It’s Friday.
 Will let out early today!
 61A midterm makeup afterwards.
Today: A bit of review, RSA, signature schemes.
Inverses?

When does a have inverse \pmod{m}?
When $\gcd(a, m) = 1!$
Claim: \(a^{-1} \pmod{m} \) exists when \(\gcd(a, m) = 1 \).

Fact: \(ax \not\equiv ay \pmod{m} \) for \(x \neq y \in \{0, \ldots, m - 1\} \)

Proof of Fact: Let \(ax = ay \pmod{m} \), \(x \neq y \in \{0, \ldots, m - 1\} \)

\[
a x = ay + km
\]

\[
a(x - y) = km
\]

Consider prime factorization:

\[
a = a_1 \ldots a_\ell,
\]

\[
m = m_1 \ldots m_z.
\]

Do any \(a_i = m_j \)? Yes? No? No! \(\gcd(a, m) = 1! \)

Therefore \(a(x - y) = km \)

only if factorization of \((x - y)\) contains all factors of \(m\).

\[
\implies (x - y) \geq m \text{ or } (x - y) = 0. \quad \text{Contradiction.}
\]
Excursion: Bijections.

\[f : S \rightarrow T \text{ is one-to-one mapping.} \]

one-to-one: \(f(x) \neq f(x') \) for \(x, x' \in S \) and \(x \neq x' \). Not 2 to 1!

\(f(\cdot) \) is onto
if for every \(y \in T \) there is \(x \in S \) where \(y = f(x) \).

Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!

Same size?
\{ red, yellow, blue \} and \{ 1, 2, 3 \}?
\[f(\text{red}) = 1, \ f(\text{yellow}) = 2, \ f(\text{blue}) = 3. \]

\{ red, yellow, blue \} and \{ 1, 2 \}?
\[f(\text{red}) = 1, \ f(\text{yellow}) = 2, \ f(\text{blue}) = 2. \]

two to one! not one to one.
\{ red, yellow \} and \{ 1, 2, 3 \}?
\[f(\text{red}) = 1, \ f(\text{yellow}) = 2. \]
Misses 3. not onto.
Modular arithmetic examples.

\[f : S \rightarrow T \text{ is one-to-one mapping.} \]
one-to-one: \(f(x) \neq f(x') \) for \(x, x' \in S \) and \(x \neq y \).

\(f(\cdot) \) is onto
if for every \(y \in T \) there is \(x \in S \) where \(y = f(x) \).

Recall: \(f(red) = 1, f(yellow) = 2, f(blue) = 3 \)
One-to-one if inverse: \(g(1) = red, g(2) = yellow, g(3) = blue. \)

Is \(f(x) = x + 1 \) (mod \(m \)) one-to-one? \(g(x) = x - 1 \) (mod \(m \)).
Onto: range is subset of domain.
Is \(f(x) = ax \) (mod \(m \)) one-to-one?
If \(\gcd(a, m) = 1, ax \neq ax' \) (mod \(m \)).

Injective? Surjective?
We tend to use one-to-one and onto.

Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!
Claim: $a^{-1} \pmod{m}$ exists when $\gcd(a, m) = 1$.

Fact: $ax \neq ay \pmod{m}$ for $x \neq y \in \{0, \ldots, m-1\}$

Consider $T = \{0a \pmod{m}, 1a \pmod{m}, \ldots, (m-1)a \pmod{m}\}$

Consider $S = \{0, 1, \ldots, (m-1)\}$

$S = T$. Why?

$T \subseteq S$ since $ax \pmod{m} \in \{0, \ldots, m-1\}$

One-to-one mapping from S to $T!$

$\implies |T| \geq |S|$

Same set.

Why does a have inverse? T is S and therefore contains 1 ! ! !

Why am I excited? There is an x where $ax = 1$.

There is an inverse of a ! ! !
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $T = \{ a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p} \}$.

T is range of function $f(x) = ax \pmod{p}$ for set $S = \{1, \ldots, p-1\}$.

Invertible function: one-to-one.

$T \subseteq S$ since $0 \not\in T$.

p is prime.

$\implies T = S$.

Product of elts of $T = \text{Product of elts of } S$.

\[(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p}, \]

Since multiplication is commutative.

\[a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}. \]

Each of $2, \ldots (p-1)$ has an inverse modulo p, multiply by inverses to get...

\[a^{(p-1)} \equiv 1 \pmod{p}. \]
RSA and Fermat.

RSA:

Alice:

Primes: p, q. $N = pq$.

Encryption Key: e where $\gcd(e, (p-1)(q-1))) = 1$

Decryption Key: $d = e^{-1} \pmod{(p-1)(q-1)}$

Message: m

Encryption: $y = E(m) = m^e \pmod{N}$. Bob.

Decryption: $D(y) = y^d \pmod{N}$. Alice.

Result: $m^{ed} \pmod{N}$

Example:

$p = 7, 1 = 11$. $N = 77$

$e = 7$ \hspace{1cm} \text{gcd}(7, 60) = 1.$

$d = 43$ \hspace{1cm} $7 \times 43 = 1 \pmod{60}$.

$x = 2$

$y = 2^7 \pmod{77}$ Bob.

$y^{43} = 2 \pmod{77}$ Alice.

Alice got Bob’s message!

Want $D(E(x)) = x$

Thm: $x^{ed} = x \pmod{N}$

Alice got message back!!!
Fermat: a seeming excursion?

Thm: \(m^{ed} = m \pmod{pq} \) if \(ed = 1 \pmod{(p-1)(q-1)} \)

Seems like magic!

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),

\[
a^{p-1} \equiv 1 \pmod{p}.
\]

3\(^6\) (mod 7)? 1.
3\(^7\) (mod 7)? 3.

Involves exponents and gets 3 back.
Seems like magic.

Corollary: \(a^{k(p-1)+1} = a \pmod{p} \)

Get \(a \) back when exponent is \(1 \pmod{p-1} \).
A little like RSA.

\[
a^{ed} \pmod{(p-1)(q-1)} \text{ is } a
\]

when exponent is \(1 \pmod{(p-1)(q-1)} \).

Proof of Corollary. If \(a = 0 \), \(a^{k(p-1)+1} = 0 \pmod{m} \).
Otherwise \(a^{1+k(p-1)} \equiv a^1 \ast (a^{p-1})^k \equiv a \ast (1)^b \equiv a \pmod{p} \)

Idea: Fermat removes the \(k(p-1) \) from the exponent!
Lemma 1: For any prime p and any a, b,
\[a^{1 + b(p-1)} \equiv a \pmod{p} \]

Lemma 2: For any two different primes p, q and any x, k,
\[x^{1 + k(p-1)(q-1)} \equiv x \pmod{pq} \]

Let $a = x$, $b = k(p - 1)$ and apply Lemma 1 with modulus q.
\[x^{1 + k(p-1)(q-1)} \equiv x \pmod{q} \]
\[x^{1 + k(q-1)(p-1)} - x \equiv 0 \pmod{q} \implies \text{multiple of } q. \]

Let $a = x$, $b = k(q - 1)$ and apply Lemma 1 with modulus p.
\[x^{1 + k(p-1)(q-1)} \equiv x \pmod{p} \]
\[x^{1 + k(q-1)(p-1)} - x \equiv 0 \pmod{p} \implies \text{multiple of } p. \]
\[x^{1 + k(q-1)(p-1)} - x \text{ is multiple of } p \text{ and } q. \]
\[x^{1 + k(q-1)(p-1)} - x \equiv 0 \pmod{pq} \implies x^{1 + k(q-1)(p-1)} = x \pmod{pq}. \]
Lemma 2: For any two different primes \(p, q \) and any \(x, k \),
\[
x^{1 + k(p-1)(q-1)} \equiv x \pmod{pq}
\]

Theorem: RSA correctly decodes!
Recall
\[
D(E(x)) = (x^e)^d = x^{ed} \equiv x \pmod{pq},
\]

where \(ed \equiv 1 \pmod{(p-1)(q-1)} \implies ed = 1 + k(p-1)(q-1) \)
\[
x^{ed} \equiv x^{k(p-1)(q-1)+1} \equiv x \pmod{pq}.
\]
Construction of keys

1. Find large (100 digit) primes p and q?

 Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

 \[\pi(N) \geq \frac{N}{\ln N}. \]

 Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

 For 1024 bit number, 1 in 710 is prime.

2. Choose e with $\gcd(e, (p-1)(q-1)) = 1$.
 Use gcd algorithm to test.

3. Find inverse d of e modulo $(p-1)(q-1)$.
 Use extended gcd algorithm.

All steps are polynomial in $O(\log N)$, the number of bits.
Security of RSA.

Security?

1. Alice knows p and q.
2. Bob only knows, $N(=pq)$, and e.
 Does not know, for example, d or factorization of N.
3. Breaking this scheme \implies factoring N.
 Don’t know how to factor N.
If Bobs sends a message (Credit Card Number) to Alice, Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated; For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c, concatenated with random k-bit number r.

Never sends just c.

Again, more work to do to get entire system.

CS161...