Introduction to Graphs

Note: you aren’t expected to complete even all of the non-challenge problems. Extra problems are included to help with practice.

1. Give the necessary and sufficient conditions for an undirected graph to have an Eulerian walk.

2. A Hamiltonian path is a path that visits each vertex exactly once. A tournament graph is a directed graph such that for all vertices \(u, v \) in the graph, either \((u, v) \in E\) or \((v, u) \in E\). Show that a tournament graph has a Hamiltonian path.

3. Challenge problem: In lecture, you learned that an undirected graph \(G = (V, E) \) has an Eulerian tour if and only if the graph is connected (except for isolated vertices) and even degree. Prove the following alternate characterization of Eulerian graphs: A connected graph \(G \) has an Eulerian tour if and only if its edge set can be decomposed into disjoint cycles (two cycles are disjoint if they share no edges). Hint: try using induction on the number of edges in the graph.