Discussion #3: MIPS Introduction
Written by Justin Hsia (6/28/2011)

Note: |do not want to spend much time here going over the details. That’s what your MIPS Green
Card (http://inst.eecs.berkeley.edu/~cs61c/resources/MIPS_Green_Sheet.pdf) is for. That card
has basically all the information you need on it, but it’s up to you to 1) figure out how to read it
properly and 2) know how to properly use that information.

Note: This set of discussion notes will focus on the assembly code side. We'll cover the machine
language portion of MIPS later.

MIPS Registers:

There are 32 registers. You should be noticing that this number comes up a lot. You can
reference each register either by its number or by its name (for example, Szero and SO are the same). |
group them by use below:

Szero: Useful everywhere! This little guy is pretty amazing and we will see the power
of zero in all sorts of situations below.

Sat, Sk0-Sk1: Reserved — do not use!

Sv0-$v1, $a0-$a3, Sra: These are all used in function calls. We will see the details in the next set of
discussion notes.

$fp, Ssp, Sgp: Pointers. Allow us to keep track of and access different parts of memory.

$50-$s7, $t0-5t9: Registers used for holding variables and performing calculations.

MIPS Instruction Set:

The core instruction set can be found on the left column of the first page of the MIPS Green
Card or P&H p.78. With the exception of the jumping instructions (and a few others), all of the
instructions take three arguments. The arguments can be classified as follows (the exact nomenclature
and abbreviations may vary slightly, but the gist is the same):

src — Source register. The contents of the register are read for use in the instruction.

dst — Destination register. Result of the instruction is stored here.

imm — Immediate (constant). You can write these integer values (can be negative) in decimal or
hex.

offset — Address offset (constant). It’s really just an imm, but used in the context of
modifying an address.

bAddr — Base address (register). Used for accessing memory.

brAddr — Branch address (named). Not actually a name. Gets converted into an instruction
offset based on where you define the branch name.

Learning the naming scheme for the instructions themselves is quite useful. Things like 1 =
immediate, u =unsigned, b =branch or byte, w =word, and jJ =jump will help you remember both
the purpose and syntax of each instruction.

MIPS Comments
Start with the ‘# symbol and encompass the rest of the line. You will see this often.

Common C to MIPS Conversions:

Learning to convert C code to MIPS takes a bit of practice, but it is more formulaic than you
might think. There is definitely some freedom in implementation, but in general we want to use fewer
instructions and fewer registers/less memory. In the following examples, example C statements will be
shown on the left and their MIPS equivalents will be shown on the right. | suggest keeping your MIPS
Green Card nearby as you work through these. First try doing the conversion on your own and then
compare against what’s shown on the right. There are multiple ways of doing certain statements.

Note: Remember that MIPS does not use the C variable names. It is up to you to keep track of where
you store your variables. In the following examples | will just use arbitrary registers, with a
preference for stored registers for named variables and temporary registers for intermediate
calculations.

Initialization/Assignment:

1) int x; 1) # Nothing to do!
2) int y = 5; 2) addi $sl1, $0, 5
3) z = y; 3) add $s2, $0, $sl

Pointer Arithmetic: (essentially the same for arrays)

Assume the following initializations have already taken place:
int *ptri = (int *)malloc(100*sizeof(int)); \\ ptri stored in $s0
char *ptrc = (char *)malloc(100*sizeof(char)); \\ ptrc stored in $sl

1) *ptrc = 5; 1) addi $tO, $0, 5 # constant
sw $t0, 0($sl)

2) *(ptrc + 4) = -20; 2) addi $t0, $0, -20 # constant
sw $t0, 4($sl)

3) *(ptri + 4) = 10; 3) addi $t0, $0, 10 # constant

addi $t1, $0, 4 # offset

sl $t1, $t1, 2 # int is 4 bytes
add $t1, $sO, $tl1 # address

sw $t0, 0($tl)

4) int x = *(ptri + 3); 4) addi $t0, $0, 3 # offset
sll $t0, $t0, 2 # int is 4 bytes

add $t0, $s0, $tO # address

Iw $t1, 0($t0) # x = $t1

5) int x = 2; 5) addi $t0, $0, 2 # x = $tO

int y = *(ptrc + x); add $t1, $sl1l, $tO0 # address

Ib $t2, 0($tl) #y = $t2

You are responsible for keep track of the size of your data! Offsets in MIPS are in bytes, so each
index of a char array moves the address by 1 whereas each index of an int array will typically move
the address by 4. To get proper address offset, you can either use the multi instruction or sl (only
works for powers of two).

The last example above (#5) is a little weird. Even the C code is “bad form” since you are
indirectly casting a char into an int (no loss of data, though, so C shouldn’t complain). ptrcis a char
pointer, so the pointer arithmetic uses bytes instead of words. Then the b instruction automatically
sign-extends your loaded value, giving you the proper int.

Check: Convince yourself that i*=pow(2,N), i << N,and sll $t0, $t0, N all accomplish the
same task, assuming that N is a non-negative integer, 1>0, and ignoring overflow cases.
Offsets are immediates, so unfortunately we can’t use the value of a register directly. That’s
why we store the bAddr+offset*sizeof(type) in another register (such as $t0) and then access
0($t0). If you are dealing with a constant offset, then you can directly write in the correct offset (in
example 2, we used 4 directly and in example 3, we could have replaced lines 2-5 with sw $tO,
16($s0)).

Control Flow - if & logical statements:

Hopefully the branch names If, Else, and Done used here are self-explanatory enough.
Depending exactly on your logical statement, different organizations will be better than others:

Here assume X in $s0, y in $sl1,and z in $s2 are all integers.

1) if(x == 5) 1 addi $t0, $0, 5
beq $s0, $tO0, IFf
else instructions go here
J Done
1f: # 1Ff Instructions go here
Done: # end of if

OR alternatively:

addi $t0, $0, 5

bne $s0, $tO, Else

1Ff Instructions go here

J Done
Else: # else instructions go here
Done: # end of if

2) if(y > 2) 2) slt $t0, $s2, $s1

beq $t0, $0, Else

1Ff Instructions go here

J Done
Else: # else instructions go here
Done: # end of if

3) if(z <= 5) 3) addi $t1, $0, 5

slt $t0, $t1, $s2

bne $t0, $0, Else

1Ff Instructions go here

J Done
Else: # else instructions go here
Done: # end of if

As demonstrated in example 1, you can always swap beq and bne aslong as you swap the
locations of the I¥ and Else branches (one is usually left unlabeled). With comparison operators
(>, >=, <, <=),you have to be a little more careful with how you apply slt and slti. MIPS only

has “set on less than” and no “set on less than or equal to”, so a statement like x >= 6 is done by
solving for x < 6 instead, which is the logical opposite.

Control Flow - loops:

Again, assume X in $s0, y in $sl,and z in $s2 are all integers.

1) for(x = 0; x < z; x++) { 1) add $s0, $0, $0
/* some code */ Loop: slt $t0, $s0, $s2
b beq $t0, $0, Done
for instructions
addi $s0, $s0, 1
J Loop
Done: # end of for
In general: In general:
for(<init>; <test>; <step>) { # <init> instruction(s)
/* some code */ Loop: # <test> instruction(s) and
} # branch to Done
for instructions
<step> instruction(s)
jJ Loop
Done: # end of for
2) while(y >= 4) { 2)
/* some code */ Loop: slti $t0, $si, 4
} beq $t0, $0, Done
while instructions
J Loop
Done: # end of while
3) do { 3)
/* some code */ Loop: # do-while instructions
} while(z '= y); bne $s2, $sl1, Loop
end of do-while

A do-while loop is simpler than a while loop, which is simpler than a for loop! Here the choice of
beq vs. bne is fixed, since you want the loop code to follow immediately.

Check: Convert the following to MIPS:
switch(x) {
case 1: x++; break;
case 2: y += X;
case 3: z = 4; break;
default: x = 0;

