Error-correcting codes

Note: you aren’t expected to complete even all of the non-challenge problems. Extra problems are included to help with practice.

1. Find a polynomial of degree at most 3 which passes through the points $(1, -1), (2, 2), (3, -5), (4, -25)$. Use linear equations as opposed to Lagrangian interpolation.

2. When working in $GF(11)$, we want to send a message $(5, 2, 3)$. The message we send might get corrupted at $k = 1$ place.

   (a) First find a polynomial $P(x)$ such that $P(1) = 5, P(2) = 2, P(3) = 3$.
   
   (b) You should be sending more than three characters to insure that you can recover from 1 general error. How many should you send?
   
   (c) Assuming the answer to the previous question was $m$, find out the actual message you’ll be sending by evaluating $P(x)$ at $x = 1, 2, \ldots, m$.
   
   (d) Assume that the message you send gets corrupted at the 4th character. Increase the value you computed by 1 to get the corrupted character. Remember that the person receiving the message does not know that it was the 4th character that got corrupted. What will the error-locating polynomial be here?
   
   (e) To decode the message you set-up the polynomial $Q(x)$ as $P(x)E(x)$ where $P$ is the original polynomial and $E$ is the error-locating polynomial. Remember that the receiver does not know what any of these polynomials are yet. What is the degree of $Q$?
   
   (f) Remember that the equation $Q(x) = r_xE(x)$ is satisfied where $x = 1, \ldots, 5$ and $r_x$ is the $x$-th character received. Why is this true? Give a short justification.
   
   (g) Now the receiver writes $Q(x)$ and $E(x)$ in the most general format possible (i.e. with arbitrary coefficients). Write $Q(x)$ and $E(x)$ replacing their coefficients with variables. Remember that even though the receiver knows nothing about the message yet, he knows one of the coefficients of $E(x)$. What is that coefficient?
   
   (h) Now write down the system of linear equations corresponding to $Q(x) = r_xE(x)$. The variables are the coefficients of $Q$ and $E$.
   
   (i) Solve the linear system. Did you get the error-locating polynomial you expected?
   
   (j) How would one go from knowing $E$ and $Q$ to finding $P$?

3. What happens in the error-correcting method if there are actually no errors? Try the previous problem but instead of corrupting the 4th character let it be what it was. What happens if you were correcting for two errors and you only had one error at the 3rd location? What is the general form of $E(x)$ that you can get? What if you were correcting for two errors and you had no error?