Error Correction

3 packet message. Send 5.

Corrupts 1 packets.
The Scheme.

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, $P(x)$ of degree $n - 1$, that encodes message.
 - $P(1) = m_1, \ldots, P(n) = m_n$.
 - Comment: could encode with packets as coefficients.

2. Send $P(1), \ldots, P(n + 2k)$.

After noisy channel: Recieve values $R(1), \ldots, R(n + 2k)$.

Properties:

(1) $P(i) = R(i)$ for at least $n + k$ points i,
(2) $P(x)$ is unique degree $n - 1$ polynomial that contains $\geq n + k$ received points.
Properties: proof.

\(P(x) \): degree \(n - 1 \) polynomial.
Send \(P(1), \ldots, P(n+2k) \)
Receive \(R(1), \ldots, R(n+2k) \)
At most \(k \) \(i \)'s where \(P(i) \neq R(i) \).

Properties:
(1) \(P(i) = R(i) \) for at least \(n+k \) points \(i \),
(2) \(P(x) \) is unique degree \(n - 1 \) polynomial
 that contains \(\geq n+k \) received points.

Proof:
(1) Sure. Only \(k \) corruptions.
(2) Degree \(n - 1 \) polynomial \(Q(x) \) consistent with \(n+k \) points.
 \(Q(x) \) agrees with \(R(i) \), \(n+k \) times.
 \(P(x) \) agrees with \(R(i) \), \(n+k \) times.
 Total points contained by both: \(2n+2k \). \(P \quad \text{Pigeons.} \)
 Total points to choose from \(: n+2k \). \(H \quad \text{Holes.} \)
 Points contained by both \(: \geq n \). \(\geq P-H \quad \text{Collisions.} \)
 \(\implies Q(i) = P(i) \) at \(n \) points.
 \(\implies Q(x) = P(x). \)
Example.

Message: 3, 0, 6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6$ modulo 7.

Send: $P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3$.

(Aside: Message in plain text!)

Receive $R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3$.

$P(i) = R(i)$ for $n + k = 3 + 1 = 4$ points.
Slow solution.

Brute Force:
For each subset of $n + k$ points
 - Fit degree $n - 1$ polynomial, $Q(x)$, to n of them.
 - Check if consistent with $n + k$ of the total points.
 - If yes, output $Q(x)$.

- For subset of $n + k$ pts where $R(i) = P(i)$, method will reconstruct $P(x)$!
- For any subset of $n + k$ pts,
 1. there is unique degree $n - 1$ polynomial $Q(x)$ that fits n of them
 2. and where $Q(x)$ is consistent with $n + k$ points
 \[\implies P(x) = Q(x). \]

Reconstructs $P(x)$ and only $P(x)$!!
Example.

Received \(R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3 \)

Find \(P(x) = p_2 x^2 + p_1 x + p_0 \) that contains \(n + k = 3 + 1 \) points.

All equations:

\[
\begin{align*}
p_2 + p_1 + p_0 & \equiv 3 \pmod{7} \\
4p_2 + 2p_1 + p_0 & \equiv 1 \pmod{7} \\
2p_2 + 3p_1 + p_0 & \equiv 6 \pmod{7} \\
2p_2 + 4p_1 + p_0 & \equiv 0 \pmod{7} \\
p_2 + 5p_1 + p_0 & \equiv 3 \pmod{7}
\end{align*}
\]

Assume point 1 is wrong and solve... \textit{no consistent solution}!
Assume point 2 is wrong and solve... \textit{consistent solution!}
In general..

\[P(x) = p_{n-1}x^{n-1} + \cdots p_0 \quad \text{and receive } R(1), \ldots, R(m = n + 2k). \]

\[
\begin{align*}
p_{n-1} + \cdots + p_0 & \equiv R(1) \pmod{p} \\
p_{n-1}2^{n-1} + \cdots + p_0 & \equiv R(2) \pmod{p} \\
& \quad \vdots \\
p_{n-1}i^{n-1} + \cdots + p_0 & \equiv R(i) \pmod{p} \\
& \quad \vdots \\
p_{n-1}(m)^{n-1} + \cdots + p_0 & \equiv R(m) \pmod{p}
\end{align*}
\]

Error!! Where???
Could be anywhere!!! ...so try everywhere.

Runtime: \(\binom{n+2k}{k} \) possibilities.

Something like \((n/k)^k \) ...Exponential in \(k \!\!\!.\!

How do we find where the bad packets are efficiently?!?!?!
Ditty...

Where oh where can my **bad** packets be ... Today.
Where oh where can my bad packets be?

\[
E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p} \\
0 \times E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p} \\
\vdots \\
E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}
\]

Idea: Multiply equation \(i\) by 0 if and only if \(P(i) \neq R(i)\).
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points \(e_1, \ldots, e_k\). (In diagram above, \(e_1 = 2\).)

Error locator polynomial: \(E(x) = (x - e_1)(x - e_2)\ldots(x - e_k)\).

\(E(i) = 0\) if and only if \(e_j = i\) for some \(j\)

Multiply equations by \(E(\cdot)\). (Above \(E(x) = (x-2)\).)

All equations satisfied!!
Example.

Received $R(1) = 3$, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$

Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains $n + k = 3 + 1$ points.

Plug in points...

\[(1 - 2)(p_2 + p_1 + p_0) \equiv (3)(1 - 2) \pmod{7}\]
\[(2 - 2)(4p_2 + 2p_1 + p_0) \equiv (1)(2 - 2) \pmod{7}\]
\[(3 - 2)(2p_2 + 3p_1 + p_0) \equiv (\emptyset)(3 - 2) \pmod{7}\]
\[(4 - 2)(2p_2 + 4p_1 + p_0) \equiv (0)(4 - 2) \pmod{7}\]
\[(5 - 2)(4p_2 + 5p_1 + p_0) \equiv (3)(5 - 2) \pmod{7}\]

Error locator polynomial: $(x - 2)$.

Multiply equation i by $(i - 2)$. All equations satisfied!

But don’t know error locator polynomial! Do know form: $(x - e)$.

4 unknowns (p_0, p_1, p_2 and e), 5 nonlinear equations.
..turn their heads each day,

\[E(1)(p_{n-1} + \cdots + p_0) \equiv R(1)E(1) \pmod{p} \]
\[\vdots \]
\[E(i)(p_{n-1}i^{n-1} + \cdots + p_0) \equiv R(i)E(i) \pmod{p} \]
\[\vdots \]
\[E(m)(p_{n-1}(n+2k)^{n-1} + \cdots + p_0) \equiv R(m)E(m) \pmod{p} \]

...so satisfied, I’m on my way.

\(m = n + 2k \) satisfied equations, \(n + k \) unknowns. But nonlinear!

Let \(Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0 \).

Equations:

\[Q(i) = R(i)E(i). \]

and linear in \(a_i \) and coefficients of \(E(x) \)!
Finding $Q(x)$ and $E(x)$?

- $E(x)$ has degree k ...

\[E(x) = x^k + b_{k-1} x^{k-1} \cdots b_0. \]

- $Q(x) = P(x)E(x)$ has degree $n + k - 1$...

\[Q(x) = a_{n+k-1} x^{n+k-1} + a_{n+k-2} x^{n+k-2} + \cdots a_0 \]
Solving for $Q(x)$ and $E(x)$...and $P(x)$

For all points $1, \ldots, i, n+2k$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives $n+2k$ linear equations.

$$a_{n+k-1} + \ldots + a_0 \equiv R(1)(1 + b_{k-1} \ldots + b_0) \pmod{p}$$

$$a_{n+k-1}(2^{n+k-1}) + \ldots + a_0 \equiv R(2)((2)^{k} + b_{k-1}(2)^{k-1} \ldots + b_0) \pmod{p}$$

$$\vdots$$

$$a_{n+k-1}(m^{n+k-1}) + \ldots + a_0 \equiv R(m)((m)^{k} + b_{k-1}(m)^{k-1} \ldots + b_0) \pmod{p}$$

..and $n+2k$ unknown coefficients of $Q(x)$ and $E(x)$!

Solve for coefficients of $Q(x)$ and $E(x)$.

Find $P(x) = Q(x)/E(x)$.
Example.

Received $R(1) = 3$, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$

$Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$

$E(x) = x - b_0$

$Q(i) = R(i)E(i)$.

\[
\begin{align*}
a_3 + a_2 + a_1 + a_0 & \equiv 3(1 - b_0) \pmod{7} \\
a_3 + 4a_2 + 2a_1 + a_0 & \equiv 1(2 - b_0) \pmod{7} \\
6a_3 + 2a_2 + 3a_1 + a_0 & \equiv 6(3 - b_0) \pmod{7} \\
a_3 + 2a_2 + 4a_1 + a_0 & \equiv 0(4 - b_0) \pmod{7} \\
6a_3 + 4a_2 + 5a_1 + a_0 & \equiv 3(5 - b_0) \pmod{7}
\end{align*}
\]

$a_3 = 1$, $a_2 = 6$, $a_1 = 6$, $a_0 = 5$ and $b_0 = 2$.

$Q(x) = x^3 + 6x^2 + 6x + 5$.

$E(x) = x - 2$.
Example: finishing up.

\[Q(x) = x^3 + 6x^2 + 6x + 5. \]
\[E(x) = x - 2. \]

\[
\begin{array}{r}
1 \ x^2 & + 1 \ x & + 1 \\
\hline
x - 2 & \) & x^3 & + 6 \ x^2 & + 6 \ x & + 5 \\
& & x^3 & - 2 \ x^2 & & \\
\hline
& & 1 \ x^2 & + 6 \ x & + 5 \\
& & 1 \ x^2 & - 2 \ x & & \\
\hline
& & & x & + 5 \\
& & & x & - 2 & \\
\hline
& & & & 0
\end{array}
\]

\[P(x) = x^2 + x + 1 \]

Message is \(P(1) = 3, P(2) = 0, P(3) = 6. \)

What is \(\frac{x-2}{x-2} \)? 1 \hspace{1cm} \text{Except at } x = 2? \text{ Hole there?}
Error Correction: Berlekamp-Welsh

Message: \(m_1, \ldots, m_n \).

Sender:

1. Form degree \(n - 1 \) polynomial \(P(x) \) where \(P(i) = m_i \).
2. Send \(P(1), \ldots, P(n+2k) \).

Receiver:

1. Receive \(R(1), \ldots, R(n+2k) \).
2. Solve \(n+2k \) equations, \(Q(i) = E(i)R(i) \) to find \(Q(x) = E(x)P(x) \) and \(E(x) \).
3. Compute \(P(x) = Q(x)/E(x) \).
4. Compute \(P(1), \ldots, P(n) \).
Check your understanding.

You have error locator polynomial!
Where oh where can my bad packets be?...
Factor? Sure.
Check all values? Sure.
Efficiency? Sure. Only $n + k$ values.
See where it is 0.
Hmmm...

Is there one and only one $P(x)$ from Berlekamp-Welsh procedure?

Existence: there is a $P(x)$ and $E(x)$ that satisfy equations.
Unique solution for $P(x)$

Uniqueness: any solution $Q'(x)$ and $E'(x)$ have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$

(1)

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x)$$
on $n+2k$ values of x.

(2)

Equation 2 implies 1:

$Q'(x)E(x)$ and $Q(x)E'(x)$ are degree $n+2k-1$

and agree on $n+2k$ points

$$\implies Q'(x)E(x) = Q(x)E'(x).$$

Cross divide. \qed
Fact: \(Q'(x)E(x) = Q(x)E'(x) \) on \(n + 2k \) values of \(x \).

Proof: Construction implies that

\[
Q(i) = R(i)E(i) \\
Q'(i) = R(i)E'(i)
\]

for \(i \in \{1, \ldots n+2k\} \).

If \(E(i) = 0 \), then \(Q(i) = 0 \). If \(E'(i) = 0 \), then \(Q'(i) = 0 \).

\[\Rightarrow \quad Q(i)E'(i) = Q'(i)E(i) \] holds when \(E(i) \) or \(E'(i) \) are zero.

When \(E'(i) \) and \(E(i) \) are not zero

\[
\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).
\]

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with \(\frac{x-2}{x-2} \) at \(x = 2 \).
Berlekamp-Welsh algorithm decodes correctly when k errors!
Summary. Error Correction.

Communicate n packets, with k erasures.

- How many packets? $n + k$
- How to encode? With polynomial, $P(x)$.
- Of degree? $n - 1$
- Recover? Reconstruct $P(x)$ with any n points!

Communicate n packets, with k errors.

- How many packets? $n + 2k$
- Why?
 - k changes to make diff. messages overlap
- Recover?
 - Reconstruct error polynomial, $E(X)$, and $P(x)$!
 - Nonlinear equations.
 - Reconstruct $E(x)$ and $Q(x) = E(x)P(x)$. Linear Equations.
 - Polynomial division! $P(x) = Q(x)/E(x)$!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!