What is an Operating System

Andy Konwinski
CS61CL
Dec 2, 2009
Lecture 13
Today

- What is an operating system
- Dual mode operation: kernel vs. user mode
- Current trends and issues
What is an Operating System

• Resources
 – Textbooks I like:
What is an Operating System

• No single all encompassing definition
• Used to be an actual person, an “operator”
 – You were operator for your CAL16 processor
• General definition:
 – A layer of software that provides user programs with a simpler, cleaner, model of the computer and handles the messy job of managing the resources.
What is an Operating System

• Where the OS fits in

(modified version of fig 1-1, tanenbaum, pg2)
Part 1: Clean abstractions of HW

• Hardware is messy (e.g. assembly lang., interacting with a device)
• Application developers want useful high level abstractions
Example: File System

- Application level: *files*
- Hardware level: *controller, blocks*
- Operating system to manage the mapping between files and blocks, also protection.
Part 2: Resource manager

- Multiplex one set of hardware resources between apps/users
 - CPU/Memory/cache
 - I/O devices
 » Communication (network cards, hard drive)
 » Human I/O (mouse, keyboard, monitor, printer)
Part 2b: fault/performance isolation

- Resources should be shared **fairly**
- Isolation between users (processes)
 - Fault isolation: when one program crashes, it should not cause others to crash
 - Performance isolation: e.g. if spotlight runs, my Quicktime movie shouldn’t skip.
Example: virtual memory

• Each application sees continuous, nearly infinite, mem. address namespace

• Hardware provides: finite memory, page table base register, TLB, disk

• Operating system: orchestrates.
 – manages page table entries (e.g. updating Valid bit when swapping), flushes the TLB when necessary, pages to disk, etc.
Administrative

• Midterm 2 back last week, regrades done
• This is final class
• Optional lab on threads
• Regrade requests for Midterm 2 due by end of day Friday
• Review lecture next week
Dual mode operation

- Hardware knows that an operating system will be used, and that it needs more privileges than application software.
- Hardware bit for user/kernel mode.
- Need kernel mode access for:
 - Accessing kernel data structures, e.g. list open files
 - Mapping device mem to main mem, e.g. graphics card
 - Kernel registers, e.g. page table offset
 - Privileged instructions, e.g. switch to kernel mode
Switching between User/Kernel mode

Application code:

Instruction 1
Instruction 2
...
Syscall

Instruction N
...

OS code:

Bootup instructions
...
Dispatch application
...
Handle syscall
...
Finish syscall

Mode bit:

User
Interrupts

• Hardware interrupts

• Software-generated interrupts (called Traps)
 – System calls: user has OS do something on its behalf, trap or syscall instruction.
 – Exceptions: if privileged instruction called when in user-level, handled similar to a system call
Trends

• OS used to handle concurrency for us (time sharing), now applications are making smarter use of concurrency (threading)
 – ParLab

• Cloud computing
 – RAD Lab
Summary

- OS multiplexes hardware resources & provides clean abstraction for applications.
- Dual mode operation, interrupts, exceptions
- Parallel and cloud computing

- Take CS162 to pick up where we’re leaving off and actually build an OS (and see more of me)!