Causality, Independence, Collisions and Collecting

1. Product Rule
2. Correlation and Causality
3. Independence
4. Balls in bins
5. Birthdays
6. Checksums
7. Collecting Coupons
Recall the definition:

\[Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]} . \]

Hence,

\[Pr[A \cap B] = Pr[A]Pr[B|A] . \]

Consequently,

\[Pr[A \cap B \cap C] = Pr[(A \cap B) \cap C] \]
\[= Pr[A \cap B]Pr[C|A \cap B] \]
\[= Pr[A]Pr[B|A]Pr[C|A \cap B] . \]
Product Rule

Theorem Product Rule
Let A_1, A_2, \ldots, A_n be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1] Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$$

Proof: By induction. Assume the result is true for n. (It holds for $n = 2$.) Then,

$$Pr[A_1 \cap \cdots \cap A_n \cap A_{n+1}]$$
$$= Pr[A_1 \cap \cdots \cap A_n] Pr[A_{n+1}|A_1 \cap \cdots \cap A_n]$$
$$= Pr[A_1] Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}] Pr[A_{n+1}|A_1 \cap \cdots \cap A_n],$$

so that the result holds for $n + 1$.

□
Correlation

An example.
Random experiment: Pick a person at random.
Event A: the person has lung cancer.
Event B: the person is a heavy smoker.

Fact:

$$Pr[A|B] = 1.17 \times Pr[A].$$

Conclusion:

- Smoking increases the probability of lung cancer by 17%.
- Smoking causes lung cancer.
Correlation

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \iff \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$

$$\iff Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$$

$$\iff Pr[B|A] = 1.17 \times Pr[B].$$

Conclusion:

- Lung cancer increases the probability of smoking by 17%.
- Lung cancer causes smoking. Really?
Causality vs. Correlation

Events A and B are **positively correlated** if

$$Pr[A \cap B] > Pr[A] Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?
Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Some difficulties:

- A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)

- If B precedes A, then B is more likely to be the cause. (E.g., smoking.) However, they could have a common cause that induces B before A. (E.g., smart, CS70, Tesla.)

More about such questions later. For fun, check “N. Taleb: Fooled by randomness.”
Recall:

A and B are independent

$\iff Pr[A \cap B] = Pr[A]Pr[B]$
$\iff Pr[A|B] = Pr[A]$.

The intuition is that ‘A does not say anything about B.’
This intuition is a bit misleading.
See next slide.
Example 1

Flip two fair coins. Let

- $A = \{\text{first coin is H}\} = \{HT, HH\}$;
- $B = \{\text{second coin is H}\} = \{TH, HH\}$;
- $C = \{\text{the two coins are different}\} = \{TH, HT\}$.

A, C are independent; B, C are independent; $A \cap B, C$ are not independent. ($Pr[A \cap B \cap C] = 0 \neq Pr[A \cap B]Pr[C].$)

If A did not say anything about C and B did not say anything about C, then $A \cap B$ would not say anything about C.
Example 2

Flip a fair coin 5 times. Let $A_n = \text{‘coin } n \text{ is H’}$, for $n = 1, \ldots, 5$.

Then,

$$A_m, A_n \text{ are independent for all } m \neq n.$$

Also,

$$A_1 \text{ and } A_3 \cap A_5 \text{ are independent.}$$

Indeed,

$$Pr[A_1 \cap (A_3 \cap A_5)] = \frac{1}{8} = Pr[A_1] Pr[A_3 \cap A_5]$$

Similarly,

$$A_1 \cap A_2 \text{ and } A_3 \cap A_4 \cap A_5 \text{ are independent.}$$

This leads to a definition
Definition Mutual Independence

(a) The events A_1, \ldots, A_5 are mutually independent if

$$Pr[\bigcap_{k \in K} A_k] = \prod_{k \in K} Pr[A_k], \text{ for all } K \subseteq \{1, \ldots, 5\}.$$

(b) More generally, the events $\{A_j, j \in J\}$ are mutually independent if

$$Pr[\bigcap_{k \in K} A_k] = \prod_{k \in K} Pr[A_k], \text{ for all finite } K \subseteq J.$$

Example: Flip a fair coin forever. Let $A_n = \text{‘coin n is H.’}$ Then the events A_n are mutually independent.
Mutual Independence

Theorem

(a) If the events \(\{A_j, j \in J\} \) are mutually independent and if \(K_1 \) and \(K_2 \) are disjoint finite subsets of \(J \), then

\[
\bigcap_{k \in K_1} A_k \text{ and } \bigcap_{k \in K_2} A_k \text{ are independent.}
\]

(b) More generally, if the \(K_n \) are pairwise disjoint finite subsets of \(J \), then the events

\[
\bigcap_{k \in K_n} A_k \text{ are mutually independent.}
\]

(c) Also, the same is true if we replace some of the \(A_k \) by \(\bar{A}_k \).

Proof:
See homework.
Balls in bins

One throws m balls into $n > m$ bins.
Balls in bins

One throws m balls into $n > m$ bins.

Theorem:

$Pr[\text{no collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\}$, for large enough n.
Balls in bins

Theorem:

\[P[r[no collision]] \approx \exp\left\{-\frac{m^2}{2n}\right\}, \text{ for large enough } n. \]
Balls in bins

Theorem:

\[Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \] for large enough \(n \).

In particular, \(Pr[\text{no collision}] \approx \frac{1}{2} \) for \(m^2/(2n) \approx \ln(2) \), i.e.,

\[m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}. \]

E.g., \(1.2\sqrt{20} \approx 5.4 \).

Roughly, \(Pr[\text{collision}] \approx 1/2 \) for \(m = \sqrt{n} \). (\(e^{-0.5} \approx 0.6 \).)
The Calculation.

\[A_i = \text{no collision when } i\text{th ball is placed in a bin.} \]

\[Pr[A_i|A_{i-1} \cap \cdots \cap A_1] = (1 - \frac{i-1}{n}). \]

no collision = \(A_1 \cap \cdots \cap A_m \).

Product rule:

\[Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1] Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}] \]

\[\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n} \right) \cdots \left(1 - \frac{m-1}{n} \right). \]

Hence,

\[\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} \left(-\frac{k}{n} \right)^{(*)} \]

\[= -\frac{1}{n} \frac{m(m-1)}{2} \quad (\dagger) \approx -\frac{m^2}{2n} \]

\((*)\) We used \(\ln(1 - \varepsilon) \approx -\varepsilon \) for \(|\varepsilon| \ll 1. \)

\((\dagger)\) \[1 + 2 + \cdots + m - 1 = (m - 1)m/2. \]
Approximation

\[\exp\{-x\} = 1 - x + \frac{1}{2!}x^2 + \cdots \approx 1 - x, \text{ for } |x| \ll 1. \]

Hence, \(-x \approx \ln(1 - x)\) for \(|x| \ll 1\).
Sum of consecutive integers

Recall this useful fact:

\[1 + 2 + 3 + \cdots + 7 = \frac{7 \times 8}{2}\]

\[1 + 2 + 3 + \cdots + n = \frac{n \times (n + 1)}{2}\]
Today’s your birthday, it’s my birthday too..

Probability two of \(n \) people have the same birthday?
With \(n = 365 \), one finds

\[
Pr[\text{collision}] \approx 1/2 \quad \text{if} \quad m \approx 1.2\sqrt{365} \approx 23.
\]

If \(m = 60 \), we find that

\[
Pr[\text{not collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\} = \exp\left\{-\frac{60^2}{2 \times 365}\right\} \approx 0.007.
\]

If \(m = 366 \), then \(Pr[\text{no collision}] = 0. \) (No approximation here!)
Given two random files, what are the odds they have the same checksum?

Let $n = 2^b$ be the number of checksums.

Let m be the number of files.

How big should b be to avoid any collisions?
Checksum

For b-bit checksums for m files, we claim that

$$Pr[\text{collision}] \leq \frac{1}{2^{10}} \text{ if } b \geq 2.9 \ln m + 9.$$

E.g., for $m = 10^{14}$ files, a 103-bit checksum suffices!

Derivation: b bits $\iff n = 2^b$ bins.

$$Pr[\text{collision}] \leq 2^{-10} \iff Pr[\text{no collision}] \geq 1 - 2^{-10}$$

$$\iff \exp\{-\frac{m^2}{2n}\} \geq 1 - 2^{-10}$$

$$\iff 1 - \frac{m^2}{2n} \geq 1 - 2^{-10} \iff \frac{m^2}{2n} \leq 2^{-10}$$

$$\iff 2n \geq m^2 2^{10} \iff n \geq m^2 2^9 \iff 2^b \geq m^2 2^9$$

$$\iff b \geq 2 \log_2(m) + 9 = (*) 2 \ln m / (\ln 2) + 9 \approx 2.9 \ln m + 9.$$

\(_(*)\) $\log_2(x) = \ln(x) / \ln(2)$. Indeed: $\ln(x) = \log_2(x) \ln(2)$ since $e^{\log_2(x) \ln(2)} = [e^{\ln(2)}]^{\log_2(x)} = 2^{\log_2(x)} = x.$
An aside.

Secure checksums.
Random plus security.
Want: cannot find two files that hash to the same bucket.
Checksum of “virus program” should \neq checksum of real program.
MD5: broke. SHA-1: broke. SHA-2: so far...
CS161
Coupon Collector Problem.

\(n \) different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

How many cereal boxes do you have to buy to get Brian Wilson card ...

with probability at least \(\frac{1}{2} \)?
Event $A_m = 'fail to get Brian Wilson in m cereal boxes'

Fail the first time: $(1 - \frac{1}{n})$
Fail the second time: $(1 - \frac{1}{n})$
And so on ... for m times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \cdots \times (1 - \frac{1}{n})$$

$$= (1 - \frac{1}{n})^m.$$
Analyze expression.

\[Pr[A_m] = (1 - \frac{1}{n})^m \]

When is \(p_m = Pr[A_m] \leq \frac{1}{2} \)? Taylor’s formula:

\[e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} \ldots \approx 1 - x. \]

when \(x \) is small. Hence,

\[p_m = (1 - \frac{1}{n})^m \approx (e^{-\frac{1}{n}})^m = e^{-\frac{m}{n}} = e^{-\ln(1/p_m)}. \]

After \(m = n \ln \frac{1}{p_m} \) cards, we fail to get a Brian Wilson card with probability \(p_m \).

For \(p_m = \frac{1}{2} \), we need around \(n \ln 2 \approx 0.69n \) boxes.
Collect all cards?

Experiment: Choose \(m \) cards at random with replacement.

Events:
\(E_k = \text{‘fail to get player k’} \), for \(k = 1, \ldots, n \)

Probability of failing to get at least one of these \(n \) players:

\[
p := Pr[E_1 \cup E_2 \cdots \cup E_n]
\]

How does one estimate \(p \)? Union Bound:

\[
p = Pr[E_1 \cup E_2 \cdots \cup E_n] \leq Pr[E_1] + Pr[E_2] \cdots Pr[E_n].
\]

\[
Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \ldots, n.
\]

Plug in and get

\[
p \leq ne^{-\frac{m}{n}}.
\]
Collect all cards?

Thus,

\[\Pr[\text{missing at least one card}] \leq ne^{-\frac{m}{n}}. \]

Hence,

\[\Pr[\text{missing at least one card}] \leq p \text{ when } m \geq n \ln\left(\frac{n}{p}\right). \]

To get \(p = 1/2 \), set \(m = n \ln(2n) \).

E.g., \(n = 10^2 \Rightarrow m = 530; n = 10^3 \Rightarrow m = 7600. \)
Bittorrent.

If file is split into n pieces.
Each server has “random” piece.
Ask $n \ln(2n)$ servers to get file with probability $\frac{1}{2}$.
Using codes!

Use Reed-Solomon codes (or Tornado codes\(^1\)).

Encode \(n\) pieces into \(2n\) pieces.

Any \(n\) pieces ok (\(n + \sqrt{n}\) pieces ok with Tornado codes.)

How many requests to get \(n\) different pieces with failure probability at most \(p\)?

But at most: \(2n(\ln 2) + O(\sqrt{n})\) is good enough.

Much better than \(n \ln(2n)\).

E.g., for \(n = 100\), around a factor of 4 better!

\(^1\)Linear time decoding!
Summary.

Causality, Independence, Collisions and Collecting

Main results:

- **Product Rule**
- **Correlation ≠ Causality**
- **Balls in bins**: m balls into $n > m$ bins.

\[\Pr[\text{no collisions}] \approx \exp\left\{ -\frac{m^2}{2n} \right\} \]

- **Coupon Collection**: n items. Buy m cereal boxes.

\[\Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}; \quad \Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}. \]

Key ideas:

- $\ln(1 - \varepsilon) \approx -\varepsilon$;
- $e^{-\varepsilon} \approx 1 - \varepsilon$;
- product rule;
- union bound.