1. (Covariance) We have a bag of 5 red and 5 blue balls. We take two balls from the bag without replacement. Let X_1 and X_2 be indicator random variables for the first and second ball being red.

What is $\text{Cov}(X_1, X_2)$?

We can use the formula $\text{Cov}(X_1, X_2) = E(X_1X_2) - E(X_1)E(X_2)$.

$$E(X_1) = \frac{5}{10} \times 1 + \frac{5}{10} \times 0 = \frac{1}{2}$$
$$E(X_2) = \frac{5}{10} \times 1 + \frac{5}{10} \times 0 = \frac{1}{2}$$

$$E(X_1X_2) = \frac{5}{10} \cdot \frac{4}{9} \times 1 + (1 - \frac{5}{10} \cdot \frac{4}{9}) \times 0 = \frac{2}{9}$$

Therefore,

$$E(X_1X_2) - E(X_1)(X_2) = \frac{2}{9} - \frac{1}{2} \times \frac{1}{2} = -\frac{1}{36}$$

2. (LLSE) We have two bags of balls. The fractions of red balls and blue balls in bag A are $\frac{2}{3}$ and $\frac{1}{3}$ respectively. The fractions of red balls and blue balls in bag B are $\frac{1}{2}$ and $\frac{1}{2}$ respectively. Someone gives you one of the bags (unmarked) uniformly at random. Then we draw 6 balls from the same bag with replacement. Let X_i be the indicator random variable that ball i is red. Now, let us define $X = \sum_{1 \leq i \leq 3} X_i$ and $Y = \sum_{4 \leq j \leq 6} X_j$.

Find $\text{LLSE}(Y|X)$. [Hint: recall that $\text{LLSE}(Y|X) = E(Y) + \frac{\text{Cov}(X,Y)}{\text{Var}(X)}(X - E(X))$]

$$E(X) = 3 \cdot E(X_1)$$
$$= 3 \cdot P(X_1 = 1)$$
$$= 3 \cdot (\frac{1}{2} \cdot \frac{2}{3} + \frac{1}{2} \cdot \frac{1}{2})$$
$$= \frac{7}{4}$$

$$E(Y) = E(X) = \frac{7}{4}$$

$$\text{Cov}(X,Y) = \text{Cov}(\sum_{1 \leq i \leq 3} X_i, \sum_{4 \leq j \leq 6} X_j)$$
$$= 9 \cdot \text{Cov}(X_1, X_4)$$
$$= 9 \cdot (E(X_1X_4) - E(X_1) \cdot E(X_4))$$
\[E(X_1X_4) - E(X_1)E(X_4) = P(X_1 = 1, X_4 = 1) - P(X_1 = 1)^2 \]
\[= \left[\frac{1}{2} \cdot \left(\frac{2}{3} \right)^2 + \frac{1}{2} \cdot \left(\frac{1}{2} \right)^2 \right] - \left[\frac{1}{2} \cdot \left(\frac{2}{3} \right) + \frac{1}{2} \cdot \left(\frac{1}{2} \right) \right]^2 \]
\[= \frac{1}{144} \]

Var(X) = Cov(\sum_{1 \leq i \leq 3} X_i, \sum_{1 \leq j \leq 3} X_j)
\[= 3 \cdot Var(X_1) + 6 \cdot Cov(X_1, X_2) \]
\[= 3(E(X_1^2) - E(X_1)^2) + 6 \cdot \frac{1}{144} \]
\[= 3\left(\frac{7}{12} \right) - \left(\frac{7}{12} \right)^2 + 6 \cdot \frac{1}{144} \]
\[= \frac{119}{144} \]

So, \(LLSE(Y | X) = \frac{7}{4} + \frac{9}{144} \cdot (X - \frac{7}{4}) = \frac{3}{37}X + \frac{119}{144} \)

3. (Confidence interval) Let \(\{X_i\}_{1 \leq i \leq n} \) be a sequence of iid Bernoulli random variables with parameter \(\mu \). Assume we have enough samples such that \(P(\frac{1}{n} \sum_{1 \leq i \leq n} X_i - \mu > 0.1) = 0.05 \).
Can you give 95% confidence interval for \(\mu \) if you are given the outcomes of \(X_i \)?
\[\left[\frac{1}{n} \sum_{1 \leq i \leq n} X_i - 0.1, \frac{1}{n} \sum_{1 \leq i \leq n} X_i + 0.1 \right] \]

4. (Chernoff’s bound) Let \(X \) be a binomial random variable with parameters \((n, 0.5) \).
Prove that there exists \(\alpha > 0 \) such that \(P(X > 0.7n) \leq e^{-\alpha n} \). [Hint: \(\frac{e^{-0.7} + e^{0.3}}{2} = 0.923 < 1 \)]
Let \(X = \sum_{1 \leq i \leq n} X_i \), where \(X_i \) are iid Bernoulli random variable with parameter 0.5.
Also let \(t > 0 \).
\[P(X > 0.7n) = P(\sum_{1 \leq i \leq n} X_i > 0.7n) \]
\[= P(e^{\sum_{1 \leq i \leq n} X_i} \geq e^{0.7nt}) \leq \frac{E(e^{\sum_{1 \leq i \leq n} X_i})}{e^{0.7nt}} \]
\[= \frac{\Pi_{1 \leq i \leq n} E(e^{X_i})}{e^{0.7nt}} = \frac{E(e^{X_i})^n}{e^{0.7nt}} = \frac{(0.5 + 0.5e^t)^n}{e^{0.7nt}} \]
\[= \frac{(e^{-0.7t} + e^{0.3t})^n}{2} \]
\[= (0.923)^n, \text{ by taking } t = 1 \]
\[= e^{-\ln(1/0.923)n} \]

Since \(\ln(1/0.923) > 0 \), we have \(\alpha = \ln(1/0.923) \)