1. Sanity check!

1. Alice wants to send a message of length 10 to Bob over a lossy channel. In the general case, what is the degree of the polynomial she uses to encode her message?

Solution: 9

2. Alice sent Bob the values of the above polynomial at 16 distinct points. How many erasure errors can Bob recover from?

Solution: 6

3. How many general errors can Bob recover from?

Solution: 3

2. Where are my packets?

Alice wants to send the message \((a_0, a_1, a_2)\) to Bob, where each \(a_i \in \{0, 1, 2, 3, 4\}\). She encodes it as a polynomial \(P\) of degree \(\leq 2\) over \(GF(5)\) such that \(P(0) = a_0\), \(P(1) = a_0\), and \(P(2) = a_2\), and she sends the packets \((0, P(0)), (1, P(1)), (2, P(2)), (3, P(3)), (4, P(4))\). Two packets are dropped, and Bob only learns that \(P(0) = 4\), \(P(3) = 1\), and \(P(4) = 2\). Help Bob recover Alice’s message.

1. Find the multiplicative inverses of 1, 2, 3 and 4 modulo 5.

Solution: Inverse pairs mod 5: \((1, 1), (2, 3), (4, 4)\).

2. Find the original polynomial \(P\) by using Lagrange interpolation or by solving a system of linear equations.

Solution:

\[
\begin{align*}
\Delta_0 &= \frac{(x - 3)(x - 4)}{(0 - 3)(0 - 4)} = \frac{x^2 - 7x + 12}{(-3)(-4)} = 3(x^2 + 3x + 2) = 3x^2 + 4x + 1 \\
\Delta_3 &= \frac{(x - 0)(x - 4)}{(3 - 0)(3 - 4)} = \frac{x^2 - 4x}{(3)(-1)} = 3(x^2 + x) = 3x^2 + 3x \\
\Delta_4 &= \frac{(x - 0)(x - 3)}{(4 - 0)(4 - 3)} = \frac{x^2 - 3x}{(4)(1)} = 4(x^2 + 2x) = 4x^2 + 3x
\end{align*}
\]

Thus, our original polynomial \(P\) is

\[
4\Delta_0 + 1\Delta_3 + 2\Delta_4 = 4(3x^2 + 4x + 1) + (3x^2 + 3x) + 2(4x^2 + 3x) \\
= (2x^2 + x + 4) + (3x^2 + 3x) + (3x^2 + x) \\
= 3x^2 + 4
\]

Linear equation way: Writing \(P(x) = m_2x^2 + m_1x + m_0\), we solve for the \(m_i\)'s by solving the linear equation

\[
\begin{bmatrix} 0 & 0 & 1 \\ 9 & 3 & 1 \end{bmatrix} \begin{bmatrix} m_2 \\ m_1 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}
\]
This gives the equation
\[\frac{1}{2}x^2 - \frac{5}{2}x + 4, \]
which, in the modulo 5 world, means \(P(x) = 3x^2 + 4. \)

3. Recover Alice’s original message.

Solution: To recover \((a_0, a_1, a_2)\), we compute
\[
P(0) = 4 \\
P(1) = 2 \\
P(2) = 1
\]

3. Berlekamp-Welch for general errors

Suppose that Hector wants to send you a length \(n = 3 \) message, \(m_0, m_1, m_2, \) with the possibility for \(k = 1 \) error. In this world we will work mod 11, so we can encode 11 letters as shown below:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Hector encodes the message by finding the degree \(\leq 2 \) polynomial \(P(x) \) that passes through \((0, m_0), (1, m_1), \) and \((2, m_2)\), and then sends you the five packets \(P(0), P(1), P(2), P(3), P(4) \) over a noisy channel. The message you receive is
\[DHACK \Rightarrow 3, 7, 0, 2, 10 = r_0, r_1, r_2, r_3, r_4 \]
which could have up to 1 error.

1. First locate the error, using an error-locating polynomial \(E(x) \). Let \(Q(x) = P(x)E(x) \). Recall that
\[Q(i) = P(i)E(i) = r_i E(i), \quad \text{for} \quad 0 \leq i < n + 2k \]
What is the degree of \(E(x) \)? What is the degree of \(Q(x) \)? Using the relation above, write out the form of \(E(x) \) and \(Q(x) \), and then a system of equations to find both these polynomials.

Solution: The degree of \(E(x) \) will be 1, since there is at most 1 error. The degree of \(Q(x) \) will be 3, since \(P(x) \) is of degree 2. \(E(x) \) will have the form \(E(x) = x + e \), and \(Q(x) \) will have the form \(Q(x) = ax^3 + bx^2 + cx + d \). We can write out a system of equations to solve for these 5 variables:
\[
d = 3(0 + e) \\
a + b + c + d = 7(1 + e) \\
8a + 4b + 2c + d = 0(2 + e) \\
27a + 9b + 3c + d = 2(3 + e) \\
64a + 16b + 4c + d = 10(4 + e)
\]
Since we are working mod 11, this is equivalent to:
\[
d = 3e \\
a + b + c + d = 7 + 7e \\
8a + 4b + 2c + d = 0 \\
5a + 9b + 3c + d = 6 + 2e \\
9a + 5b + 4c + d = 7 + 10e
\]
2. Ask your GSI for $Q(x)$. What is $E(x)$? Where is the error located?

Solution: Solving this system of linear equations we get

$$Q(x) = 3x^3 + 6x^2 + 5x + 8$$

Plugging this into the first equation (for example), we see that:

$$d = 8 = 3e \quad \Rightarrow \quad e = 8 \cdot 4 = 32 \equiv 10 \text{ mod } 11$$

This means that

$$E(x) = x + 10 \equiv x - 1 \text{ mod } 11.$$

Therefore the error occurred at $x = 1$ (so the second number sent in this case).

3. Finally, what is $P(x)$? Use $P(x)$ to determine the original message that Hector wanted to send.

Solution: Using polynomial division, we divide $Q(x) = 3x^3 + 6x^2 + 5x + 8$ by $E(x) = x - 1$:

$$P(x) = 3x^2 + 9x + 3$$

Then $P(1) = 3 + 9 + 3 = 15 \equiv 4 \text{ mod } 11$. This means that our original message was

$$3, 4, 0 \quad \Rightarrow \quad \text{DEA}$$

4. Secret Sharing

Umesh wants to share a secret among 4 TAs and 14 readers, such that a subset of them can reconstruct the secret iff it contains either (i) at least 2 TAs, or (ii) at least 1 TA and at least 2 readers, or (iii) at least 4 readers. Explain how this can be accomplished.

Solution: First note that in this case, a TA essentially counts as 2 readers. Thus, we make a polynomial p of degree 3 such that $p(0) = s$, where s is Tom’s secret. Each reader gets one point in p, while each TA gets 2.

Thus, if either 2 TAs, 1 TA and 2 readers, or 4 readers collaborate, they can recover s.

EECS 70, Fall 2015, Discussion 6A