Random Variables - Expectation.

Flip a coin n times (10,000). Number of H's.

\[X = \# \text{ of H's.} \]

\[X \in \{0, 1, 2, \ldots, 5000, 9999, 10000\}. \]

\[X \text{ is a random variable + probability of taking on each value.} \]

\[P[X = k] = \binom{n}{k} p^k (1-p)^{n-k} \]

n letters and n envelopes. \(n=20 \)

\[Y = \# \text{ letters that end up in their envelopes.} \]

\[Y \in \{0, 1, 2, \ldots, 20\}. \]

\[P[Y = k] = p^k. \]

Expected value of r.v. \(E[X] = 5000 \)

Average of a large number of trials.
\[P[H] = P \]

\[P[X=k] = \binom{n}{k} P^k (1-P)^{n-k} \]
Sample Space \(\mathcal{S} \): \[\begin{array}{c}
1 & 2 & 3 \\
2 & 1 & 3 \\
3 & 1 & 2 \end{array} \]

\[6 = 3! \]

\[Y = 3 \quad Y = 1 \quad Y = 0\]

\(Y \) is a function that maps \(\mathcal{S} \) to \(\mathbb{Z} \).

Definition

Integer random variable \(X \) is a function that maps \(\mathcal{S} \) to \(\mathbb{Z} \).

\[X : \mathcal{S} \to \mathbb{Z} \]

Events: \(X = k \) is an event.

\[\{X = k\} = \{ \omega \in \mathcal{S} : X(\omega) = k \} \]

such that
Flip biased coin \(P(H) = p \) until \(n \)th \(H \)s.

How long before \(n \)th \(H \)s?

\[W_n \]

\[P[W_n = n] = (1-p)^{n-1} \cdot p \]

\[\sum_{n=1}^{\infty} (1-p)^{n-1} \cdot p = 1 \]

\[p \sum_{k=0}^{\infty} (1-p)^{k} = \frac{1}{1 - (1-p)} = p \cdot \frac{1}{p} = 1 \]
\[W_k = \text{waiting time for } k^{th} \text{ H's.} \]

\[P[W_k = n] = \binom{n-1}{k-1} p^k (1-p)^{n-k} \]

\[\sum_{k=1}^{n} P[W_k = n] = 1. \]

\[\sum_{n=k}^{\infty} \binom{n-1}{k-1} p^k (1-p)^{n-k} = 1. \]
Flip biased coin \(n \) times

\[S_n = \# \text{ H's}. \]

\[P[S_n = k] = \binom{n}{k} p^k (1-p)^{n-k}. \]

\[\sum_{k=0}^{n} P[S_n = k] = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} = 1. \]

Binomial Theorem

\[1^n = [p + (1-p)]^n = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} \]

\[(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}. \]
\(X \)

\[
P[X = 6] = P_0 = \frac{2}{6}
\]

\[
P[X = 1] = P_1 = \frac{8}{18} = \frac{4}{9}
\]

\[
P[X = 2] = P_2 = \frac{0}{6}
\]

\[
P[X = 3] = P_3 = \frac{1}{6}
\]

Distribution of \(X \)

\[
\text{Expected value of } X = E[X] = \sum_{n=-\infty}^{\infty} n \cdot P[X = n]
\]
Envelope example with \(n = 3 \).

\[
\mathbb{E}[X] = 0 \cdot \frac{2}{6} + 1 \times \frac{3}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6}.
\]

\[
= \frac{3}{6} + \frac{3}{6} = 1.
\]

General \(n \).

\[
\mathbb{P}[X = k] \text{ hard!}
\]

\[
\mathbb{E}[X] = \sum_{k=0}^{n} k \cdot \mathbb{P}[X = k]
\]

Linearly of expectation:

Define random variable \(X_i \) if letter is in envelope \(i \).

\(X_i \) is an indicator r.v.

\(X = X_1 + X_2 + \ldots + X_n. \)

\[
\mathbb{E}[X] = \mathbb{E}[X_1] + \mathbb{E}[X_2] + \ldots + \mathbb{E}[X_n].
\]

\[
\frac{16}{64} = \frac{1}{4}.
\]
\[E(X_i) = 0 \cdot \left(1 - \frac{1}{n}\right) + 1 \cdot \frac{1}{n} = \frac{1}{n} \]

\[E \left(X_i \right) = \frac{1}{n} \]

\[E(X) = n \times \frac{1}{n} = 1 \]
Baseball cards:

100 baseball cards.

\[X = \text{# distinct cards in 120 days.} \]

\[E[\text{# distinct cards you collect in } 120 \text{ days}] \]

\[X_i = \begin{cases} 1 & \text{if collect } i^{th} \text{ player} \\ 0 & \text{otherwise}. \end{cases} \]

\[P[X_{18} = 1] = E[X_{18}] \]

\[X = X_1 + X_2 + \ldots + X_{100} \]

\[E[X] = 100 E[X_{i}] = 100 P[X_{i} = 1] \]

\[P[X_i = 0] = \left(\frac{99}{100} \right)^{120} \]

\[P[X_i = 1] = 1 - \left(\frac{99}{100} \right)^{120} \]
Random permutation \(3, 1, 2, 5, 4 \)

\(X = \text{Cant} \) # inversions.

\[\mathbb{E}[X] \]

\[X_{i, j} = \begin{cases} 1 & \text{if } i > j \text{ inverted} \\ 0 & \text{otherwise} \end{cases} \]

\[X = \sum_{i \neq j} X_{i, j} \]

\[\mathbb{E}[X] = \binom{n}{2} \mathbb{E}[X_{i, j}] = \frac{n(n-1)}{2} \times \frac{1}{2} = \frac{n(n-1)}{4} \]

\[\mathbb{P}(X_{i, j} = 1) = \frac{1}{2} \]

\[\mathbb{E}[X_{i, j}^2] = \frac{3}{2} \]
X, Y are r.v. on some sample space Ω then $E[X+Y] = E[X] + E[Y]$.