Co Teacher: Professor Jean Walrand. Will begin lecturer in mid October. Lectures on Probability. Teaches Probability (EE 126,...). Research in Probability as well. Email: walrand@berkeley.edu. Office Hours: 257 Cory Hall 2:30-3:30 Monday 2:30-3:30 Wednesday.
Introduction

Co Teacher: Professor Jean Walrand.
Introduction

Co Teacher: Professor Jean Walrand.
 Will begin lecturer in mid October.
Introduction

Co Teacher: Professor Jean Walrand.
Will begin lecturer in mid October.
Lectures on Probability.
Co Teacher: Professor Jean Walrand.
 Will begin lecturer in mid October.

Lectures on Probability.
 Teaches Probability (EE 126,...).
Co Teacher: Professor Jean Walrand.
Will begin lecturer in mid October.

Lectures on Probability.
Teaches Probability (EE 126,...).
Research in Probability as well.
Introduction

Co Teacher: Professor Jean Walrand.
 Will begin lecturer in mid October.

Lectures on Probability.
 Teaches Probability (EE 126,...).
 Research in Probability as well.

Email: walrand@berkeley.edu
Co Teacher: Professor Jean Walrand.

Will begin lecturer in mid October.

Lectures on Probability.
Teaches Probability (EE 126,...).
Research in Probability as well.

Email: walrand@berkeley.edu
Office Hours: 257 Cory Hall
Introduction

Co Teacher: Professor Jean Walrand.
 Will begin lecturer in mid October.

Lectures on Probability.
 Teaches Probability (EE 126,...).
 Research in Probability as well.

Email: walrand@berkeley.edu
Office Hours: 257 Cory Hall
 2:30-3:30 Monday
Co Teacher: Professor Jean Walrand.
 Will begin lecturer in mid October.
Lectures on Probability.
 Teaches Probability (EE 126,...).
 Research in Probability as well.
Email: walrand@berkeley.edu
Office Hours: 257 Cory Hall
 2:30-3:30 Monday
 2:30-3:30 Wednesday
Co Teacher: Professor Jean Walrand.
Will begin lecturer in mid October.

Lectures on Probability.
Teaches Probability (EE 126,...).
Research in Probability as well.

Email: walrand@berkeley.edu
Office Hours: 257 Cory Hall
2:30-3:30 Monday
2:30-3:30 Wednesday
Jean Walrand – Prof. of EECS – UCB
257 Cory Hall – walrand@berkeley.edu

I was born in Belgium\(^{(1)}\) and came to Berkeley for my PhD. I have been teaching at UCB since 1982.

My wife and I live in Berkeley. We have two daughters (UC alumni – Go Bears!). We like to ski and play tennis (both poorly). We enjoy classical music and jazz.

My research interests include stochastic systems, networks and game theory.

\(^{(1)}\)

1. Signature Schemes
2. Polynomials
3. Secret Sharing
4. Polynomial Interpolation
Signatures using RSA.

Verisign:

Amazon \rightarrow Browser.

Browser "knows" Verisign's public key: K_V.

Amazon Certificate:

$C = \text{"I am Amazon. My public Key is } K_A.\text{"}$

Versign signature of C:

$S_v(C)$:

$D(C, k_V) = C \mod N$.

Browser receives:

$[C, y]$.

Verifies Signature by Verisign: Checks $E(y, K_V) = C$?

$E(S_v(C), K_V) = (S_v(C))^e = (C^{de} \mod N)$. Valid signature of Amazon certificate!
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Signatures using RSA.

Verisign: k_v, K_v

Amazon \rightarrow Browser.

Certificate Authority: Verisign, GoDaddy, DigiNotar, ...

Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)
Signatures using RSA.

Verisign: k_V, K_V

Amazon \rightarrow Browser. K_V

Certificate Authority: Verisign, GoDaddy, DigiNotar, ...

Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)

Browser “knows” Verisign’s public key: K_V.
Signatures using RSA.

Verisign: k_V, K_V

Amazon $\xleftarrow{}$ Browser. K_V

Certificate Authority: Verisign, GoDaddy, DigiNotar, ...

Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$)

Browser “knows” Verisign’s public key: K_V.

Amazon Certificate: $C = “I$ am Amazon. My public Key is $K_A.”$
Signatures using RSA.

Verisign: k_v, K_v

$[C, S_v(C)]$

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: $K_v = (N, e)$ and $k_v = d$ ($N = pq$.)

Browser “knows” Verisign’s public key: K_v.

Amazon Certificate: $C =$ “I am Amazon. My public Key is K_A.”

Versign signature of C: $S_v(C)$: $D(C, k_v) = C^d \mod N$.
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar, ...
Verisign’s key: $K_V = (N, e)$ and $k_V = d \ (N = pq)$
Browser “knows” Verisign’s public key: K_V.
Amazon Certificate: $C = \text{“I am Amazon. My public Key is } K_A.$”
Versign signature of C: $S_V(C): D(C, k_V) = C^d \mod N.$
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar, ...
Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)
Browser “knows” Verisign’s public key: K_V.
Amazon Certificate: $C =$ “I am Amazon. My public Key is K_A.”
Versign signature of C: $S_V(C)$: $D(C, k_V) = C^d \mod N$.
Browser receives: $[C, y]$
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar, ...
Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$).
Browser “knows” Verisign’s public key: K_V.
Amazon Certificate: C = “I am Amazon. My public Key is K_A.”
Versign signature of C: $S_V(C)$: $D(C, k_V) = C^d$ mod N.
Browser receives: $[C, y]$
Verifies Signature by Verisign: Checks $E(y, K_V) = C$?
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)

Browser “knows” Verisign’s public key: K_V.

Amazon Certificate: $C = \text{“I am Amazon. My public Key is } K_A\text{.”}$

Versign signature of C: $S_V(C): D(C, k_V) = C^d \mod N$.

Browser receives: $[C, y]$

Verifies Signature by Verisign: Checks $E(y, K_V) = C$?

$E(S_V(C), K_V)$
Signatures using RSA.

[\[C, S_V(C)\]]

Verisign: \(k_V, K_V \)

\[C = E(S_V(C), k_V) \]?

\[[C, S_V(C)] \]

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: \(K_V = (N, e) \) and \(k_V = d \) \((N = pq)\).

Browser “knows” Verisign’s public key: \(K_V \).

Amazon Certificate: \(C = \text{“I am Amazon. My public Key is } K_A \text{”} \)

Versign signature of \(C \): \(S_V(C) \): \(D(C, k_V) = C^d \mod N \).

Browser receives: \([C, y]\)

Verifies Signature by Verisign: Checks \(E(y, K_V) = C \)?

\[E(S_V(C), K_V) = (S_V(C))^e \]
Signatures using RSA.

Verisign: k_v, K_v

$[C, S_v(C)]$

$C = E(S_v(C), k_v)$?

$[C, S_v(C)]$

Certificate Authority: Verisign, GoDaddy, DigiNotar, ...

Verisign’s key: $K_v = (N, e)$ and $k_v = d$ ($N = pq$.)

Browser “knows” Verisign’s public key: K_v.

Amazon Certificate: $C = “I am Amazon. My public Key is K_A.”$

Versign signature of C: $S_v(C)$: $D(C, k_v) = C^d \mod N$.

Browser receives: $[C, y]$

Verifies Signature by Verisign: Checks $E(y, K_v) = C$?

$E(S_v(C), K_v) = (S_v(C))^e = (C^d)^e$
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,

Verisign’s key: \(K_V = (N, e)\) and \(k_V = d\) (\(N = pq\)).

Browser “knows” Verisign’s public key: \(K_V\).

Amazon Certificate: \(C = \text{“I am Amazon. My public Key is } K_A\text{.”}\)

Versign signature of \(C\): \(S_V(C): D(C, k_V) = C^d \mod N\).

Browser receives: \([C, y]\)

Verifies Signature by Versign: Checks \(E(y, K_V) = C?\)

\[E(S_V(C), K_V) = (S_V(C))^e = (C^d)^e = C^{de}\]
Signatures using RSA.

Verisign: k_V, K_V

[Amazon C, $S_V(C)$]

$C = E(S_V(C), k_V)$?

Browser. K_V

[C, $S_V(C)$]

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)

Browser “knows” Verisign’s public key: K_V.

Amazon Certificate: \(C = \text{“I am Amazon. My public Key is } K_A.\text{”} \)

Versign signature of C: $S_V(C)$: $D(C, k_V) = C^d \mod N$.

Browser receives: $[C, y]$

Verifies Signature by Verisign: Checks $E(y, K_V) = C$?

$E(S_V(C), K_V) = (S_V(C))^e = (C^d)^e = C^{de} = C \mod N$
Signatures using RSA.

\[[C, S_V(C)] \]

Verisign: \(k_V, K_V \)

\[C = E(S_V(C), k_V)? \]

\[[C, S_V(C)] \]

Amazon \(\xrightarrow{K_V} \) Browser.

Certificate Authority: Verisign, GoDaddy, DigiNotar, ...

Verisign’s key: \(K_V = (N, e) \) and \(k_V = d \) \((N = pq.) \)

Browser “knows” Verisign’s public key: \(K_V \).

Amazon Certificate: \(C = \text{“I am Amazon. My public Key is } K_A\text{.”} \)

Versign signature of \(C \): \(S_V(C) \): \(D(C, k_V) = C^d \mod N \).

Browser receives: \([C, y]\)

Verifies Signature by Verisign: Checks \(E(y, K_V) = C? \)

\(E(S_V(C), K_V) = (S_V(C))^e = (C^d)^e = C^{de} = C \) \((\mod N) \)

Valid signature of Amazon certificate \(C! \)
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)

Browser “knows” Verisign’s public key: K_V.

Amazon Certificate: $C = \text{“I am Amazon. My public key is } K_A.$”

Versign signature of C: $S_V(C)$: $D(C, k_V) = C^d \mod N$.

Browser receives: $[C, y]$

Verifies Signature by Verisign: Checks $E(y, K_V) = C$?

$E(S_V(C), K_V) = (S_V(C))^e = (C^d)^e = C^{de} = C \mod N$

Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.
RSA, Public Key, and Signatures.

RSA:

\[N = p \times q \]

where \(\gcd(e, (p-1)(q-1)) = 1 \).

\[d = e^{-1} \pmod{(p-1)(q-1)} \]

Public Key Cryptography:

\[D(E(m, K), k) = me^d \pmod{N} = m \]

Signature scheme:

\[S(C) = D(C) \]

Announce \((C, S(C))\)

Verify: Check \(C = E(C) \).

\[E(D(C, K), K) = C^d \pmod{N} = C \]
RSA, Public Key, and Signatures.

RSA:

\(N = p \cdot q \) with \(\gcd(e, (p-1)(q-1)) \).

\(d = e^{-1} \mod (p-1)(q-1) \).

Public Key Cryptography:

\(D(E(m, K), k) = m^e \mod N = m \).

Signature scheme:

\(S(C) = D(C) \).

Announce \((C, S(C)) \)
Verify: Check \(C = E(C) \).

\(E(D(C, K), K) = C^d \mod N = C \).
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]

Public Key Cryptography:
\[D(E(m, K), k) = m^e \mod N = m \]

Signature scheme:
\[S(C) = D(C) \]

Announce \((C, S(C))\):
Verify: Check \(C = E(C)\).
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]
RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p-1)(q-1)). \]
\[d = e^{-1} \pmod{(p-1)(q-1)}. \]

Public Key Cryptography:
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \pmod{N} = m. \]
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \pmod{N} = m. \]

Signature scheme:
RSA, Public Key, and Signatures.

RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Public Key Cryptography:

\[D(E(m, K), k) = (m^e)^d \pmod{N} = m. \]

Signature scheme:

\[S(C) = D(C). \]
RSA, Public Key, and Signatures.

RSA:

- \(N = p, q \)
- \(e \) with \(\gcd(e, (p-1)(q-1)) \).
- \(d = e^{-1} \pmod{(p-1)(q-1)} \).

Public Key Cryptography:

- \(D(E(m, K), k) = (m^e)^d \pmod{N} = m \).

Signature scheme:

- \(S(C) = D(C) \).
- Announce \((C, S(C))\)
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \mod (p - 1)(q - 1). \]

Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \mod N = m. \]

Signature scheme:
\[S(C) = D(C). \]
Announce \((C, S(C))\)
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \pmod{N} = m. \]

Signature scheme:
\[S(C) = D(C). \]
Announce \((C, S(C))\)
Verify: Check \(C = E(C).\)
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \pmod{N} = m. \]

Signature scheme:
\[S(C) = D(C). \]
Announce \((C, S(C))\)

Verify: Check \(C = E(C)\).
\[E(D(C, k), K) = (C^d)^e \pmod{N} = C \]
Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

... and 2013.

TurkTrust issued Google certificate used in attacks.

How does Microsoft get a CA to issue certificate to them ... and only them?
Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.
Get CA to certify fake certificates: Microsoft Corporation. 2001..Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!
Other Eve.

Get CA to certify fake certificates: Microsoft Corporation. 2001..Doh.
Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!
.... and 2013.
TurkTrust issued Google certificate used in attacks.
Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!
.... and 2013.
TurkTrust issued Google certificate used in attacks.
How does Microsoft get a CA to issue certificate to them ...
Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!
.... and 2013.
TurkTrust issued Google certificate used in attacks.
How does Microsoft get a CA to issue certificate to them ...
and only them?
Secret Sharing.

Share secret among \(n \) people.

Secrecy: Any \(k-1 \) knows nothing.

Robustness: Any \(k \) knows secret.

Efficient: minimize storage.

\(k = 3 \), \(n = 5 \)

Any 3 out of 5 people will know secret.

Any 2 out of 5 people will know nothing!

Trivial: \(k = 1 \).

Tell everyone the secret!

For \(k = 2 \)???
Secret Sharing.

Share secret among n people.
Share secret among n people.

Secrecy: Any $k - 1$ knows nothing.
Secret Sharing.

Share secret among \(n \) people.

Secrecy: Any \(k - 1 \) knows nothing.

Roubustness: Any \(k \) knows secret.
Secret Sharing.

Share secret among \(n \) people.

Secrecy: Any \(k - 1 \) knows nothing.

Roubustness: Any \(k \) knows secret.

Efficient: minimize storage.
Secret Sharing.

Share secret among \(n \) people.

Secrecy: Any \(k - 1 \) knows nothing.
Roubustness: Any \(k \) knows secret.
Efficient: minimize storage.
Secret Sharing.

Share secret among \(n \) people.

Secrecy: Any \(k - 1 \) knows nothing.

Roubustness: Any \(k \) knows secret.

Efficient: minimize storage.

\(k = 3, n = 5 \)
Secret Sharing.

Share secret among n people.

Secrecy: Any $k - 1$ knows nothing.

Roubustness: Any k knows secret.

Efficient: minimize storage.

$k = 3, n = 5$

Any 3 out of 5 people will know secret.
Secret Sharing.

Share secret among n people.

Secrecy: Any $k - 1$ knows nothing.

Robustness: Any k knows secret.

Efficient: minimize storage.

$k = 3, n = 5$

Any 3 out of 5 people will know secret.
Any 2 out of 5 people will know nothing!
Share secret among \(n \) people.

Secrecy: Any \(k - 1 \) knows nothing.

Robustness: Any \(k \) knows secret.

Efficient: minimize storage.

\(k = 3, n = 5 \)

Any 3 out of 5 people will know secret.

Any 2 out of 5 people will know nothing!
Secret Sharing.

Share secret among n people.

Secrecy: Any $k - 1$ knows nothing.
Roubustness: Any k knows secret.
Efficient: minimize storage.

$k = 3, n = 5$
Any 3 out of 5 people will know secret.
Any 2 out of 5 people will know nothing!
Secret Sharing.

Share secret among n people.

Secrecy: Any $k - 1$ knows nothing.

Roubustness: Any k knows secret.

Efficient: minimize storage.

$k = 3, n = 5$
- Any 3 out of 5 people will know secret.
- Any 2 out of 5 people will know nothing!

Trivial: $k = 1$.
Secret Sharing.

Share secret among n people.

Secrecy: Any $k - 1$ knows nothing.

Robustness: Any k knows secret.

Efficient: Minimize storage.

$k = 3, n = 5$
- Any 3 out of 5 people will know secret.
- Any 2 out of 5 people will know nothing!

Trivial: $k = 1$. Tell everyone the secret!
Secret Sharing.

Share secret among n people.

Secrecy: Any $k - 1$ knows nothing.

Roubustness: Any k knows secret.

Efficient: minimize storage.

$k = 3, n = 5$

Any 3 out of 5 people will know secret.

Any 2 out of 5 people will know nothing!

Trivial: $k = 1$. Tell everyone the secret!

For $k = 2$
Secret Sharing.

Share secret among \(n \) people.

Secrecy: Any \(k - 1 \) knows nothing.
Roubustness: Any \(k \) knows secret.
Efficient: minimize storage.

\[k = 3, \ n = 5 \]
- Any 3 out of 5 people will know secret.
- Any 2 out of 5 people will know nothing!

Trivial: \(k = 1 \). Tell everyone the secret!

For \(k = 2 \) ?
Share secret among n people.

Secrecy: Any $k - 1$ knows nothing.

Roubustness: Any k knows secret.

Efficient: minimize storage.

$k = 3, n = 5$
- Any 3 out of 5 people will know secret.
- Any 2 out of 5 people will know nothing!

Trivial: $k = 1$. Tell everyone the secret!

For $k = 2$? ???
A polynomial

\[P(x) = a_dx^d + a_{d-1}x^{d-1} + \cdots + a_0. \]

is specified by coefficients \(a_d, \ldots a_0 \).

1A field is a set of elements with addition and multiplication operations, with inverses. \(GF(p) = (\{0, \ldots, p-1\}, + \pmod{p}, \cdot \pmod{p}) \).
Polynomials

A polynomial

\[P(x) = a_dx^d + a_{d-1}x^{d-1} + \cdots + a_0. \]

is specified by coefficients \(a_d, \ldots, a_0 \).

\(P(x) \) contains point \((a, b) \) if \(b = P(a) \).

\[^1\]A field is a set of elements with addition and multiplication operations, with inverses. \(GF(p) = (\{0, \ldots, p-1\}, + \ (\text{mod} \ p), \ast \ (\text{mod} \ p)) \).
A polynomial

\[P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0. \]

is specified by coefficients \(a_d, \ldots a_0 \).

\(P(x) \) contains point \((a, b) \) if \(b = P(a) \).

Polynomials over reals: \(a_1, \ldots, a_d \in \mathbb{R} \), use \(x \in \mathbb{R} \).

\(^1\)A field is a set of elements with addition and multiplication operations, with inverses. \(GF(p) = (\{0, \ldots, p-1\}, + \ (\text{mod} \ p), \ast \ (\text{mod} \ p)) \).
Polynomials

A polynomial

\[P(x) = a_dx^d + a_{d-1}x^{d-1} + \cdots + a_0. \]

is specified by coefficients \(a_d, \ldots, a_0 \).

\(P(x) \) contains point \((a, b)\) if \(b = P(a) \).

Polynomials over reals: \(a_1, \ldots, a_d \in \mathbb{R} \), use \(x \in \mathbb{R} \).

Polynomials \(P(x) \) with arithmetic modulo \(p \): \(^1\) \(a_i \in \{0, \ldots, p-1\} \) and

\[P(x) = a_dx^d + a_{d-1}x^{d-1} + \cdots + a_0 \pmod{p}, \]

for \(x \in \{0, \ldots, p-1\} \).

\(^1\)A field is a set of elements with addition and multiplication operations, with inverses. \(GF(p) = (\{0, \ldots, p-1\}, + \pmod{p}, \ast \pmod{p}) \).
Polynomial: \(P(x) = a_d x^4 + \cdots + a_0 \)

Line: \(P(x) = a_1 x + a_0 \)
Polynomial: \(P(x) = a_dx^4 + \cdots + a_0 \)

Line: \(P(x) = a_1x + a_0 = mx + b \)
Polynomial: $P(x) = a_d x^4 + \cdots + a_0$

Line: $P(x) = a_1 x + a_0 = mx + b$
Polynomial: $P(x) = a_dx^4 + \cdots + a_0$

Line: $P(x) = a_1 x + a_0 = mx + b$

Diagram of a line with equation $P(x) = .5x + 0$. The line intersects the y-axis at $y = 0$ and has a slope of $.5$. The x-axis is labeled as x. The y-axis is labeled as $P(x)$. The grid lines help to visualize the line's position and orientation on the plane.
Polynomial: $P(x) = a_dx^4 + \cdots + a_0$

Line: $P(x) = a_1x + a_0 = mx + b$

$P(x) = 0.5x + 0$

$P(x) = -1x + 3$
Polynomial: $P(x) = a_d x^4 + \cdots + a_0$

Line: $P(x) = a_1 x + a_0 = mx + b$

Parabola: $P(x) = a_2 x^2 + a_1 x + a_0$
Polynomial: \(P(x) = a_d x^4 + \cdots + a_0 \)

Line: \(P(x) = a_1 x + a_0 = mx + b \)

Parabola: \(P(x) = a_2 x^2 + a_1 x + a_0 = ax^2 + bx + c \)
Polynomial: $P(x) = a_d x^4 + \cdots + a_0$

Line: $P(x) = a_1 x + a_0 = mx + b$

Parabola: $P(x) = a_2 x^2 + a_1 x + a_0 = ax^2 + bx + c$
Polynomial: \(P(x) = a_d x^4 + \cdots + a_0 \)

Line: \(P(x) = a_1 x + a_0 = mx + b \)

Parabola: \(P(x) = a_2 x^2 + a_1 x + a_0 = ax^2 + bx + c \)

\[P(x) = 0.5x^2 - x + 0.1 \]

\[P(x) = -0.3x^2 + 1x + 1 \]
Polynomial: $P(x) = a_d x^4 + \cdots + a_0 \pmod{p}$
Polynomial: \(P(x) = a_d x^4 + \cdots + a_0 \pmod{p} \)
Polynomial: $P(x) = a_d x^4 + \cdots + a_0 \pmod{p}$

Finding an intersection.

$x + 2 \equiv 3x + 1 \pmod{5}$

$\implies 2x \equiv 1 \pmod{5}$
Polynomial: $P(x) = a_dx^4 + \cdots + a_0 \pmod{p}$

Finding an intersection.

$x + 2 \equiv 3x + 1 \pmod{5}

\implies 2x \equiv 1 \pmod{5} \implies x \equiv 3 \pmod{5}$

3 is multiplicative inverse of 2 modulo 5.
Polynomial: \(P(x) = a_d x^4 + \cdots + a_0 \pmod{p} \)

Finding an intersection.
\[x + 2 \equiv 3x + 1 \pmod{5} \]
\[\implies 2x \equiv 1 \pmod{5} \implies x \equiv 3 \pmod{5} \]
3 is multiplicative inverse of 2 modulo 5.
Good when modulus is prime!!
Two points make a line.

Fact: Exactly 1 degree \(\leq d \) polynomial contains \(d + 1 \) points. \(^2\)

\(^2\)Points with different \(x \) values.
Two points make a line.

Fact: Exactly 1 degree \(\leq d \) polynomial contains \(d + 1 \) points. \(^2\)

Two points specify a line.

\(^2\)Points with different \(x \) values.
Two points make a line.

Fact: Exactly 1 degree \(\leq d \) polynomial contains \(d + 1 \) points. \(^2\)

Two points specify a line. Three points specify a parabola.

\(^2\)Points with different \(x \) values.
Two points make a line.

Fact: Exactly 1 degree \(\leq d \) polynomial contains \(d + 1 \) points. \(^2\)
Two points specify a line. Three points specify a parabola.
Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

\(^2\)Points with different \(x \) values.
3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d + 1$ points. 3
3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d + 1$ points. ³
3 points determine a parabola.

Fact: Exactly 1 degree \(\leq d \) polynomial contains \(d + 1 \) points.
3 points determine a parabola.

Fact: Exactly 1 degree \(\leq d \) polynomial contains \(d + 1 \) points.
3 points determine a parabola.

\[P(x) = 0.5x^2 - x + 1 \]

Fact:* Exactly 1 degree \(\leq d \) polynomial contains \(d + 1 \) points. \(^3\)
3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d + 1$ points.
3 points determine a parabola.

Fact: Exactly 1 degree \(\leq d \) polynomial contains \(d + 1 \) points.
3 points determine a parabola.

\[P(x) = 0.5x^2 - x + 1 \]

Fact: Exactly 1 degree \(\leq d \) polynomial contains \(d + 1 \) points.
3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d + 1$ points. \(^3\)

\(^3\)Points with different x values.
2 points not enough.

There is $P(x)$ contains blue points and any $(0, y)$!
There is $P(x)$ contains blue points and any $(0, y)$!
2 points not enough.

There is $P(x)$ contains blue points and any $(0, y)$!
2 points not enough.

There is $P(x)$ contains blue points and any $(0, y)$!
2 points not enough.

$P(x) = -0.3x^2 + 1x + 0.5$

There is $P(x)$ contains blue points and any $(0, y)!$
2 points not enough.

There is \(P(x) \) contains blue points and any \((0, y)\)!
2 points not enough.

There is $P(x)$ contains blue points and any $(0, y)$!
2 points not enough.

There is $P(x)$ contains blue points and any $(0, y)$!
2 points not enough.

\[P(x) = 0.2x^2 - 0.5x + 1.5 \]

\[P(x) = -0.3x^2 + 1x + 0.5 \]

\[P(x) = -0.6x^2 + 1.9x - 0.1 \]
There is $P(x)$ contains blue points and *any* $(0, y)$!
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact:
Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Shamir's \(k \) out of \(n \) Scheme:
Secrets \(s \in \{0, \ldots, p-1\} \)
1. Choose \(a_0 = s \), and randomly \(a_1, \ldots, a_{k-1} \).
2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0 \) with \(a_0 = s \).
3. Share \(i \) is point \((i, P(i) \mod p)\).

Robustness:
Any \(k \) shares gives secret.
Knowing \(k \) pts \(\Rightarrow \) only one \(P(x) \) \(\Rightarrow \) evaluate \(P(0) \).

Secrecy:
Any \(k-1 \) shares give nothing.
Knowing \(\leq k-1 \) pts \(\Rightarrow \) any \(P(0) \) is possible.
For \(k = 2 \)?
Two points determine a line!
Degree 1 polynomial.
Secret is \(b \)!!
Shares are \(m(1) + b, m(2) + b, \ldots \).
Any two determine line.
And \(b \).
With only one point. \(b \) can be anything!
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

Shamir’s k out of n Scheme:
Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

Shamir’s k out of n Scheme:
Secret $s \in \{0, \ldots, p - 1\}$
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Shamir’s \(k \) out of \(n \) Scheme:
Secret \(s \in \{0, \ldots, p-1\} \)
1. Choose \(a_0 = s \), and randomly \(a_1, \ldots, a_{k-1} \).
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

Shamir’s k out of n Scheme:
Secret $s \in \{0, \ldots, p - 1\}$
1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1}.
2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots a_0$ with $a_0 = s$.

$mx + b$.
Degree 1 polynomial. Secret is b!! Shares are $m(1) + b, m(2) + b, \ldots$. Any two determine line. And b.
With only one point. b can be anything!
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Shamir’s \(k \) out of \(n \) Scheme:
Secret \(s \in \{0, \ldots, p-1\} \)
1. Choose \(a_0 = s \), and randomly \(a_1, \ldots, a_{k-1} \).
2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0 \) with \(a_0 = s \).
3. Share \(i \) is point \((i, P(i) \mod p) \).

Roubustness: Any \(k \) shares gives secret.
Knowing \(k \) pts \(\Rightarrow \) only one \(P(x) \Rightarrow \) evaluate \(P(0) \).

Secrecy: Any \(k-1 \) shares give nothing.
Knowing \(\leq k-1 \) pts \(\Rightarrow \) any \(P(0) \) is possible.

For \(k = 2 \)?
Two points determine a line!
Degree 1 polynomial.
Secret is \(b \)
Shares are \(m(1) + b, m(2) + b, \ldots \)
Any two determine line.
And \(b \).
With only one point.
\(b \) can be anything!
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

Shamir’s k out of n Scheme:
Secret $s \in \{0, \ldots, p - 1\}$
1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1}.
2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots a_0$ with $a_0 = s$.
3. Share i is point $(i, P(i) \mod p)$.
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Shamir’s \(k \) out of \(n \) Scheme:
Secret \(s \in \{0, \ldots, p - 1\} \)
 1. Choose \(a_0 = s \), and randomly \(a_1, \ldots, a_{k-1} \).
 2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0 \) with \(a_0 = s \).
 3. Share \(i \) is point \((i, P(i) \mod p)\).

Roubustness: Any \(k \) shares gives secret.
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

Shamir’s k out of n Scheme:
Secret $s \in \{0, \ldots, p-1\}$
1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1}.
2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots a_0$ with $a_0 = s$.
3. Share i is point $(i, P(i) \mod p)$.

Robustness: Any k shares gives secret.
Knowing k pts
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Shamir’s \(k \) out of \(n \) Scheme:
Secret \(s \in \{0,\ldots,p-1\} \)

1. Choose \(a_0 = s \), and randomly \(a_1,\ldots,a_{k-1} \).
2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0 \) with \(a_0 = s \).
3. Share \(i \) is point \((i, P(i) \mod p)\).

Robustness: Any \(k \) shares gives secret.
Knowing \(k \) pts \(\implies \) only one \(P(x) \)
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

Shamir’s k out of n Scheme:
Secret $s \in \{0, \ldots, p - 1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1}.
2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
3. Share i is point $(i, P(i) \mod p)$.

Robustness: Any k shares gives secret.
Knowing k pts \implies only one $P(x)$ \implies evaluate $P(0)$.

Secrecy: Any $k - 1$ shares give nothing.
Knowing $\leq k - 1$ pts \implies any $P(0)$ is possible.
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Shamir’s \(k \) out of \(n \) Scheme:
Secret \(s \in \{0, \ldots, p-1\} \)
1. Choose \(a_0 = s \), and randomly \(a_1, \ldots, a_{k-1} \).
2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0 \) with \(a_0 = s \).
3. Share \(i \) is point \((i, P(i) \mod p)\).

Robustness: Any \(k \) shares gives secret.
Knowing \(k \) pts \(\implies \) only one \(P(x) \implies \) evaluate \(P(0) \).

Secrecy: Any \(k - 1 \) shares give nothing.
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

Shamir’s k out of n Scheme:
Secret $s \in \{0, \ldots, p - 1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1}.
2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
3. Share i is point $(i, P(i) \mod p)$.

Robustness: Any k shares gives secret.

Knowing k pts \implies only one $P(x)$ \implies evaluate $P(0)$.

Secrecy: Any $k - 1$ shares give nothing.

Knowing $\leq k - 1$ pts
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Shamir’s \(k \) out of \(n \) Scheme:
Secret \(s \in \{0, \ldots, p-1\} \)
1. Choose \(a_0 = s \), and randomly \(a_1, \ldots, a_{k-1} \).
2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0 \) with \(a_0 = s \).
3. Share \(i \) is point \((i, P(i) \mod p) \).

Roubustness: Any \(k \) shares gives secret.
Knowing \(k \) pts \(\implies \) only one \(P(x) \implies \) evaluate \(P(0) \).

Secrecy: Any \(k - 1 \) shares give nothing.
Knowing \(\leq k - 1 \) pts \(\implies \) any \(P(0) \) is possible.

For \(k = 2 \)?
Two points determine a line!
\[mx + b \]
Degree 1 polynomial.
Secret is \(b \).
Shares are \(m(1) + b, m(2) + b, \ldots \).
Any two determine line.
And \(b \).
With only one point. \(b \) can be anything!
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

Shamir’s k out of n Scheme:
Secret $s \in \{0, \ldots, p - 1\}$
1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1}.
2. Let $P(x) = a_{k-1} x^{k-1} + a_{k-2} x^{k-2} + \cdots + a_0$ with $a_0 = s$.
3. Share i is point $(i, P(i) \mod p)$.

Robustness: Any k shares gives secret.
Knowing k pts \implies only one $P(x) \implies$ evaluate $P(0)$.

Secrecy: Any $k - 1$ shares give nothing.
Knowing $\leq k - 1$ pts \implies any $P(0)$ is possible.

For $k = 2$?

Two points determine a line! $mx + b$.
Degree 1 polynomial. Secret is b.
Shares are $m(1) + b, m(2) + b, \ldots$. Any two determine line. And b.
With only one point. b can be anything!
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

Shamir’s k out of n Scheme:

Secret $s \in \{0, \ldots, p - 1\}$
1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1}.
2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
3. Share i is point $(i, P(i) \mod p)$.

Robustness: Any k shares gives secret.
Knowing k pts \implies only one $P(x) \implies$ evaluate $P(0)$.

Secrecy: Any $k - 1$ shares give nothing.
Knowing $\leq k - 1$ pts \implies any $P(0)$ is possible.

For $k = 2$? Two points determine a line!
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Shamir’s \(k \) out of \(n \) Scheme:

Secret \(s \in \{0, \ldots, p - 1\} \)

1. Choose \(a_0 = s \), and randomly \(a_1, \ldots, a_{k-1} \).
2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0 \) with \(a_0 = s \).
3. Share \(i \) is point \((i, P(i) \mod p)\).

Roubustness: Any \(k \) shares gives secret.
Knowing \(k \) pts \(\implies \) only one \(P(x) \implies \) evaluate \(P(0) \).

Secrecy: Any \(k - 1 \) shares give nothing.
Knowing \(\leq k - 1 \) pts \(\implies \) any \(P(0) \) is possible.

For \(k = 2 \)? Two points determine a line! \(mx + b \).
Degree 1 polynomial.
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Shamir's \(k \) out of \(n \) Scheme:

Secret \(s \in \{0, \ldots, p-1\} \)

1. Choose \(a_0 = s \), and randomly \(a_1, \ldots, a_{k-1} \).
2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0 \) with \(a_0 = s \).
3. Share \(i \) is point \((i, P(i) \mod p)\).

Robustness: Any \(k \) shares gives secret.
Knowing \(k \) pts \(\implies \) only one \(P(x) \implies \) evaluate \(P(0) \).

Secrecy: Any \(k-1 \) shares give nothing.
Knowing \(\leq k-1 \) pts \(\implies \) any \(P(0) \) is possible.

For \(k = 2 \)? Two points determine a line! \(mx + b \).
 - Degree 1 polynomial.
 - Secret is \(b \)!!
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree \(\leq d\) polynomial with arithmetic modulo prime \(p\) contains \(d + 1\) pts.

Shamir’s \(k\) out of \(n\) Scheme:
Secret \(s \in \{0, \ldots, p - 1\}\)

1. Choose \(a_0 = s\), and randomly \(a_1, \ldots, a_{k-1}\).
2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots a_0\) with \(a_0 = s\).
3. Share \(i\) is point \((i, P(i) \mod p)\).

Roublustness: Any \(k\) shares gives secret.
Knowing \(k\) pts \(\implies\) only one \(P(x)\) \(\implies\) evaluate \(P(0)\).

Secrecy: Any \(k - 1\) shares give nothing.
Knowing \(\leq k - 1\) pts \(\implies\) any \(P(0)\) is possible.

For \(k = 2\)? Two points determine a line! \(mx + b\).
- Degree 1 polynomial.
- Secret is \(b\)!!
- Shares are \(m(1) + b\),
Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

Shamir’s k out of n Scheme:
Secret $s \in \{0, \ldots, p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1}.
2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
3. Share i is point $(i, P(i) \mod p)$.

Roubustness: Any k shares gives secret.
Knowing k pts \implies only one $P(x) \implies$ evaluate $P(0)$.

Secrecy: Any $k-1$ shares give nothing.
Knowing $\leq k-1$ pts \implies any $P(0)$ is possible.

For $k = 2$? Two points determine a line! $mx + b$.

- Degree 1 polynomial.
- Secret is b!!
- Shares are $m(1) + b, m(2) + b,$
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Shamir’s \(k \) out of \(n \) Scheme:
Secret \(s \in \{0, \ldots, p-1\} \)
1. Choose \(a_0 = s \), and randomly \(a_1, \ldots, a_{k-1} \).
2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots a_0 \) with \(a_0 = s \).
3. Share \(i \) is point \((i, P(i) \mod p)\).

Robustness: Any \(k \) shares gives secret.
Knowing \(k \) pts \(\implies \) only one \(P(x) \implies \) evaluate \(P(0) \).

Secrecy: Any \(k-1 \) shares give nothing.
Knowing \(\leq k-1 \) pts \(\implies \) any \(P(0) \) is possible.

For \(k = 2 \)? Two points determine a line! \(mx + b \).
 - Degree 1 polynomial.
 - Secret is \(b \)!!
 - Shares are \(m(1) + b, m(2) + b, \ldots \).
Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Shamir’s \(k \) out of \(n \) Scheme:
Secret \(s \in \{0, \ldots, p-1\} \)
1. Choose \(a_0 = s \), and randomly \(a_1, \ldots, a_{k-1} \).
2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0 \) with \(a_0 = s \).
3. Share \(i \) is point \((i, P(i) \mod p)\).

Robustness: Any \(k \) shares gives secret.
Knowing \(k \) pts \(\implies \) only one \(P(x) \implies \) evaluate \(P(0) \).

Secrecy: Any \(k-1 \) shares give nothing.
Knowing \(\leq k-1 \) pts \(\implies \) any \(P(0) \) is possible.

For \(k = 2 \)? Two points determine a line! \(mx + b \).
- Degree 1 polynomial.
- Secret is \(b \)!!
- Shares are \(m(1) + b, m(2) + b, \ldots \)
Any two determine line.
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Shamir’s \(k \) out of \(n \) Scheme:
Secret \(s \in \{0, \ldots, p - 1\} \)

1. Choose \(a_0 = s \), and randomly \(a_1, \ldots, a_{k-1} \).
2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0 \) with \(a_0 = s \).
3. Share \(i \) is point \((i, P(i) \mod p)\).

Roublustness: Any \(k \) shares gives secret.
 Knowing \(k \) pts \(\implies \) only one \(P(x) \implies \) evaluate \(P(0) \).

Secrecy: Any \(k - 1 \) shares give nothing.
Knowing \(\leq k - 1 \) pts \(\implies \) any \(P(0) \) is possible.

For \(k = 2 \)? Two points determine a line! \(mx + b \).

Degree 1 polynomial.
Secret is \(b \)!!
Shares are \(m(1) + b, m(2) + b, \ldots \)
Any two determine line. And \(b \).
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Shamir’s \(k \) out of \(n \) Scheme:
Secret \(s \in \{0, \ldots, p-1\} \)
1. Choose \(a_0 = s \), and randomly \(a_1, \ldots, a_{k-1} \).
2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0 \) with \(a_0 = s \).
3. Share \(i \) is point \((i, P(i) \mod p)\).

Roubustness: Any \(k \) shares gives secret.
Knowing \(k \) pts \(\implies \) only one \(P(x) \implies \) evaluate \(P(0) \).

Secrecy: Any \(k-1 \) shares give nothing.
Knowing \(\leq k-1 \) pts \(\implies \) any \(P(0) \) is possible.

For \(k = 2 \)? Two points determine a line! \(mx + b \).
 Degree 1 polynomial.
 Secret is \(b \)!
 Shares are \(m(1) + b, m(2) + b, \ldots \)
Any two determine line. And \(b \).
With only one point.
Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Shamir’s k out of n Scheme:
Secret $s \in \{0, \ldots, p-1\}$
1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1}.
2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots a_0$ with $a_0 = s$.
3. Share i is point $(i, P(i) \mod p)$.

Roublustness: Any k shares gives secret.
Knowing k pts \implies only one $P(x) \implies$ evaluate $P(0)$.

Secrecy: Any $k-1$ shares give nothing.
Knowing $\leq k-1$ pts \implies any $P(0)$ is possible.

For $k = 2$? Two points determine a line! $mx + b$.
Degree 1 polynomial.
Secret is b!
Shares are $m(1) + b$, $m(2) + b$, \ldots
Any two determine line. And b.
With only one point. b can be anything!
We will work with polynomials with arithmetic modulo p.
Homework 4. Problem 2.

What is c in terms of a and b?

$c = 5a + 10b$!!

Idea: a and b, 1 for one modulus and 0 for (all) others. See Chinese Remainder Theorem: many moduli.
Homework 4. Problem 2.

\[a = 1 \pmod{5} \]
Homework 4. Problem 2.

\(a = 1 \pmod{5} \quad a = 0 \pmod{8}\)

What is \(c\) in terms of \(a\) and \(b\)?

\(c = 5a + 10b\)!!

Idea: \(a\) and \(b\), 1 for one modulus and 0 for (all) others.
See Chinese Remainder Theorem: many moduli.
Homework 4. Problem 2.

\[a = 1 \pmod{5} \quad a = 0 \pmod{8} \]
\[b = 0 \pmod{5} \]

What is \(c \) in terms of \(a \) and \(b \)?

\[c = 5a + 10b \]

Idea: \(a \) and \(b \), 1 for one modulus and 0 for (all) others. See Chinese Remainder Theorem: many moduli.
Homework 4. Problem 2.

\[a = 1 \pmod{5} \quad a = 0 \pmod{8} \]
\[b = 0 \pmod{5} \quad b = 1 \pmod{8} \]
Homework 4. Problem 2.

\[
\begin{align*}
 a &= 1 \pmod{5} & a &= 0 \pmod{8} \\
 b &= 0 \pmod{5} & b &= 1 \pmod{8} \\
 c &= 5 \pmod{5} & c &= 10 \pmod{8}
\end{align*}
\]

What is \(c \) in terms of \(a \) and \(b \)?

\[
\begin{align*}
 c &= 5a + 10b
\end{align*}
\]
Homework 4. Problem 2.

\[a = 1 \pmod{5} \quad a = 0 \pmod{8} \]
\[b = 0 \pmod{5} \quad b = 1 \pmod{8} \]
\[c = 5 \pmod{5} \quad c = 10 \pmod{8} \]

What is \(c \) in terms of \(a \) and \(b \)?

\[c = 5a + 10b \]
Homework 4. Problem 2.

\[a = 1 \pmod{5} \quad a = 0 \pmod{8} \]
\[b = 0 \pmod{5} \quad b = 1 \pmod{8} \]
\[c = 5 \pmod{5} \quad c = 10 \pmod{8} \]

What is \(c \) in terms of \(a \) and \(b \)?
Homework 4. Problem 2.

\[a = 1 \pmod{5} \quad a = 0 \pmod{8} \]
\[b = 0 \pmod{5} \quad b = 1 \pmod{8} \]
\[c = 5 \pmod{5} \quad c = 10 \pmod{8} \]

What is \(c \) in terms of \(a \) and \(b \)?

\[c = \]
Homework 4. Problem 2.

\[a = 1 \pmod{5} \quad a = 0 \pmod{8} \]
\[b = 0 \pmod{5} \quad b = 1 \pmod{8} \]
\[c = 5 \pmod{5} \quad c = 10 \pmod{8} \]

What is \(c \) in terms of \(a \) and \(b \)?

\[c = 5a + \]
Homework 4. Problem 2.

\[a = 1 \pmod{5} \quad a = 0 \pmod{8} \]
\[b = 0 \pmod{5} \quad b = 1 \pmod{8} \]
\[c = 5 \pmod{5} \quad c = 10 \pmod{8} \]

What is \(c \) in terms of \(a \) and \(b \)?

\[c = 5a + 10b \]
Excursion.

Homework 4. Problem 2.

\[a = 1 \pmod{5} \quad a = 0 \pmod{8} \]
\[b = 0 \pmod{5} \quad b = 1 \pmod{8} \]
\[c = 5 \pmod{5} \quad c = 10 \pmod{8} \]

What is \(c \) in terms of \(a \) and \(b \)?

\[c = 5a + 10b \]
Homework 4. Problem 2.

\[a = 1 \pmod{5} \quad a = 0 \pmod{8} \]
\[b = 0 \pmod{5} \quad b = 1 \pmod{8} \]
\[c = 5 \pmod{5} \quad c = 10 \pmod{8} \]

What is \(c \) in terms of \(a \) and \(b \)?

\[c = 5a + 10b \]

Idea: \(a \) and \(b \), 1 for one modulus and 0 for (all) others.
Homework 4. Problem 2.

\[a = 1 \pmod{5} \quad a = 0 \pmod{8} \]
\[b = 0 \pmod{5} \quad b = 1 \pmod{8} \]
\[c = 5 \pmod{5} \quad c = 10 \pmod{8} \]

What is \(c \) in terms of \(a \) and \(b \)?

\[c = 5a + 10b \]

Idea: \(a \) and \(b \), 1 for one modulus and 0 for (all) others.

See Chinese Remainder Theorem: many moduli.
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.

$$
\Delta_i(x) = \begin{cases}
1, & \text{if } x = x_i. \\
0, & \text{if } x = x_j \text{ for } j \neq i.
\end{cases}
$$
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.

$$\Delta_i(x) = \begin{cases}
1, & \text{if } x = x_i. \\
0, & \text{if } x = x_j \text{ for } j \neq i. \\
?, & \text{otherwise.}
\end{cases} \quad (1)$$
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.

$$
\Delta_i(x) = \begin{cases}
1, & \text{if } x = x_i. \\
0, & \text{if } x = x_j \text{ for } j \neq i. \\
?, & \text{otherwise.}
\end{cases}
$$

Given $d + 1$ points, combine Δ_i functions to contain all points?
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$

(1)

Given $d + 1$ points, combine Δ_i functions to contain all points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$.
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.

$$\Delta_i(x) = \begin{cases}
1, & \text{if } x = x_i. \\
0, & \text{if } x = x_j \text{ for } j \neq i. \\
?, & \text{otherwise.}
\end{cases} \quad (1)$$

Given $d + 1$ points, combine Δ_i functions to contain all points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$.

Will $y_1 \Delta_1(x)$ contain (x_1, y_1)?
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$ \hspace{1cm} (1)$$

Given $d + 1$ points, combine Δ_i functions to contain all points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$.

Will $y_1 \Delta_1(x)$ contain (x_1, y_1)? And is 0 for other x_i?
Delta Polynomials: Concept.

For set of \(x\)-values, \(x_1, \ldots, x_{d+1}\).

\[
\Delta_i(x) = \begin{cases}
1, & \text{if } x = x_i. \\
0, & \text{if } x = x_j \text{ for } j \neq i. \\
?, & \text{otherwise.}
\end{cases}
\]

(1)

Given \(d + 1\) points, combine \(\Delta_i\) functions to contain all points? \((x_1, y_1), \ldots, (x_{d+1}, y_{d+1})\).

Will \(y_1 \Delta_1(x)\) contain \((x_1, y_1)\)? And is 0 for other \(x_i\)!
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.

\[
\Delta_i(x) = \begin{cases}
1, & \text{if } x = x_i. \\
0, & \text{if } x = x_j \text{ for } j \neq i. \\
?, & \text{otherwise}.
\end{cases} \tag{1}
\]

Given $d + 1$ points, combine Δ_i functions to contain all points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$.

Will $y_1 \Delta_1(x)$ contain (x_1, y_1)? And is 0 for other x_i!

Will $y_2 \Delta_2(x)$ contain (x_2, y_2)?
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.

$$
\Delta_i(x) = \begin{cases}
1, & \text{if } x = x_i. \\
0, & \text{if } x = x_j \text{ for } j \neq i. \\
?, & \text{otherwise.}
\end{cases}
$$

(1)

Given $d + 1$ points, combine Δ_i functions to contain all points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$.

Will $y_1 \Delta_1(x)$ contain (x_1, y_1)? And is 0 for other x_i!

Will $y_2 \Delta_2(x)$ contain (x_2, y_2)? And is 0 for other x_i!
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases} \quad (1)$$

Given $d + 1$ points, combine Δ_i functions to contain all points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$.

Will $y_1 \Delta_1(x)$ contain (x_1, y_1)? And is 0 for other x_i!

Will $y_2 \Delta_2(x)$ contain (x_2, y_2)? And is 0 for other x_i!
Delta Polynomials: Concept.

For set of \(x \)-values, \(x_1, \ldots, x_{d+1} \).

\[
\Delta_i(x) = \begin{cases}
1, & \text{if } x = x_i. \\
0, & \text{if } x = x_j \text{ for } j \neq i. \\
?, & \text{otherwise}.
\end{cases}
\]

(1)

Given \(d + 1 \) points, combine \(\Delta_i \) functions to contain all points?
\((x_1, y_1), \ldots, (x_{d+1}, y_{d+1})\).

Will \(y_1 \Delta_1(x) \) contain \((x_1, y_1)\)? And is 0 for other \(x_i \)!

Will \(y_2 \Delta_2(x) \) contain \((x_2, y_2)\)? And is 0 for other \(x_i \)!

Does \(y_1 \Delta_1(x) + y_2 \Delta_2(x) \) contain
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.

$$
\Delta_i(x) = \begin{cases}
1, & \text{if } x = x_i. \\
0, & \text{if } x = x_j \text{ for } j \neq i. \\
?, & \text{otherwise.}
\end{cases}
$$ \hspace{1cm} (1)

Given $d + 1$ points, combine Δ_i functions to contain all points?

$(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$.

Will $y_1 \Delta_1(x)$ contain (x_1, y_1)? And is 0 for other x_i!

Will $y_2 \Delta_2(x)$ contain (x_2, y_2)? And is 0 for other x_i!

Does $y_1 \Delta_1(x) + y_2 \Delta_2(x)$ contain (x_1, y_1)?
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.

\[
\Delta_i(x) = \begin{cases}
1, & \text{if } x = x_i. \\
0, & \text{if } x = x_j \text{ for } j \neq i. \\
?, & \text{otherwise.}
\end{cases}
\] (1)

Given $d + 1$ points, combine Δ_i functions to contain all points?

$(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$.

Will $y_1 \Delta_1(x)$ contain (x_1, y_1)? And is 0 for other x_i!

Will $y_2 \Delta_2(x)$ contain (x_2, y_2)? And is 0 for other x_i!

Does $y_1 \Delta_1(x) + y_2 \Delta_2(x)$ contain (x_1, y_1)? and (x_2, y_2)?
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.

$$\Delta_i(x) = \begin{cases}
1, & \text{if } x = x_i. \\
0, & \text{if } x = x_j \text{ for } j \neq i. \\
?, & \text{otherwise}.
\end{cases} \quad (1)$$

Given $d + 1$ points, combine Δ_i functions to contain all points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$.

Will $y_1 \Delta_1(x)$ contain (x_1, y_1)? And is 0 for other x_i!

Will $y_2 \Delta_2(x)$ contain (x_2, y_2)? And is 0 for other x_i!

Does $y_1 \Delta_1(x) + y_2 \Delta_2(x)$ contain (x_1, y_1)? and (x_2, y_2)?

See the idea?
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$ \hspace{1cm} (1)

Given $d + 1$ points, combine Δ_i functions to contain all points?

$(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$.

Will $y_1 \Delta_1(x)$ contain (x_1, y_1)? And is 0 for other x_i!

Will $y_2 \Delta_2(x)$ contain (x_2, y_2)? And is 0 for other x_i!

Does $y_1 \Delta_1(x) + y_2 \Delta_2(x)$ contain (x_1, y_1)? and (x_2, y_2)?

See the idea? Function that contains all points?
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.

\[\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ \text{?}, & \text{otherwise}. \end{cases} \quad (1) \]

Given $d + 1$ points, combine Δ_i functions to contain all points?

$$(x_1, y_1), \ldots, (x_{d+1}, y_{d+1}).$$

Will $y_1 \Delta_1(x)$ contain (x_1, y_1)? And is 0 for other x_i!

Will $y_2 \Delta_2(x)$ contain (x_2, y_2)? And is 0 for other x_i!

Does $y_1 \Delta_1(x) + y_2 \Delta_2(x)$ contain

(x_1, y_1)? and (x_2, y_2)?

See the idea? Function that contains all points?

\[P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) \]
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.

$$\Delta_i(x) = \begin{cases}
1, & \text{if } x = x_i. \\
0, & \text{if } x = x_j \text{ for } j \neq i. \\
?, & \text{otherwise.}
\end{cases}$$ \hspace{1cm} (1)

Given $d+1$ points, combine Δ_i functions to contain all points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$.

Will $y_1 \Delta_1(x)$ contain (x_1, y_1)? And is 0 for other x_i!

Will $y_2 \Delta_2(x)$ contain (x_2, y_2)? And is 0 for other x_i!

Does $y_1 \Delta_1(x) + y_2 \Delta_2(x)$ contain (x_1, y_1)? and (x_2, y_2)?

See the idea? Function that contains all points?

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) \ldots + y_{d+1} \Delta_{d+1}(x).$$
Delta functions: in pictures.

Points: (1, 1.5), (2, 2), (3, 4).

Scale each Δ_i function and add to contain points.
Delta functions: in pictures.

Points: (1, 1.5), (2, 2), (3, 4).

Scale each Δ_i function and add to contain points.
Delta functions: in pictures.

Points: (1, 1.5), (2, 2), (3, 4).

Scale each Δ_i function and add to contain points.
Delta functions: in pictures.

Points: (1, 1.5), (2, 2), (3, 4).
Delta functions: in pictures.

Points: $(1, 1.5), (2, 2), (3, 4)$.

Scale each Δ_i function and add to contain points.
Delta functions and polynomials.

Degree 1 polynomial, $P(x)$, that contains (1,3) and (3,4)?

$\Delta_1(x) \equiv 1 \pmod{5}$

$\Delta_1(1) = 1$

$\Delta_1(3) = 0$

$\Delta_2(x) \equiv 3(x - 1) \pmod{5}$

$\Delta_2(1) = 0$

$\Delta_2(3) = 1$

$P(x) = 3\Delta_1(x) + 4\Delta_2(x)$

$P(x) = (x - 3) + 2(x - 1) \equiv 3x \pmod{5}$.
Delta functions and polynomials.

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?

Work modulo 5.
Delta functions and polynomials.

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?

Work modulo 5.

$\Delta_1(x)$?
Delta functions and polynomials.

Degree 1 polynomial, \(P(x) \), that contains \((1,3)\) and \((3,4)\)?

Work modulo 5.

\[\Delta_1(x) \]
\[\Delta_1(1) = 1 \]
Delta functions and polynomials.

Degree 1 polynomial, \(P(x) \), that contains \((1, 3)\) and \((3, 4)\)?

Work modulo 5.

\[\Delta_1(x) ? \]
\[\Delta_1(1) = 1 \quad \Delta_1(3) = 0. \]
Delta functions and polynomials.

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$? Work modulo 5.

$\Delta_1(x)$?

$\Delta_1(1) = 1 \; \Delta_1(3) = 0.$
Delta functions and polynomials.

Degree 1 polynomial, \(P(x) \), that contains \((1,3)\) and \((3,4)\)?

Work modulo 5.

\[\Delta_1(x) \]

\[\Delta_1(1) = 1 \quad \Delta_1(3) = 0. \]

\(\Delta_1(x) \) as polynomial?
Delta functions and polynomials.

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?

Work modulo 5.

$\Delta_1(x)$?

$\Delta_1(1) = 1$ $\Delta_1(3) = 0$.

$\Delta_1(x)$ as polynomial? Focus on 0!
Delta functions and polynomials.

Degree 1 polynomial, \(P(x) \), that contains (1,3) and (3,4)?

Work modulo 5.

\[\Delta_1(x) \text{ ?} \]
\[\Delta_1(1) = 1 \quad \Delta_1(3) = 0. \]

\(\Delta_1(x) \) as polynomial? Focus on 0!

\[f(x) = (x - 3)? \]
Delta functions and polynomials.

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.

$\Delta_1(x)$?

$\Delta_1(1) = 1 \Delta_1(3) = 0$.

$\Delta_1(x)$ as polynomial? Focus on 0!

$f(x) = (x - 3)$?

$f(3) = 0$!
Delta functions and polynomials.

Degree 1 polynomial, $P(x)$, that contains (1,3) and (3,4)?
Work modulo 5.

$\Delta_1(x)$?

$\Delta_1(1) = 1$ $\Delta_1(3) = 0$.

$\Delta_1(x)$ as polynomial? Focus on 0!

$f(x) = (x - 3)$?

$f(3) = 0!$ $f(1) = -2 = 3 \pmod{5}$!
Delta functions and polynomials.

Degree 1 polynomial, $P(x)$, that contains $(1, 3)$ and $(3, 4)$?

Work modulo 5.

$\Delta_1(x)$?

$\Delta_1(1) = 1 \Delta_1(3) = 0$.

$\Delta_1(x)$ as polynomial? Focus on 0!

$f(x) = (x - 3)$?

$f(3) = 0! f(1) = -2 = 3 \pmod{5}$!

Well,
Delta functions and polynomials.

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?

Work modulo 5.

$\Delta_1(x)$?

$\Delta_1(1) = 1 \ \Delta_1(3) = 0.$

$\Delta_1(x)$ as polynomial? Focus on 0!

$f(x) = (x - 3)$?

$f(3) = 0! \ f(1) = -2 = 3 \mod 5!$

Well, almost.
Delta functions and polynomials.

Degree 1 polynomial, $P(x)$, that contains (1,3) and (3,4)?

Work modulo 5.

$\Delta_1(x)$?

$\Delta_1(1) = 1$ $\Delta_1(3) = 0$.

$\Delta_1(x)$ as polynomial? Focus on 0!

$f(x) = (x - 3)$?

$f(3) = 0$! $f(1) = -2 = 3 \pmod{5}$!

Well, almost.

Divide by 3!
Delta functions and polynomials.

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?

Work modulo 5.

$\Delta_1(x)$?

$\Delta_1(1) = 1 \Delta_1(3) = 0$.

$\Delta_1(x)$ as polynomial? Focus on 0!

$f(x) = (x - 3)$?

$f(3) = 0! \; f(1) = -2 = 3 \; \text{(mod 5)}$!

Well, almost.

Divide by 3!

$\Delta_1(x) = f(x) \ast 3^{-1}$
Delta functions and polynomials.

Degree 1 polynomial, \(P(x) \), that contains \((1,3)\) and \((3,4)\)?

Work modulo 5.

\[\Delta_1(x) \]
\[\Delta_1(1) = 1 \quad \Delta_1(3) = 0. \]

\(\Delta_1(x) \) as polynomial? Focus on 0!

\[f(x) = (x - 3)? \]

\[f(3) = 0! \quad f(1) = -2 = 3 \mod 5! \]

Well, almost.

Divide by 3!

\[\Delta_1(x) = f(x) \times 3^{-1} = 2(x - 3) \mod 5 \]
Delta functions and polynomials.

Degree 1 polynomial, \(P(x) \), that contains \((1,3)\) and \((3,4)\)?

Work modulo 5.

\(\Delta_1(x) \)?

\[\Delta_1(1) = 1 \quad \Delta_1(3) = 0. \]

\(\Delta_1(x) \) as polynomial? Focus on 0!

\[f(x) = (x - 3)? \]

\[f(3) = 0! \quad f(1) = -2 = 3 \pmod{5}! \]

Well, almost.

Divide by 3!

\[\Delta_1(x) = f(x) \cdot 3^{-1} = 2(x - 3) \pmod{5} \]

\[\Delta_2(x) = 3(x - 1) \pmod{5}. \]
Delta functions and polynomials.

Degree 1 polynomial, \(P(x) \), that contains \((1,3)\) and \((3,4)\)?

Work modulo 5.

\[
\Delta_1(x)? \quad \Delta_1(1) = 1 \quad \Delta_1(3) = 0.
\]

\(\Delta_1(x) \) as polynomial? Focus on 0!

\[
f(x) = (x - 3) ?
\]

\[
f(3) = 0! \quad f(1) = -2 = 3 \pmod{5}!
\]

Well, almost.

Divide by 3!

\[
\Delta_1(x) = f(x) \times 3^{-1} = 2(x - 3) \pmod{5}
\]

\[
\Delta_2(x) = 3(x - 1) \pmod{5}.
\]

\[
\Delta_1(1) = 1, \quad \Delta_1(3) = 0
\]
Delta functions and polynomials.

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?

Work modulo 5.

$\Delta_1(x)$?

$\Delta_1(1) = 1 \Delta_1(3) = 0$.

$\Delta_1(x)$ as polynomial? Focus on 0!

$f(x) = (x - 3)$?

$f(3) = 0! \quad f(1) = -2 = 3 \pmod{5}$!

Well, almost.

Divide by 3!

$\Delta_1(x) = f(x) \times 3^{-1} = 2(x - 3) \pmod{5}$

$\Delta_2(x) = 3(x - 1) \pmod{5}$.

$\Delta_1(1) = 1, \quad \Delta_1(3) = 0$

$\Delta_2(1) = 0, \quad \Delta_2(3) = 1$
Delta functions and polynomials.

Degree 1 polynomial, \(P(x) \), that contains \((1,3)\) and \((3,4)\)?

Work modulo 5.

\(\Delta_1(x) \) ?
\(\Delta_1(1) = 1 \), \(\Delta_1(3) = 0 \).

\(\Delta_1(x) \) as polynomial? Focus on 0!

\(f(x) = (x - 3) \) ?
\(f(3) = 0 \), \(f(1) = -2 = 3 \) (mod 5)!

Well, almost.

Divide by 3!

\(\Delta_1(x) = f(x) \times 3^{-1} = 2(x - 3) \) (mod 5)

\(\Delta_2(x) = 3(x - 1) \) (mod 5).

\(\Delta_1(1) = 1 \), \(\Delta_1(3) = 0 \)
\(\Delta_2(1) = 0 \), \(\Delta_2(3) = 1 \)
Delta functions and polynomials.

Degree 1 polynomial, $P(x)$, that contains (1,3) and (3,4)?

Work modulo 5.

$\Delta_1(x) = f(x) * 3^{-1} = 2(x - 3) \pmod{5}$

$\Delta_2(x) = 3(x - 1) \pmod{5}$.

$P(x) = 3\Delta_1(x) + 4\Delta_2(x)$
Delta functions and polynomials.

Degree 1 polynomial, \(P(x) \), that contains \((1, 3)\) and \((3, 4)\)?

Work modulo 5.

\[\Delta_1(x) ? \]
\[\Delta_1(1) = 1 \quad \Delta_1(3) = 0. \]

\(\Delta_1(x) \) as polynomial? Focus on 0!

\[f(x) = (x - 3)? \]

\[f(3) = 0! \quad f(1) = -2 = 3 \pmod{5}! \]

Well, almost.

Divide by 3!

\[\Delta_1(x) = f(x) \times 3^{-1} = 2(x - 3) \pmod{5} \]

\[\Delta_2(x) = 3(x - 1) \pmod{5}. \]

\[\Delta_1(1) = 1, \quad \Delta_1(3) = 0 \]
\[\Delta_2(1) = 0, \quad \Delta_2(3) = 1 \]

\[P(x) = 3\Delta_1(x) + 4\Delta_2(x) \]

\[P(x) = (x - 3) + 2(x - 1) \]
Delta functions and polynomials.

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?

Work modulo 5.

$\Delta_1(x)$?

$\Delta_1(1) = 1$ $\Delta_1(3) = 0$.

$\Delta_1(x)$ as polynomial? Focus on 0!

$f(x) = (x - 3)$?

$f(3) = 0$! $f(1) = -2 = 3 \pmod{5}$!

Well, almost.

Divide by 3!

$\Delta_1(x) = f(x) \times 3^{-1} = 2(x - 3) \pmod{5}$

$\Delta_2(x) = 3(x - 1) \pmod{5}$.

$\Delta_1(1) = 1$, $\Delta_1(3) = 0$

$\Delta_2(1) = 0$, $\Delta_2(3) = 1$

$P(x) = 3\Delta_1(x) + 4\Delta_2(x)$

$P(x) = (x - 3) + 2(x - 1) = 3x \pmod{5}$.
The Construction: Interpolation!

For a quadratic, $a_2 x^2 + a_1 x + a_0$ hits (1,3); (2,4); (3,0).
The Construction: Interpolation!

For a quadratic, \(a_2 x^2 + a_1 x + a_0 \) hits \((1, 3); (2, 4); (3, 0)\).
Find \(\Delta_1(x) \) polynomial contains \((1, 1); (2, 0); (3, 0)\).
The Construction: Interpolation!

For a quadratic, \(a_2 x^2 + a_1 x + a_0 \) hits \((1,3); (2,4); (3,0)\).
Find \(\Delta_1(x) \) polynomial contains \((1,1); (2,0); (3,0)\).
Try \((x-2)(x-3) \pmod{5}\).

\[
P(x) = 3 \Delta_1(x) + 4 \Delta_2(x) + 0 \Delta_3(x) \mod 5.
\]
The Construction: Interpolation!

For a quadratic, \(a_2 x^2 + a_1 x + a_0 \) hits \((1, 3); (2, 4); (3, 0)\).

Find \(\Delta_1(x) \) polynomial contains \((1, 1); (2, 0); (3, 0)\).

Try \((x - 2)(x - 3)\) (mod 5).

Value is 0 at 2 and 3.
The Construction: Interpolation!

For a quadratic, \(a_2 x^2 + a_1 x + a_0 \) hits \((1,3);(2,4);(3,0)\).

Find \(\Delta_1(x) \) polynomial contains \((1,1);(2,0);(3,0)\).

Try \((x - 2)(x - 3) \pmod{5}\).

Value is 0 at 2 and 3. Value is 2 at 1.
For a quadratic, \(a_2 x^2 + a_1 x + a_0 \) hits \((1, 3); (2, 4); (3, 0)\).

Find \(\Delta_1(x) \) polynomial contains \((1, 1); (2, 0); (3, 0)\).

Try \((x - 2)(x - 3) \pmod{5}\).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
The Construction: Interpolation!

For a quadratic, \(a_2 x^2 + a_1 x + a_0 \) hits \((1,3); (2,4); (3,0)\).
Find \(\Delta_1(x) \) polynomial contains \((1,1); (2,0); (3,0)\).
Try \((x - 2)(x - 3) \mod 5\).
Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
\(\Delta_1(x) = (x - 2)(x - 3)(3) \mod 5 \)
For a quadratic, $a_2 x^2 + a_1 x + a_0$ hits $(1,3); (2,4); (3,0)$.
Find $\Delta_1(x)$ polynomial contains $(1,1); (2,0); (3,0)$.
Try $(x - 2)(x - 3) \pmod{5}$.
Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
$\Delta_1(x) = (x - 2)(x - 3)(3) \pmod{5}$ contains $(1,1); (2,0); (3,0)$.
The Construction: Interpolation!

For a quadratic, \(a_2 x^2 + a_1 x + a_0 \) hits \((1,3); (2,4); (3,0)\).
Find \(\Delta_1(x) \) polynomial contains \((1,1); (2,0); (3,0)\).

Try \((x-2)(x-3) \mod 5\).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
\[\Delta_1(x) = (x-2)(x-3)(3) \mod 5 \] contains \((1,1); (2,0); (3,0)\).
\[\Delta_2(x) = (x-1)(x-3)(4) \mod 5 \] contains \((1,0); (2,1); (3,0)\).
The Construction: Interpolation!

For a quadratic, \(a_2x^2 + a_1x + a_0\) hits \((1,3);(2,4);(3,0)\).
Find \(\Delta_1(x)\) polynomial contains \((1,1);(2,0);(3,0)\).

Try \((x-2)(x-3) \pmod{5}\).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

So “Divide by 2” or multiply by 3.
\(\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}\) contains \((1,1);(2,0);(3,0)\).

\(\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}\) contains \((1,0);(2,1);(3,0)\).

\(\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}\) contains \((1,0);(2,0);(3,1)\).
For a quadratic, $a_2 x^2 + a_1 x + a_0$ hits $(1,3); (2,4); (3,0)$. Find $\Delta_1(x)$ polynomial contains $(1,1); (2,0); (3,0)$. Try $(x - 2)(x - 3) \pmod{5}$. Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So “Divide by 2” or multiply by 3.
$\Delta_1(x) = (x - 2)(x - 3)(3) \pmod{5}$ contains $(1,1); (2,0); (3,0)$.
$\Delta_2(x) = (x - 1)(x - 3)(4) \pmod{5}$ contains $(1,0); (2,1); (3,0)$.
$\Delta_3(x) = (x - 1)(x - 2)(3) \pmod{5}$ contains $(1,0); (2,0); (3,1)$. But wanted to hit $(1,3); (2,4); (3,0)!$
The Construction: Interpolation!

For a quadratic, $a_2 x^2 + a_1 x + a_0$ hits $(1, 3); (2, 4); (3, 0)$.
Find $\Delta_1(x)$ polynomial contains $(1, 1); (2, 0); (3, 0)$.

Try $(x - 2)(x - 3)$ (mod 5).
Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
$\Delta_1(x) = (x - 2)(x - 3)(3)$ (mod 5) contains $(1, 1); (2, 0); (3, 0)$.
$\Delta_2(x) = (x - 1)(x - 3)(4)$ (mod 5) contains $(1, 0); (2, 1); (3, 0)$.
$\Delta_3(x) = (x - 1)(x - 2)(3)$ (mod 5) contains $(1, 0); (2, 0); (3, 1)$.

But wanted to hit $(1, 3); (2, 4); (3, 0)$!

$P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$ works.
The Construction: Interpolation!

For a quadratic, \(a_2x^2 + a_1x + a_0 \) hits \((1,3); (2,4); (3,0)\).

Find \(\Delta_1(x) \) polynomial contains \((1,1); (2,0); (3,0)\).

Try \((x - 2)(x - 3) \pmod{5}\).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

So “Divide by 2” or multiply by 3.

\(\Delta_1(x) = (x - 2)(x - 3)(3) \pmod{5} \) contains \((1,1); (2,0); (3,0)\).

\(\Delta_2(x) = (x - 1)(x - 3)(4) \pmod{5} \) contains \((1,0); (2,1); (3,0)\).

\(\Delta_3(x) = (x - 1)(x - 2)(3) \pmod{5} \) contains \((1,0); (2,0); (3,1)\).

But wanted to hit \((1,3); (2,4); (3,0)!\)

\(P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x) \) works.

Same as before?
The Construction: Interpolation!

For a quadratic, \(a_2 x^2 + a_1 x + a_0 \) hits \((1, 3); (2, 4); (3, 0)\).

Find \(\Delta_1(x) \) polynomial contains \((1, 1); (2, 0); (3, 0)\).

Try \((x − 2)(x − 3) \pmod{5}\).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
\(\Delta_1(x) = (x − 2)(x − 3)(3) \pmod{5} \) contains \((1, 1); (2, 0); (3, 0)\).
\(\Delta_2(x) = (x − 1)(x − 3)(4) \pmod{5} \) contains \((1, 0); (2, 1); (3, 0)\).
\(\Delta_3(x) = (x − 1)(x − 2)(3) \pmod{5} \) contains \((1, 0); (2, 0); (3, 1)\).

But wanted to hit \((1, 3); (2, 4); (3, 0)\!\)
\(P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x) \) works.

Same as before?

...after a lot of calculations...
The Construction: Interpolation!

For a quadratic, \(a_2 x^2 + a_1 x + a_0 \) hits \((1,3); (2,4); (3,0)\).

Find \(\Delta_1(x) \) polynomial contains \((1,1); (2,0); (3,0)\).

Try \((x-2)(x-3) \pmod{5}\).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

So “Divide by 2” or multiply by 3.

\[
\Delta_1(x) = (x-2)(x-3)(3) \pmod{5} \text{ contains } (1,1); (2,0); (3,0).
\]

\[
\Delta_2(x) = (x-1)(x-3)(4) \pmod{5} \text{ contains } (1,0); (2,1); (3,0).
\]

\[
\Delta_3(x) = (x-1)(x-2)(3) \pmod{5} \text{ contains } (1,0); (2,0); (3,1).
\]

But wanted to hit \((1,3); (2,4); (3,0)!\)

\[
P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x) \text{ works.}
\]

Same as before?

...after a lot of calculations... \(P(x) = 2x^2 + 1x + 4 \pmod{5} \).
The Construction: Interpolation!

For a quadratic, \(a_2 x^2 + a_1 x + a_0 \) hits \((1,3);(2,4);(3,0)\).
Find \(\Delta_1(x) \) polynomial contains \((1,1);(2,0);(3,0)\).

Try \((x-2)(x-3) \pmod{5}\).
Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
\[
\Delta_1(x) = (x-2)(x-3)(3) \pmod{5} \text{ contains } (1,1);(2,0);(3,0).
\]
\[
\Delta_2(x) = (x-1)(x-3)(4) \pmod{5} \text{ contains } (1,0);(2,1);(3,0).
\]
\[
\Delta_3(x) = (x-1)(x-2)(3) \pmod{5} \text{ contains } (1,0);(2,0);(3,1).
\]

But wanted to hit \((1,3);(2,4);(3,0)!\)

\[
P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x) \text{ works.}
\]
Same as before?
...after a lot of calculations... \(P(x) = 2x^2 + 1x + 4 \pmod{5} \).
The same as before!
In general.

Given points: \((x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)\).
In general.

Given points: \((x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)\).

\[
\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x_i - x_j)}.
\]
In general.

Given points: \((x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)\).

\[\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}. \]

Numerator is 0 at \(x_j \neq x_i\).
In general.

Given points: \((x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)\).

\[
\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x_i - x_j)}.
\]

Numerator is 0 at \(x_j \neq x_i\).

Denominator makes it 1 at \(x_i\).
In general.

Given points: \((x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)\).

\[
\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x_i - x_j)}.
\]

Numerator is 0 at \(x_j \neq x_i\).
Denominator makes it 1 at \(x_i\).

And..

\[
P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_k \Delta_k(x).
\]

hits points \((x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)\).
In general.

Given points: \((x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)\).

\[
\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x_i - x_j)}.
\]

Numerator is 0 at \(x_j \neq x_i\).
Denominator makes it 1 at \(x_i\).
And..

\[
P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_k \Delta_k(x).
\]

hits points \((x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)\).
Construction proves the existence of the polynomial!
For secret sharing.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.
For secret sharing.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

Proved existence.
For secret sharing.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

Proved existence.

Uniqueness Fact. At most one degree d polynomial hits $d + 1$ points.
For secret sharing.

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Proved existence.

Uniqueness Fact. At most one degree \(d \) polynomial hits \(d + 1 \) points.

Wednesday!