr>
</tbody>
</table>

Disk Arrays have potential for large data and I/O rates, high MB/ft³, high MB/KW, *but what about reliability?*
RAID: Redundant Arrays of Inexpensive Disks

• Files are “striped” across multiple disks
 – Concurrent disk accesses improve throughput

• Redundancy yields high data availability
 – Service still provided to user, even if some components (disks) fail

• Contents reconstructed from data redundantly stored in the array
 – *Capacity penalty* to store redundant info
 – *Bandwidth penalty* to update redundant info
RAID 0: Data Striping

• “Stripe” data across all disks
 – Generally faster accesses (access disks in parallel)
 – No redundancy (really “AID”)
 – Bit-striping shown here, can do in larger chunks
RAID 1: Disk Mirroring

- Each disk is fully duplicated onto its “mirror”
 - Very high availability can be achieved
- Bandwidth sacrifice on write:
 - Logical write = two physical writes
 - Logical read = one physical read
- Most expensive solution: 100% capacity overhead
Parity Bit

• Describes whether a group of bits contains an even or odd number of 1’s
 – Define 1 = odd and 0 = even
 – Can use XOR to compute parity bit!

• Adding the parity bit to a group will always result in an even number of 1’s (“even parity”)
 – 100 Parity: 1, 101 Parity: 0

• If we know number of 1’s must be even, can we figure out what a single missing bit should be?
 – 10?11 → missing bit is 1
RAID 3: Parity Disk

- Logical data is byte-striped across disks.
- Parity disk P contains parity bytes of other disks.
- If any one disk fails, can use other disks to recover data!
 - We have to know which disk failed.
- Must update Parity data on EVERY write.
 - Logical write = min 2 to max N physical reads and writes.
 - \(\text{parity}_{\text{new}} = \text{data}_{\text{old}} \oplus \text{data}_{\text{new}} \oplus \text{parity}_{\text{old}} \)
Updating the Parity Data

- Examine small write in RAID 3 (1 byte)
 - 1 logical write = 2 physical reads + 2 physical writes
 - Same concept applies for later RAIDs, too

<table>
<thead>
<tr>
<th>(D'_0)</th>
<th>(D_0)</th>
<th>(P)</th>
<th>(P')</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

What if writing halfword (2 B)? Word (4 B)?
RAID 4: Higher I/O Rate

• Logical data is now block-striped across disks
• Parity disk P contains all parity blocks of other disks
• Because blocks are large, can handle small reads in parallel
 – Must be blocks in different disks
• Still must update Parity data on EVERY write
 – Logical write = min 2 to max N physical reads and writes
 – Performs poorly on small writes
RAID 4: Higher I/O Rate

Example: small read D0 & D5, large write D12-D15

Increasing Logical Disk Address

Stripe

Disk Columns

Increasing

Insides of 5 disks
Inspiration for RAID 5

• When writing to a disk, need to update Parity
• Small writes are bottlenecked by Parity Disk: Write to D0, D5 both also write to P disk
RAID 5: Interleaved Parity

Independent writes possible because of interleaved parity

Example: write to D0, D5 uses disks 0, 1, 3, 4
Agenda

• Dependability
• Administrivia
• RAID
• Error Correcting Codes
Error Detection/Correction Codes

• Memory systems generate errors (accidentally flipped-bits)
 – DRAMs store very little charge per bit
 – “Soft” errors occur occasionally when cells are struck by alpha particles or other environmental upsets
 – “Hard” errors occur when chips permanently fail
 – Problem gets worse as memories get denser and larger
Error Detection/Correction Codes

- Protect against errors with EDC/ECC
- Extra bits are added to each M-bit data chunk to produce an N-bit “code word”
 - Extra bits are a function of the data
 - Each data word value is mapped to a valid code word
 - Certain errors change valid code words to invalid ones (i.e. can tell something is wrong)
Detecting/Correcting Code Concept

Space of all possible bit patterns:

Error changes bit pattern to an invalid code word.

2^N patterns, but only 2^M are valid code words

- **Detection:** fails code word validity check
- **Correction:** can map to nearest valid code word
Hamming Distance

• Hamming distance = # of bit changes to get from one code word to another

• $p = 0\underline{110}11$, $q = 0\underline{011}11$, $H_{\text{dist}}(p,q) = 2$

• $p = 011011$, $q = 110001$, $H_{\text{dist}}(p,q) = 3$

• If all code words are valid, then $min H_{\text{dist}}$ between valid code words is 1
 — Change one bit, at another valid code word

Richard Hamming (1915-98)
Turing Award Winner
3-Bit Visualization Aid

• Want to be able to see Hamming distances
 – Show code words as nodes, Hdist of 1 as edges
• For 3 bits, show each bit in a different dimension:
Minimum Hamming Distance 2

Let 000 be valid

- If 1-bit error, is code word still valid?
 - No! So can detect

- If 1-bit error, know which code word we came from?
 - No! Equidistant, so cannot correct

Half the available code words are valid
Minimum Hamming Distance 3

• How many bit errors can we detect?
 – Two! Takes 3 errors to reach another valid code word

• If 1-bit error, know which code word we came from?
 – Yes!

Let 000 be valid

Nearest 000 (one 1)

Nearest 111 (one 0)

Only a quarter of the available code words are valid
Parity: Simple Error Detection Coding

- Add parity bit when writing block of data:

\[b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 p \]

- Check parity on block read:
 - Error if odd number of 1s
 - Valid otherwise

- Minimum Hamming distance of parity code is 2
- Parity of code word = 1 indicates an error occurred:
 - 2-bit errors not detected (nor any even # of errors)
 - Detects an odd # of errors
Parity Examples

1) Data 0101 0101
 - 4 ones, even parity now
 - Write to memory
 0101 0101 0
to *keep* parity even

2) Data 0101 0111
 - 5 ones, odd parity now
 - Write to memory:
 0101 0111 1
to *make* parity even

3) Read from memory
 0101 0101 0
 - 4 ones \rightarrow even parity, so
 no error

4) Read from memory
 1101 0101 0
 - 5 ones \rightarrow odd parity,
 so error
 - What if error in parity
 bit?
 - Can detect!
Get To Know Your Instructor
Agenda

• Dependability
• Administrivia
• RAID

• Error Correcting Codes (Cont.)
How to Correct 1-bit Error?

• **Recall:** Minimum distance for correction?
 – Three

• Richard Hamming came up with a mapping to allow Error Correction at min distance of 3
 – Called Hamming ECC for Error Correction Code
Hamming ECC (1/2)

- Use *extra parity bits* to allow the position identification of a single error
 - Interleave parity bits within bits of data to form code word
 - **Note:** Number bits starting at 1 from the left

1) Use *all* bit positions in the code word that are **powers of 2** for parity bits (1, 2, 4, 8, 16, ...)

2) **All other bit positions** are for the data bits (3, 5, 6, 7, 9, 10, ...)
3) Set each parity bit to create even parity for a **group** of the bits in the code word

– The **position** of each parity bit determines the group of bits that it checks

– Parity bit p checks every bit whose position number in binary has a 1 in the bit position corresponding to p

 • Bit 1 (0001_2) checks bits 1,3,5,7, ... ($XXX1_2$)
 • Bit 2 (0010_2) checks bits 2,3,6,7, ... ($XX1X_2$)
 • Bit 4 (0100_2) checks bits 4-7, 12-15, ... ($X1XX_2$)
 • Bit 8 (1000_2) checks bits 8-15, 24-31, ... ($1XXX_2$)
Hamming ECC Example (1/3)

• A byte of data: 10011010
• Create the code word, leaving spaces for the parity bits:

 _1__2_13__4_0_5_0_6_1_7__8_1_9_0_10_1_11_0_12
Hamming ECC Example (2/3)

• Calculate the parity bits:
 – Parity bit 1 group (1, 3, 5, 7, 9, 11):
 \[? _ 1 _ 0 0 1 _ 1 0 1 0 \rightarrow 0 \]
 – Parity bit 2 group (2, 3, 6, 7, 10, 11):
 \[0 \? 1 _ 0 0 1 _ 1 0 1 0 \rightarrow 1 \]
 – Parity bit 4 group (4, 5, 6, 7, 12):
 \[0 1 1 \? 0 0 1 _ 1 0 1 0 \rightarrow 1 \]
 – Parity bit 8 group (8, 9, 10, 11, 12):
 \[0 1 1 1 0 0 1 ? 1 0 1 0 \rightarrow 0 \]
Hamming ECC Example (3/3)

• Valid code word: \underline{011100101010}

• Recover original data: \underline{1 001 1010}

Suppose we see \underline{011100101011} instead – fix the error!

• Check each parity group
 – Parity bits 2 and 8 are incorrect
 – As 2+8=10, bit position 10 is the bad bit, so flip it!

• Corrected value: \underline{0111001010010}
Hamming ECC “Cost”

- Space overhead in single error correction code
 - Form $p + d$ bit code word, where $p = \#$ parity bits and $d = \#$ data bits

- Want the p parity bits to indicate either “no error” or 1-bit error in one of the $p + d$ places
 - Need $2^p \geq p + d + 1$, thus $p \geq \log_2(p + d + 1)$
 - For large d, p approaches $\log_2(d)$

- **Example:** $d = 8 \rightarrow p = \lfloor \log_2(p+8+1) \rfloor \rightarrow p = 4$
 - $d = 16 \rightarrow p = 5$; $d = 32 \rightarrow p = 6$; $d = 64 \rightarrow p = 7$
Hamming Single Error Correction, Double Error Detection (SEC/DED)

• Adding extra parity bit covering the entire SEC code word provides *double error detection* as well!

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\text{p}_1 & \text{p}_2 & \text{d}_1 & \text{p}_3 & \text{d}_2 & \text{d}_3 & \text{d}_4 & \text{p}_4
\end{array}
\]

• Let H be the position of the incorrect bit we would find from checking p_1, p_2, and p_3 (0 means no error) and let P be parity of complete code word

 – $H=0$ $P=0$, no error
 – $H\neq0$ $P=1$, correctable single error ($\text{p}_4=1 \rightarrow$ odd # errors)
 – $H\neq0$ $P=0$, double error detected ($\text{p}_4=0 \rightarrow$ even # errors)
 – $H=0$ $P=1$, an error occurred in p_4 bit, not in rest of word
SEC/DED: Hamming Distance 4

1-bit error (one 0)
Nearest 1111

2-bit error (two 0’s, two 1’s)
halfway between

1-bit error (one 1)
Nearest 0000
Modern Use of RAID and ECC (1/3)

• Typical modern code words in DRAM memory systems:
 – 64-bit data blocks (8 B) with 72-bit codes (9 B)
 – \(d = 64 \rightarrow p = 7, +1\) for DED

• What happened to RAID 2?
 – Bit-striping with extra disks just for ECC parity bits
 – Very expensive computationally and in terms of physical writes
 – ECC implemented in all current HDDs, so RAID 2 became obsolete (redundant, ironically)
Modern Use of RAID and ECC (2/3)

- RAID 6: Recovering from two disk failures!
 - RAID 5 with an extra disk’s amount of parity blocks (also interleaved)
 - Extra parity computation more complicated than Double Error Detection (not covered here)
 - When useful?
 - Operator replaces wrong disk during a failure
 - Disk bandwidth is growing more slowly than disk capacity, so MTTR a disk in a RAID system is increasing (increases the chances of a 2nd failure during repair)
Modern Use of RAID and ECC (3/3)

• Common failure mode is bursts of bit errors, not just 1 or 2
 – Network transmissions, disks, distributed storage
 – Contiguous sequence of bits in which first, last, or any number of intermediate bits are in error
 – Caused by impulse noise or by fading signal strength; effect is greater at higher data rates

• **Other tools:** cyclic redundancy check, Reed-Solomon, other linear codes
Summary

• Great Idea: Dependability via Redundancy
 – Reliability: MTTF & Annual Failure Rate
 – Availability: % uptime = MTTF/MTBF

• RAID: Redundant Arrays of Inexpensive Disks
 – Improve I/O rate while ensuring dependability

• Memory Errors:
 – Hamming distance 2: Parity for Single Error Detect
 – Hamming distance 3: Single Error Correction Code + encode bit position of error
 – Hamming distance 4: SEC/Double Error Detection