Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send $n+k$ packets and recover message?

A degree $n-1$ polynomial determined by any n points!

Erasure Coding Scheme: message $= m_0, m_2, \ldots, m_{n-1}$.

1. Choose prime $p \approx 2^b$ for packet size b.
2. $P(x) = m_{n-1}x^{n-1} + \cdots m_0 \pmod{p}$.
3. Send $P(1), \ldots, P(n+k)$.

Any n of the $n+k$ packets gives polynomial ...and message!
Erasure Codes.

Satellite

\[\begin{array}{ccccccc}
1 & 2 & \cdots & n+k \\
\hline
\end{array} \]

\[\begin{array}{ccccccc}
1 & 2 & \cdots & n+k \\
\hline
\end{array} \]

GPS device

\[\begin{array}{ccccccc}
1 & 2 & \cdots & n+k \\
\hline
\end{array} \]

Any \(n \) packets is enough!

n packet message. So send \(n+k \)!

Lose \(k \) packets.

Any \(n \) packets is enough!

\(n \) packet message.

Optimal.
Complexity Issues.

Size: Can choose a prime between 2^{b-1} and 2^b. (Lose at most 1 bit per packet.)

In practice, $O(n)$ operations with almost the same redundancy.
Polynomials.

- give Secret Sharing.
- give Erasure Codes.

Error Correction:

Noisy Channel: corrupts *k* packets. (rather than loses.)

Additional Challenge: Finding *which* packets are corrupt.
Error Correction

3 packet message. **Send 5.**

Corrupts 1 packets.
The Scheme.

Problem: Communicate \(n \) packets \(m_1, \ldots, m_n \) on noisy channel that corrupts \(\leq k \) packets.

Reed-Solomon Code:

1. Make a polynomial, \(P(x) \) of degree \(n - 1 \), that encodes message.
 - \(P(1) = m_1, \ldots, P(n) = m_n. \)
 - Comment: could encode with packets as coefficients.

2. Send \(P(1), \ldots, P(n + 2k). \)

After noisy channel: Recieve values \(R(1), \ldots, R(n + 2k). \)

Property: \(P(i) = R(i) \) for at least \(n + k \) points \(i. \)

Brute Force: For each subset of $n+k$ points fit degree $n-1$ polynomial to them.

- For subset of $n+k$ pts where $R(i) = P(i)$, method will reconstruct $P(x)$!
- For any subset of $n+k$ pts,
 1. at least n pts are correct since only k errors,
 2. $P(x)$ is only degree $n-1$ polynomial that contains the n correct points.

Reconstructs $P(x)$ and only $P(x)$!!
Details..

\[P(x) = p_{n-1}x^{n-1} + \cdots + p_0 \] and receive \(R(1), \ldots R(n+2k) \).

\[p_{n-1} + \cdots + p_0 \equiv R(1) \pmod{p} \]
\[p_{n-1}2^{n-1} + \cdots + p_0 \equiv R(2) \pmod{p} \]
\[\vdots \]
\[p_{n-1}i^{n-1} + \cdots + p_0 \equiv R(i) \pmod{p} \]
\[\vdots \]
\[p_{n-1}(n+2k)^{n-1} + \cdots + p_0 \equiv R(n+2k) \pmod{p} \]

Error!! Where???
Could be anywhere!!! ...so try everything.

Runtime: \(\binom{n+2k}{k} \) possibilities.

Something like \((n/k)^k \) ...Exponential in \(k \).
Reed Solomon codes of size $n+2k$ can tolerate k errors!

The scheme is information optimal:
Must send $n+2k$ packets to recover from k errors.

- Any two codewords must be different by $2k$.
- Total information must equal original n packets, plus which k packets are corrupted.
 $n+2k$ packets, k garbage packets: $n+k$ packets of information.

Runtime is bad: exponential in k.

Find the errors faster?
...on Wednesday.