The purpose of this note is to justify in detail our “formal” computation that
\[100^{50^{25^{10^5}}} \equiv 27 \pmod{47}. \]
Our main tool will be Euler’s theorem, which we recall here:

Theorem (Euler’s Theorem). Let \(a \) be relatively prime to \(N \). Then
\[a^{\varphi(N)} \equiv 1 \pmod{N}, \]
where \(\varphi \) denotes the Euler totient function\(^1\).

You proved this result, which is a straightforward generalization of Fermat’s Theorem, in HW 4. We will need one other fact about modular arithmetic:

Theorem (Chinese Remainder Theorem). If \(m \) and \(n \) are relatively prime positive integers, the system of congruences
\[
\begin{align*}
x &\equiv a \pmod{m} \\
x &\equiv b \pmod{n}
\end{align*}
\]
has a unique solution (modulo \(mn \)).

Proof. We will prove uniqueness first. Suppose \(x_0 \) and \(x_1 \) are both solutions to the above system of congruences. Then
\[
\begin{align*}
x_0 &\equiv a \equiv x_1 \pmod{m} \\
x_0 &\equiv b \equiv x_1 \pmod{n},
\end{align*}
\]
so in particular \(m \) divides \(x_0 - x_1 \) and \(n \) divides \(x_0 - x_1 \). Since \(m \) and \(n \) are relatively prime, this implies that \(mn \) divides \(x_0 - x_1 \) (check that you know why this is true), so \(x_0 \equiv x_1 \pmod{mn} \).

To show existence, we will construct a solution \(x_0 \) explicitly. Since \(\gcd(m,n) = 1 \), \(m \) has an inverse \(x \) modulo \(n \) and \(n \) has an inverse \(y \) modulo \(m \). Let
\[x_0 = xy + bmx. \]
Then reducing this modulo \(m \), we have
\[x_0 \equiv xy \equiv a \pmod{m} \]
since \(ny \equiv 1 \pmod{m} \), and similarly for the reduction of \(x_0 \) modulo \(n \). Thus \(x_0 \) is the desired solution, and this proves the theorem. \(\square \)

\(^1\)Recall that \(\varphi(N) \) is the number of positive integers \(n \leq N \) that are relatively prime to \(N \).
Remark. The Chinese Remainder Theorem easily generalizes to the case in which we have \(k \) linear congruences with the moduli of the congruences pairwise relatively prime. As an exercise, formulate precisely this generalization and prove your result.

We are now in a position to compute (“rigorously”) the value of
\[
100^{50 \cdot 25^{10^5}} \pmod{47},
\]
which we do in steps:

1. We reduce the base modulo 47, so we’re left with the computation of
\[
6^{50 \cdot 25^{10^5}} \pmod{47}.
\]

2. **Subproblem.** We can reduce the exponent modulo 46 by Fermat’s theorem (since \(p = 47 \) is prime), so we want to compute
\[
50 \cdot 25^{10^5} \equiv 4^{25^{10^5}} \pmod{46}.
\]

While we’d like to compute this by reducing the exponent \(25^{10^5} \) mod \(\varphi(46) = 22 \), we can’t exactly do this since Euler’s theorem doesn’t apply—46 and 4 are not relatively prime. Instead, we solve the system of linear congruences given by
\[
x \equiv 4^{25^{10^5}} \pmod{23}
\]
\[
x \equiv 4^{25^{10^5}} \pmod{2}.
\]

3. **Subproblem.** To compute
\[
4^{25^{10^5}} \pmod{23}
\]
we can apply Fermat’s theorem to reduce \(25^{10^5} \) modulo 22, and to compute this we can apply Euler’s theorem to reduce \(10^5 \) modulo \(\varphi(22) = (11 - 1)(2 - 1) = 10 \). But \(10^5 \equiv 0 \pmod{10} \), so \(25^{10^5} \equiv 1 \pmod{22} \), so
\[
4^{25^{10^5}} \equiv 4 \pmod{23}.
\]

4. Since
\[
4 \equiv 4^{25^{10^5}} \pmod{2}
\]
trivially, we know that 4 is a solution to the system of linear congruences. Since
\[
4^{25^{10^5}}
\]
is also a solution, we can conclude (by the uniqueness statement of the Chinese Remainder Theorem) that
\[
4^{25^{10^5}} \equiv 4 \pmod{46}.
\]
(5) Thus, back at the highest level, we’re left with the computation of

\[6^4 \pmod{47}, \]

which one easily finds is 27.

Since we didn’t discuss it in class, you weren’t expected to know the Chinese Remainder Theorem for the midterm: continually applying Euler’s theorem (without regard to the technicality in step 2 above) would have given you the same answer, and this is what we had wanted you to do.