1 Warehouse Scale Computing

1. **Amdahl’s Law**

 You are going to train the image classifier with 50,000 images on a WSC having more than 50,000 servers. You notice that 99% of the execution can be parallelized. What is the speedup?

 \[
 \frac{1}{0.01 + \frac{0.99}{50,000}} \approx \frac{1}{0.01} = 100
 \]

2. **Performance of a WSC**

<table>
<thead>
<tr>
<th>DRAM latency ((\mu)s)</th>
<th>Local</th>
<th>Rack</th>
<th>Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global hit rate</td>
<td>0.1</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>DRAM bandwidth (MiB/sec) ((\mu)s)</td>
<td>90%</td>
<td>9%</td>
<td>1%</td>
</tr>
<tr>
<td>Disk bandwidth (MiB/sec)</td>
<td>20,000</td>
<td>100</td>
<td>10</td>
</tr>
</tbody>
</table>

 1) Calculate the AMAT of this WSC. What is vital for WSC performance?

 \[
 \text{AMAT} = 0.9 \times 0.1 + 0.09 \times 100 + 0.01 \times 300 = 0.09 + 9 + 3 = 12.09 \text{\(\mu\)s}
 \]
 Locality of access within a server is vital for WSC performance

 2) How long does it take to transfer 1,000 MiB a) between disks within the server, and b) between DRAM within the rack? What can you conclude from this example?

 a) \(\frac{1,000}{200} = 5\) sec

 b) \(\frac{1,000}{100} = 10\) sec.

 Data transfer outside a single server is detrimental to WSC performance. Network switches are the bottlenecks

2 Map Reduce

Use pseudocode to write MapReduce functions necessary to solve the problems below. Also, make sure to fill out the correct data types. Some tips:

- The input to each MapReduce job is given by the signature of the `map()` function.
- The function `emit(key k, value v)` outputs the key-value pair `(k, v)`.
- The `for(var in list)` syntax can be used to iterate through `Iterables` or you can call the `hasNext()` and `next()` functions.
- Usable data types: `int`, `float`, `String`. You may also use lists and custom data types composed of the aforementioned types.
- The method `intersection(list1, list2)` returns a list that is the intersection of list1 and list2.
1. Given the student’s name and the course taken, output each student’s name and total GPA.

Declare any custom data types here:

CourseData:

- `int courseID`
- `float studentGrade` // a number from 0-4

<table>
<thead>
<tr>
<th>map(String student, CourseData value):</th>
<th>reduce(String key, Iterable<float> values):</th>
</tr>
</thead>
<tbody>
<tr>
<td>emit(student, value.studentGrade)</td>
<td>totalPts = 0</td>
</tr>
<tr>
<td></td>
<td>totalClasses = 0</td>
</tr>
<tr>
<td></td>
<td>for (grade in values):</td>
</tr>
<tr>
<td></td>
<td>totalPts += grade</td>
</tr>
<tr>
<td></td>
<td>totalClasses++</td>
</tr>
<tr>
<td></td>
<td>emit(key, totalPts / totalClasses)</td>
</tr>
</tbody>
</table>

2. Given a person’s unique int ID and a list of the IDs of their friends, compute the list of mutual friends between each pair of friends in a social network.

Declare any custom data types here:

FriendPair:

- `int friendOne`
- `int friendTwo`

<table>
<thead>
<tr>
<th>map(int personID, list<int> friendIDs):</th>
<th>reduce(FriendPair key, Iterable<list<int>> values):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mutualFriends =</td>
</tr>
<tr>
<td></td>
<td>intersection(values.next(), values.next())</td>
</tr>
<tr>
<td></td>
<td>emit(key, mutualFriends)</td>
</tr>
</tbody>
</table>

3. Given a set of coins and each coin’s owner, compute the number of coins of each denomination that a person has.

Declare any custom data types here:

CoinPair:

- `String person`
- `String coinType`

<table>
<thead>
<tr>
<th>map(String person, String coinType):</th>
<th>reduce(CoinPair key, Iterable< int > values):</th>
</tr>
</thead>
<tbody>
<tr>
<td>key = (person, coinType)</td>
<td>total = 0</td>
</tr>
<tr>
<td>emit(key, 1)</td>
<td>for (count in values):</td>
</tr>
<tr>
<td></td>
<td>total += count</td>
</tr>
<tr>
<td></td>
<td>emit(key, total)</td>
</tr>
</tbody>
</table>
4. Using the output of the first MapReduce, compute the amount of money each person has. The function
\texttt{valueOfCoin(String coinType)} returns a float corresponding to the dollar value of the coin.
Declare any custom data types here:

\textbf{CoinPair:}
\begin{itemize}
\item String person
\item String coinType
\end{itemize}

\begin{tabular}{|c|c|}
\hline
\textbf{map(CoinPair key, int amount):} & \textbf{reduce(String key, Iterable< float > values):} \\
\hline
\texttt{emit(coinPair.person, valueOfCoin(coinPair.coinType)*amount)} & \texttt{total = 0} \\
& \texttt{for (amount in values):} \\
& \hspace{1cm} \texttt{total += amount} \\
& \hspace{1cm} \texttt{emit(key, total)} \\
\hline
\end{tabular}

3 Spark

Useful terminology and functions:

- Resilient Distributed Datasets (RDD): primary abstraction of a distributed collection of items
- Transforms: RDD \rightarrow RDD

\begin{tabular}{|c|c|}
\hline
\textbf{map(func)} & Return a new RDD by passing each element
\hspace{1cm} of the source through a function \textit{func}. \\
\hline
\textbf{flatMap(func)} & Similar to map, but each input item can be mapped to 0 or more
\hspace{1cm} output items (so \textit{func} should return a Seq rather than a single item). \\
\hline
\textbf{reduceByKey(func)} & When called on a dataset of (K,V) pairs, returns a dataset
\hspace{1cm} of (K,V) pairs where the values for each key are aggregated using
\hspace{1cm} the given reduce function \textit{func}, which must be of type (V,V) \Rightarrow V. \\
\hline
\textbf{groupByKey(func)} & When called on a dataset of (K,V) pairs, returns a dataset of
\hspace{1cm} (K,V) pairs where V is a list of values that were grouped together
\hspace{1cm} because they were mapped to the same key. \\
\hline
\end{tabular}

- Actions: RDD \rightarrow Value

\textbf{reduce(func)} \hspace{1cm} Aggregate the elements of the dataset \textbf{regardless of keys} using a function \textit{func}

1) Implement Problem 1 of MapReduce with Spark

```python
# students: list((studentName, courseData))
studentsData = sc.parallelize(students)
out = studentsData.map(lambda (k, v): (k, (v.studentGrade, __1__)))

.reduceByKey(lambda v1, v2: (v1[0] + v2[0], v1[1] + v2[1]))
.map(lambda (k, v): (k, v[0] / v[1]))
```
2) Implement Problem 2 of MapReduce with Spark

```python
def genFriendPairAndValue(pID, fIDs):
    return [(pID, fID), fIDs] if pID < fID else (fID, pID) for fID in fIDs

def intersection(l1, l2):
    return [x for x in l1 if x in l2]

# persons: list((personID, list(friendID))
personsData = sc.parallelize(persons)

out = personsData.flatMap(lambda (k, v): genFriendPairAndValue(k, v))
    .reduceByKey(lambda v1, v2: intersection(v1, v2))
```

3) Implement Problem 3 of MapReduce with Spark

```python
# coinPairs: list((person, coinType))
coinData = sc.parallelize(coinPairs)

#(3.a) out: list(((person, coinType), count))
out1 = coinData.map(lambda (k1, k2): ((k1, k2), (k1, k2), 1))
    .reduceByKey(lambda v1, v2: v1 + v2)

#(3.b)
out2 = out1.map(lambda (k, v): (k[0], v * valueOfCoin(k[1])))
    .reduceByKey(lambda v1, v2: v1 + v2)
```