
1. Finish Polynomials and Secrets.
2. Finite Fields: Abstract Algebra
3. Erasure Coding
Modular Arithmetic Fact: There is exactly 1 polynomial of degree \(\leq d \) with arithmetic modulo prime \(p \) that contains \(d + 1 \) pts.

Note: The points have to have different \(x \) values!

Shamir’s \(k \) out of \(n \) Scheme:
Secret \(s \in \{0, \ldots, p-1\} \)

1. Choose \(a_0 = s \), and random \(a_1, \ldots, a_{k-1} \).
2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots a_0 \) with \(a_0 = s \).
3. Share \(i \) is point \((i, P(i) \mod p) \).

Robustness: Any \(k \) shares gives secret.
Knowing \(k \) pts, find unique \(P(x) \), evaluate \(P(0) \).
Secrecy: Any \(k - 1 \) shares give nothing.
Knowing \(\leq k - 1 \) pts, any \(P(0) \) is possible.
There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Proof of at least one polynomial:
Given points: \((x_1, y_1); (x_2, y_2) \cdots (x_{d+1}, y_{d+1})\).

\[
\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.
\]

Numerator is 0 at \(x_j \neq x_i \).
Denominator makes it 1 at \(x_i \).
And..

\[
P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x).
\]

hits points \((x_1, y_1); (x_2, y_2) \cdots (x_{d+1}, y_{d+1})\). Degree \(d \) polynomial!

Construction proves the existence of a polynomial!
Reiterating Examples.

\[\Delta_i(x) = \frac{\prod_{j \neq i} (x-x_j)}{\prod_{j \neq i} (x_i-x_j)}. \]

Degree 1 polynomial, \(P(x) \), that contains (1,3) and (3,4)?
Work modulo 5.
\(\Delta_1(x) \) contains (1,1) and (3,0).
\[\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2} = 2(x-3) = 2x - 6 = 2x + 4 \pmod{5}. \]
For a quadratic, \(a_2 x^2 + a_1 x + a_0 \) hits (1,3);(2,4);(3,0).
Work modulo 5.
Find \(\Delta_1(x) \) polynomial contains (1,1);(2,0);(3,0).
\[\Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2} = 3(x-2)(x-3) = 3x^2 + 1 \pmod{5} \]
Put the delta functions together.
Simultaneous Equations Method.

For a line, \(a_1 x + a_0 = mx + b \) contains points \((1, 3)\) and \((2, 4)\).

\[
P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}
\]

\[
P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}
\]

Subtract first from second..

\[
m + b \equiv 3 \pmod{5}
\]

\[
m \equiv 1 \pmod{5}
\]

Backsolve: \(b \equiv 2 \pmod{5} \). **Secret is 2.**

And the line is...

\[x + 2 \pmod{5}.\]
For a quadratic polynomial, \(a_2x^2 + a_1x + a_0 \) hits \((1,2); (2,4); (3,0)\). Plug in points to find equations.

\[
\begin{align*}
P(1) &= a_2 + a_1 + a_0 \equiv 2 \pmod{5} \\
P(2) &= 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5} \\
P(3) &= 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}
\end{align*}
\]

\[
\begin{align*}
a_2 + a_1 + a_0 &\equiv 2 \pmod{5} \\
3a_1 + 2a_0 &\equiv 1 \pmod{5} \\
4a_1 + 2a_0 &\equiv 2 \pmod{5}
\end{align*}
\]

Subtracting 2nd from 3rd yields: \(a_1 = 1 \).

\[
a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5} \]

\[
a_2 = 2 - 1 - 4 \equiv 2 \pmod{5} .
\]

So polynomial is \(2x^2 + 1x + 4 \pmod{5} \)
In general..

Given points: \((x_1, y_1); (x_2, y_2) \ldots (x_k, y_k)\).

Solve...

\[
\begin{align*}
 a_{k-1}x_1^{k-1} + \cdots + a_0 & \equiv y_1 \pmod{p} \\
 a_{k-1}x_2^{k-1} + \cdots + a_0 & \equiv y_2 \pmod{p} \\
 & \vdots \quad \vdots \quad \vdots \\
 a_{k-1}x_k^{k-1} + \cdots + a_0 & \equiv y_k \pmod{p}
\end{align*}
\]

Will this always work?

As long as solution \textbf{exists} and it is \textbf{unique}! And...

Modular Arithmetic Fact: Exactly 1 polynomial of degree \(\leq d \) with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.
Modular Arithmetic Fact: Exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p contains $d + 1$ pts.
Existence: Lagrange interpolation. Uniqueness?

Uniqueness Fact. At most one degree d polynomial hits $d + 1$ points.
Uniqueness Fact. At most one degree d polynomial contains $d + 1$ points.

Proof:

Roots fact: Any degree d polynomial has at most d roots.

Assume two different polynomials $Q(x)$ and $P(x)$ hits $d + 1$ points.

$R(x) = Q(x) - P(x)$ has $d + 1$ roots and is degree d.

Contradiction.

Must prove Roots fact.
Polynomial Division.

Divide $4x^2 - 3x + 2$ by $(x - 3)$ modulo 5.

$$
\begin{array}{cccc}
4x & + & 4 & r
\end{array}
\begin{array}{c}
4x^2 - 3x + 2
\end{array}
\begin{array}{c}
\overline{4x - 3}
\end{array}
\begin{array}{c}
\text{------------------}
\end{array}
\begin{array}{c}
4x^2 - 2x
\end{array}
\begin{array}{c}
\underline{4x^2 - 2x}
\end{array}
\begin{array}{c}
4x + 2
\end{array}
\begin{array}{c}
\underline{4x - 2}
\end{array}
\begin{array}{c}
4
\end{array}
$$

$4x^2 - 3x + 2 \equiv (x - 3)(4x + 4) + 4 \pmod{5}$

In general, divide $P(x)$ by $(x - a)$ gives $Q(x)$ and remainder r.

That is, $P(x) = (x - a)Q(x) + r$

r is degree 0 polynomial..or a constant!
Only d roots.

Lemma 1: $P(x)$ has root a iff $P(x)/(x-a)$ has remainder 0:
$P(x) = (x-a)Q(x)$.

Proof:
$P(x) = (x - a)Q(x) + r$.
Plugin a: $P(a) = r = 0$. □

Lemma 2: $P(x)$ has d roots; r_1, \ldots, r_d then
$P(x) = (x-r_1)(x-r_2)\cdots(x-r_d)c(x)$.

Proof Sketch: By induction.

Base Case: degree 0. No roots.

Induction Step: $P(x) = (x-r_1)Q(x)$ by Lemma 1.
$Q(x)$ has smaller degree ...
so by induction hypothesis...
we are done. □

Thus, $d + 1$ roots implies degree is at least $d + 1$.

The contrapositive...

Roots fact: Any degree d polynomial has at most d roots.
Summary.

Modular Arithmetic Fact: Exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p contains $d + 1$ pts.

Existence:
- Lagrange Interpolation.

Uniqueness:
- At most d roots for degree d polynomial.
Finite Fields

Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..
..and has only a finite number of elements.
Good for computer science.
Arithmetic modulo a prime p is a **finite field** denoted by F_p or $GF(p)$.
Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.
Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree \(\leq d \) over \(GF(p) \), \(P(x) \), that hits \(d+1 \) points.

Shamir’s \(k \) out of \(n \) Scheme:
Secret \(s \in \{0,\ldots,p-1\} \)

1. Choose \(a_0 = s \), and random \(a_1, \ldots, a_{k-1} \).
2. Let \(P(x) = a_{k-1} x^{k-1} + a_{k-2} x^{k-2} + \cdots a_0 \) with \(a_0 = s \).
3. Share \(i \) is point \((i, P(i) \mod p)\).

Robustness: Any \(k \) knows secret.
Knowing \(k \) pts, only one \(P(x) \), evaluate \(P(0) \).

Secrecy: Any \(k - 1 \) knows nothing.
Knowing \(\leq k - 1 \) pts, any \(P(0) \) is possible.

Efficiency: ???
Efficiency.

Need $p > n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between n and $2n$.

Working over numbers **within 1 bit** of secret size.

Minimal!

With k shares, reconstruct polynomial, $P(x)$.
With $k - 1$ shares, any of p values possible for $P(0)$!
(Within 1 bit of) **any** b-bit string possible!
(Within 1 bit of) b-bits are missing: one $P(i)$.
Within 1 of optimal number of bits.
Runtime: polynomial in k, n, and $\log p$.

1. Evaluate degree $n - 1$ polynomial $n + k$ times using $\log p$-bit numbers. $O(kn \log^2 p)$.

2. Reconstruct secret by solving system of n equations using $\log p$-bit arithmetic. $O(n^3 \log^2 p)$.

3. Matrix has special form so $O(n \log n \log^2 p)$ reconstruction.

Faster versions in practice are almost as efficient.
A bit of counting.

What is the number of degree d polynomials over $GF(m)$?

- m^{d+1}: $d + 1$ coefficients from $\{0, \ldots, m - 1\}$.
- m^{d+1}: $d + 1$ points with y-values from $\{0, \ldots, m - 1\}$

Infinite number for reals, rationals, complex numbers!
Erasure Codes.

Satellite

3 packet message. So send 6!

Lose 3 out 6 packets.

Gets packets 1,1,and 3.
Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n + k$ packets and recover message?
On Friday!