Polynomials

Note: you aren’t expected to complete even all of the non-challenge problems. Extra problems are included to help with practice.

1. Suppose \(P(x) = x^3 + 2x + 3 \) and \(Q(x) = x^2 + 4x + 3 \).

 (a) Simplify \(P(x) + Q(x) \mod 5 \).

 Solution.

 \[
P(x) + Q(x) = x^3 + 2x + 3 + x^2 + 4x + 3 = x^3 + x^2 + 6x + 6 \equiv x^3 + x^2 + x + 1 \pmod{5}
 \]

 (b) Simplify \(P(x) \cdot Q(x) \mod 5 \).

 Solution.

 \[
P(x) \cdot Q(x) = (x^3 + 2x + 3)(x^2 + 4x + 3)
 = x^5 + 2x^3 + 3x^2 + 4x^4 + 8x^2 + 12x + 3x^3 + 6x + 9
 \equiv x^5 + 4x^4 + x^2 + 3x + 4 \pmod{5}
 \]

 (c) Can you simplify \(P(x) \cdot Q(x) \) further, using Fermat’s little theorem?

 Solution. Recall Fermat’s little theorem says \(x^{p-1} \equiv 1 \pmod{p} \) if \(\gcd(x, p) = 1 \). So it almost looks like we could replace \(x^4 \) with 1 – but that wouldn’t quite be right, since it fails when \(x \equiv 0 \). However, for \(p \) prime the equivalence \(x^p \equiv x \pmod{p} \) always holds; it clearly holds for \(x \equiv 0 \), and for nonzero \(x \) it holds by multiplying both sides of Fermat’s little theorem by \(x \). Therefore, we can further simplify \(x^5 + 4x^4 + x^2 + 3x + 4 \) to \(4x^4 + x^2 + 4x + 4 \).

2. (a) Find a polynomial \(P \) of degree 1 such that \(P(2) = 4, P(4) = 2 \mod 11 \).

 Solution. Applying Lagrange interpolation,

 \[
 \Delta_2(x) = \frac{x - 4}{2 - 4} = -2^{-1}(x - 4)
 \]
 \[
 \Delta_4(x) = \frac{x - 2}{4 - 2} = 2^{-1}(x - 2)
 \]

 Therefore,

 \[
P(x) = 4\Delta_2(x) + 2\Delta_4(x)
 = -4 \cdot 2^{-1}(x - 4) + 2 \cdot 2^{-1}(x - 2)
 = -2(x - 4) + (x - 2)
 = -x + 6
 \equiv 10x + 6 \pmod{11}
 \]
(b) Find a polynomial \(P \) of degree 2 such that \(P(1) = 1, P(3) = 3, P(5) = 2, \) mod 7.

Solution. Applying Lagrange interpolation,
\[
\Delta_1(x) = \frac{(x-3)(x-5)}{(1-3)(1-5)} = 8^{-1}(x-3)(x-5) \equiv (x-3)(x-5) \pmod{7}
\]
\[
\Delta_3(x) = \frac{(x-1)(x-5)}{(3-1)(3-5)} = (-4)^{-1}(x-1)(x-5) \equiv 3^{-1}(x-1)(x-5) \pmod{7}
\]
\[
\Delta_5(x) = \frac{(x-1)(x-3)}{(5-1)(5-3)} = 8^{-1}(x-1)(x-3) \equiv (x-1)(x-3) \pmod{7}
\]
Therefore,
\[
P(x) \equiv 1\Delta_1(x) + 3\Delta_3(x) + 2\Delta_5(x)
\equiv (x-3)(x-5) + 3 \cdot 3^{-1}(x-1)(x-5) + 2(x-1)(x-3)
\equiv x^2 - 8x + 15 + x^2 - 6x + 5 + 2(x^2 - 4x + 3)
\equiv 4x^2 - 22x + 26
\equiv 4x^2 + 6x + 5 \pmod{7}
\]

(c) Find a polynomial \(P \) of degree 3 such that \(P(1) = 1, P(2) = 2, P(3) = 3, P(4) = 1, \) mod 5

Solution. Applying Lagrange interpolation,
\[
\Delta_1(x) = \frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)} = (-6)^{-1}(x-2)(x-3)(x-4) \equiv -(x-2)(x-3)(x-4) \pmod{5}
\]
\[
\Delta_2(x) = \frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)} = 2^{-1}(x-1)(x-3)(x-4) \equiv 3(x-1)(x-3)(x-4) \pmod{5}
\]
\[
\Delta_3(x) = \frac{(x-1)(x-2)(x-4)}{(3-1)(3-2)(3-4)} = (-2)^{-1}(x-1)(x-2)(x-4) \equiv -3(x-1)(x-2)(x-4) \pmod{5}
\]
\[
\Delta_4(x) = \frac{(x-1)(x-2)(x-3)}{(4-1)(4-2)(4-3)} = 6^{-1}(x-1)(x-2)(x-3) \equiv (x-1)(x-2)(x-3) \pmod{5}
\]
Therefore,
\[
P(x) \equiv 1\Delta_1(x) + 2\Delta_2(x) + 3\Delta_3(x) + 1\Delta_4(x)
\equiv -(x-2)(x-3)(x-4) + 6(x-1)(x-3)(x-4) - 9(x-1)(x-2)(x-4) + (x-1)(x-2)(x-3)
\equiv -3x^3 + 18x^2 - 27x + 18
\equiv 2x^3 + 3x^2 + 3x + 3 \pmod{5}
\]

3. (a) Prove that a parabola and a line can intersect at most twice.

Solution. Recall a parabola is a degree-2 polynomial, while a line has degree \(\leq 1 \). On the other hand, two distinct degree-2 polynomials can agree on at most 2 points. Since a line and parabola don’t agree everywhere, they can agree on at most 2 points.

(b) Prove that a parabola and a cubic can intersect at at most three times.

Solution. Recall a cubic is a degree-3 polynomial, while a parabola has degree 2. On the other hand, two distinct degree-3 polynomials can agree on at most 3 points. Since a cubic and parabola don’t agree everywhere, they can agree on at most 3 points.
(c) Show that if you do Lagrange interpolation with \(d + 1 \) points you always recover the correct polynomial, but if you do it with \(d \) points you might not (where \(d \) is the degree of the polynomial).

Solution. For example, let \(d = 1 \), and suppose our single point is \((0,0)\). There are many lines that pass through \((0,0)\); for example, \(P(x) = 0 \) and \(P(x) = x \). So specifying only 1 point does not completely characterize a line.

4. **Challenge problem:**

(a) Prove that for every polynomial \(P \) and every prime \(p \), there exists a \(Q \) of degree at most \(p - 1 \) such that \(P(x) = Q(x) \mod p \) for every \(x \).

(b) If \(P \) and \(Q \) are distinct degree \(p - 1 \) polynomials, show that \(P(x) \neq Q(x) \mod p \) for some \(x \).

(c) Using the above facts, show that every function from \(\{0,1,\ldots,p-1\} \) to \(\{0,1,\ldots,p-1\} \) is equivalent to some degree \(p - 1 \) polynomial.

(d) Using Lagrange interpolation, show that every function from \(\{0,1,\ldots,p-1\} \) to \(\{0,1,\ldots,p-1\} \) is equivalent to some degree \(p - 1 \) polynomial.

5. **Challenge problem:** Given \(d + 2 \) degree \(d \) polynomials \(P_1, P_2, \ldots, P_{d+2} \), show that there exist numbers \(a_1, a_2, \ldots, a_{d+2} \in \{0,\ldots,p-1\} \) which are not all zero such that

\[
a_1P_1(x) + a_2P_2(x) + \ldots + a_{d+2}P_{d+2}(x) = 0 \mod p
\]

for every \(x \).

6. **Challenge problem:**

(a) If \(P(k) \) is a degree \(d \) polynomial, show that \(P(k+1) - P(k) \) is a degree \(d - 1 \) polynomial.

(b) **Harder:** If \(P(k) \) is a degree \(d \) polynomial, show that \(\sum_{k=1}^{n} P(k) \) is a degree \(d + 1 \) polynomial in \(n \).