Expectation; Conditional Expectation; B(n, p); G(p)
Expectation; Conditional Expectation; B(n, p); G(p)
1. Review of Expectation
2. Linearity of Expectation
3. Conditional Expectation
4. Independence of RVs
5. Applications
6. Important Distributions and Expectations.
Expectation

Recall: $X : \Omega \rightarrow \mathbb{R}; Pr[X = a] = Pr[X^{-1}(a)]$;
Expectation

Recall: \(X : \Omega \rightarrow \mathbb{R} \); \(Pr[X = a] = Pr[X^{-1}(a)] \);

Definition: The **expectation** of a random variable \(X \) is

\[
E[X] = \sum_a a \times Pr[X = a].
\]
Expectation
Recall: $X : \Omega \to \mathbb{R}$; $Pr[X = a] = Pr[X^{-1}(a)]$;

Definition: The **expectation** of a random variable X is

$$E[X] = \sum_{a} a \times Pr[X = a].$$

Indicator:
Let A be an event. The random variable X defined by
Expectation

Recall: $X : \Omega \to \mathbb{R}; \Pr[X = a] = \Pr[X^{-1}(a)];$

Definition: The **expectation** of a random variable X is

$$E[X] = \sum_a a \times Pr[X = a].$$

Indicator:

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the **indicator** of the event A.
Expectation

Recall: $X : \Omega \rightarrow \mathbb{R}; Pr[X = a] = Pr[X^{-1}(a)];$

Definition: The expectation of a random variable X is

$$E[X] = \sum_a a \times Pr[X = a].$$

Indicator:

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases}
1, & \text{if } \omega \in A \\
0, & \text{if } \omega \notin A
\end{cases}$$

is called the indicator of the event $A.$

Note that $Pr[X = 1] =$
Expectation

Recall: \(X : \Omega \rightarrow \mathbb{R}; \ Pr[X = a]; = Pr[X^{-1}(a)]; \)

Definition: The **expectation** of a random variable \(X \) is

\[
E[X] = \sum_a a \times Pr[X = a].
\]

Indicator:

Let \(A \) be an event. The random variable \(X \) defined by

\[
X(\omega) = \begin{cases}
1, & \text{if } \omega \in A \\
0, & \text{if } \omega \notin A
\end{cases}
\]

is called the **indicator** of the event \(A \).

Note that \(Pr[X = 1] = Pr[A] \) and \(Pr[X = 0] = \)
Expectation

Recall: $X : \Omega \rightarrow \mathbb{R}; \Pr[X = a] = \Pr[X^{-1}(a)];$

Definition: The expectation of a random variable X is

$$E[X] = \sum_a a \times \Pr[X = a].$$

Indicator:
Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that $\Pr[X = 1] = \Pr[A]$ and $\Pr[X = 0] = 1 - \Pr[A]$.
Expectation

Recall: \(X : \Omega \to \mathbb{R} \); \(Pr[X = a] = Pr[X^{-1}(a)] \);

Definition: The expectation of a random variable \(X \) is

\[
E[X] = \sum_a a \times Pr[X = a].
\]

Indicator:

Let \(A \) be an event. The random variable \(X \) defined by

\[
X(\omega) = \begin{cases}
1, & \text{if } \omega \in A \\
0, & \text{if } \omega \notin A
\end{cases}
\]

is called the indicator of the event \(A \).

Note that \(Pr[X = 1] = Pr[A] \) and \(Pr[X = 0] = 1 - Pr[A] \).

Hence,

\[
E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].
\]
Expectation
Recall: \(X : \Omega \to \mathbb{R}; Pr[X = a]; = Pr[X^{-1}(a)]; \)

Definition: The **expectation** of a random variable \(X \) is

\[
E[X] = \sum_a a \times Pr[X = a].
\]

Indicator:
Let \(A \) be an event. The random variable \(X \) defined by

\[
X(\omega) = \begin{cases}
1, & \text{if } \omega \in A \\
0, & \text{if } \omega \not\in A
\end{cases}
\]

is called the **indicator** of the event \(A \).

Note that \(Pr[X = 1] = Pr[A] \) and \(Pr[X = 0] = 1 - Pr[A] \).

Hence,

\[
E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].
\]

The random variable \(X \) is sometimes written as

\(1\{\omega \in A} \) or \(1_A(\omega) \).
Linearity of Expectation

Theorem:

\[
E[X] = \sum_{\omega} \omega X(\omega) \times \text{Pr}[\omega].
\]

Proof:

\[
E[a_1 X_1 + \cdots + a_n X_n] = \sum_{\omega} (a_1 X_1(\omega) + \cdots + a_n X_n(\omega)) \times \text{Pr}[\omega] = a_1 \sum_{\omega} \omega X_1(\omega) \times \text{Pr}[\omega] + \cdots + a_n \sum_{\omega} \omega X_n(\omega) \times \text{Pr}[\omega] = a_1 E[X_1] + \cdots + a_n E[X_n].
\]
Linearity of Expectation

Theorem:

\[E[X] = \sum_{\omega} X(\omega) \times Pr[\omega]. \]
Linearity of Expectation

Theorem:

\[E[X] = \sum_{\omega} X(\omega) \times Pr[\omega]. \]

Theorem:
Linearity of Expectation

Theorem:

\[E[X] = \sum_{\omega} X(\omega) \times Pr[\omega]. \]

Theorem: Expectation is linear
Linearity of Expectation

Theorem:

\[E[X] = \sum_{\omega} X(\omega) \times Pr[\omega]. \]

Theorem: Expectation is linear

\[E[a_1 X_1 + \cdots + a_n X_n] = a_1 E[X_1] + \cdots + a_n E[X_n]. \]
Linearity of Expectation

Theorem:

\[E[X] = \sum_{\omega} X(\omega) \times Pr[\omega]. \]

Theorem: Expectation is linear

\[E[a_1 X_1 + \cdots + a_n X_n] = a_1 E[X_1] + \cdots + a_n E[X_n]. \]

Proof:
Linearity of Expectation

Theorem:

\[E[X] = \sum_{\omega} X(\omega) \times Pr[\omega]. \]

Theorem: Expectation is linear

\[E[a_1 X_1 + \cdots + a_n X_n] = a_1 E[X_1] + \cdots + a_n E[X_n]. \]

Proof:

\[E[a_1 X_1 + \cdots + a_n X_n] \]
Linearity of Expectation

Theorem:

\[E[X] = \sum_{\omega} X(\omega) \times Pr[\omega]. \]

Theorem: Expectation is linear

\[E[a_1 X_1 + \cdots + a_n X_n] = a_1 E[X_1] + \cdots + a_n E[X_n]. \]

Proof:

\[
E[a_1 X_1 + \cdots + a_n X_n] = \sum_{\omega} (a_1 X_1 + \cdots + a_n X_n)(\omega) Pr[\omega]
\]
Linearity of Expectation

Theorem:

\[E[X] = \sum_{\omega} X(\omega) \times Pr[\omega]. \]

Theorem: Expectation is linear

\[E[a_1 X_1 + \cdots + a_n X_n] = a_1 E[X_1] + \cdots + a_n E[X_n]. \]

Proof:

\[
E[a_1 X_1 + \cdots + a_n X_n] \\
= \sum_{\omega} (a_1 X_1 + \cdots + a_n X_n)(\omega)Pr[\omega] \\
= \sum_{\omega} (a_1 X_1(\omega) + \cdots + a_n X_n(\omega))Pr[\omega]
\]
Linearity of Expectation

Theorem:

\[E[X] = \sum_{\omega} X(\omega) \times Pr[\omega]. \]

Theorem: Expectation is linear

\[E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n]. \]

Proof:

\[
E[a_1X_1 + \cdots + a_nX_n] \\
= \sum_{\omega} (a_1X_1 + \cdots + a_nX_n)(\omega)Pr[\omega] \\
= \sum_{\omega} (a_1X_1(\omega) + \cdots + a_nX_n(\omega))Pr[\omega] \\
= a_1 \sum_{\omega} X_1(\omega)Pr[\omega] + \cdots + a_n \sum_{\omega} X_n(\omega)Pr[\omega]
\]
Linearity of Expectation

Theorem:

\[E[X] = \sum_{\omega} X(\omega) \times Pr[\omega]. \]

Theorem: Expectation is linear

\[E[a_1 X_1 + \cdots + a_n X_n] = a_1 E[X_1] + \cdots + a_n E[X_n]. \]

Proof:

\[
E[a_1 X_1 + \cdots + a_n X_n] \\
= \sum_{\omega} (a_1 X_1 + \cdots + a_n X_n)(\omega) Pr[\omega] \\
= \sum_{\omega} (a_1 X_1(\omega) + \cdots + a_n X_n(\omega)) Pr[\omega] \\
= a_1 \sum_{\omega} X_1(\omega) Pr[\omega] + \cdots + a_n \sum_{\omega} X_n(\omega) Pr[\omega] \\
= a_1 E[X_1] + \cdots + a_n E[X_n].
\]
Using Linearity - 1: Pips on dice

Roll a die n times.
Using Linearity - 1: Pips on dice

Roll a die \(n \) times.

\(X_m = \) number of pips on roll \(m \).
Using Linearity - 1: Pips on dice

Roll a die n times.

$X_m = \text{number of pips on roll } m.$

$X = X_1 + \cdots + X_n = \text{total number of pips in } n \text{ rolls}.$
Using Linearity - 1: Pips on dice

Roll a die n times.

$X_m =$ number of pips on roll m.

$X = X_1 + \cdots + X_n =$ total number of pips in n rolls.

$E[X] = E[X_1 + \cdots + X_n]$
Using Linearity - 1: Pips on dice

Roll a die n times.

$X_m =$ number of pips on roll m.

$X = X_1 + \cdots + X_n =$ total number of pips in n rolls.

\[
E[X] = E[X_1 + \cdots + X_n] \\
= E[X_1] + \cdots + E[X_n],
\]
Roll a die \(n \) times.

\(X_m = \text{number of pips on roll } m \).

\(X = X_1 + \cdots + X_n = \text{total number of pips in } n \text{ rolls} \).

\[
E[X] = E[X_1 + \cdots + X_n] = E[X_1] + \cdots + E[X_n], \text{ by linearity}
\]
Roll a die n times.

$X_m =$ number of pips on roll m.

$X = X_1 + \cdots + X_n =$ total number of pips in n rolls.

$$
E[X] = E[X_1 + \cdots + X_n]
= E[X_1] + \cdots + E[X_n], \text{ by linearity}
= nE[X_1],
$$
Using Linearity - 1: Pips on dice

Roll a die \(n \) times.

\(X_m = \) number of pips on roll \(m \).

\(X = X_1 + \cdots + X_n \) = total number of pips in \(n \) rolls.

\[
E[X] = E[X_1 + \cdots + X_n]
\]

\[
= E[X_1] + \cdots + E[X_n], \text{ by linearity}
\]

\[
= nE[X_1], \text{ because the } X_m \text{ have the same distribution}
\]
Using Linearity - 1: Pips on dice

Roll a die n times.

$X_m = \text{number of pips on roll } m$.

$X = X_1 + \cdots + X_n = \text{total number of pips in } n \text{ rolls.}$

\[
E[X] = E[X_1 + \cdots + X_n] \\
= E[X_1] + \cdots + E[X_n], \text{ by linearity} \\
= nE[X_1], \text{ because the } X_m \text{ have the same distribution}
\]

Now,

\[
E[X_1] = 1 \times \frac{1}{6} + \cdots + 6 \times \frac{1}{6} =
\]
Using Linearity - 1: Pips on dice

Roll a die \(n \) times.

\(X_m = \) number of pips on roll \(m \).

\(X = X_1 + \cdots + X_n = \) total number of pips in \(n \) rolls.

\[
E[X] = E[X_1 + \cdots + X_n] \\
= E[X_1] + \cdots + E[X_n], \ \text{by linearity} \\
= nE[X_1], \ \text{because the} \ X_m \ \text{have the same distribution}
\]

Now,

\[
E[X_1] = 1 \times \frac{1}{6} + \cdots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} =
\]
Using Linearity - 1: Pips on dice

Roll a die \(n \) times.

\(X_m = \) number of pips on roll \(m \).

\(X = X_1 + \cdots + X_n = \) total number of pips in \(n \) rolls.

\[
E[X] = E[X_1 + \cdots + X_n] = E[X_1] + \cdots + E[X_n], \text{ by linearity}
\]

\(= nE[X_1], \) because the \(X_m \) have the same distribution.

Now,

\[
E[X_1] = 1 \times \frac{1}{6} + \cdots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.
\]
Roll a die n times.

$X_m = \text{number of pips on roll } m$.

$X = X_1 + \cdots + X_n = \text{total number of pips in } n \text{ rolls.}$

$$E[X] = E[X_1 + \cdots + X_n]$$

$$= E[X_1] + \cdots + E[X_n], \text{ by linearity}$$

$$= nE[X_1], \text{ because the } X_m \text{ have the same distribution}$$

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \cdots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.$$

Hence,

$$E[X] = \frac{7n}{2}.$$
Using Linearity - 2: Fixed point.

Hand out assignments at random to n students.

$X = \text{number of students that get their own assignment back.}$

$X = X_1 + \ldots + X_n$ where $X_m = 1$ if student m gets his/her own assignment back.

One has $E[X] = E[X_1 + \ldots + X_n] = E[X_1] + \ldots + E[X_n]$, by linearity.

Because all the X_m have the same distribution $= n \Pr[X_1 = 1]$, because X_1 is an indicator.

$= n \left(\frac{1}{n} \right) = 1$, because student 1 is equally likely to get any one of the n assignments.

Note that linearity holds even though the X_m are not independent (whatever that means).
Using Linearity - 2: Fixed point.

Hand out assignments at random to n students.

$X =$ number of students that get their own assignment back.
Using Linearity - 2: Fixed point.

Hand out assignments at random to n students.

$X =$ number of students that get their own assignment back.

$X = X_1 + \cdots + X_n$ where

$X_m = 1 \{ \text{student } m \text{ gets his/her own assignment back} \}.$

One has

$E[X] = E[X_1 + \cdots + X_n] = E[X_1] + \cdots + E[X_n],$

by linearity

$= nE[X_1],$

because all the X_m have the same distribution

$= n\left(\frac{1}{n}\right),$

because X_1 is an indicator

$= \frac{1}{2},$

because student 1 is equally likely
to get any one of the n assignments

Note that linearity holds even though the X_m are not independent (whatever that means).
Using Linearity - 2: Fixed point.

Hand out assignments at random to n students.

$X =$ number of students that get their own assignment back.

$X = X_1 + \cdots + X_n$ where

$X_m = 1\{ \text{student } m \text{ gets his/her own assignment back} \}$.

One has

\[
\mathbb{E}[X] = \mathbb{E}[X_1 + \cdots + X_n] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n],
\]

by linearity

\[
= n \mathbb{E}[X_1],
\]

because all the X_m have the same distribution

\[
= n \Pr[X_1 = 1],
\]

because X_1 is an indicator

\[
= n \left(\frac{1}{n} \right),
\]

because student 1 is equally likely to get any one of the n assignments

Note that linearity holds even though the X_m are not independent.
Using Linearity - 2: Fixed point.

Hand out assignments at random to \(n \) students.

\(X \) = number of students that get their own assignment back.

\(X = X_1 + \cdots + X_n \) where

\(X_m = 1\{\text{student } m \text{ gets his/her own assignment back}\} \).

One has

\[
E[X] = E[X_1 + \cdots + X_n]
\]
Using Linearity - 2: Fixed point.

Hand out assignments at random to \(n \) students.

\(X \) = number of students that get their own assignment back.

\[X = X_1 + \cdots + X_n \]

where

\[X_m = 1 \{ \text{student } m \text{ gets his/her own assignment back} \} \]

One has

\[
E[X] = E[X_1 + \cdots + X_n] = E[X_1] + \cdots + E[X_n],
\]
Using Linearity - 2: Fixed point.

Hand out assignments at random to \(n \) students.

\[X = \text{number of students that get their own assignment back.} \]

\[X = X_1 + \cdots + X_n \text{ where} \]

\[X_m = 1\{\text{student } m \text{ gets his/her own assignment back}\}. \]

One has

\[E[X] = E[X_1 + \cdots + X_n] \]

\[= E[X_1] + \cdots + E[X_n], \text{ by linearity} \]
Using Linearity - 2: Fixed point.

Hand out assignments at random to n students.

X = number of students that get their own assignment back.

$X = X_1 + \cdots + X_n$ where

$X_m = 1\{\text{student } m \text{ gets his/her own assignment back}\}$.

One has

\[
E[X] = E[X_1 + \cdots + X_n]
\]
\[
= E[X_1] + \cdots + E[X_n], \text{ by linearity}
\]
\[
= nE[X_1],
\]
Using Linearity - 2: Fixed point.

Hand out assignments at random to \(n \) students.

\(X = \) number of students that get their own assignment back.

\(X = X_1 + \cdots + X_n \) where

\(X_m = 1 \{ \text{student } m \text{ gets his/her own assignment back} \} \).

One has

\[
E[X] = E[X_1 + \cdots + X_n] \\
= E[X_1] + \cdots + E[X_n], \text{ by linearity} \\
= nE[X_1], \text{ because all the } X_m \text{ have the same distribution}
\]
Using Linearity - 2: Fixed point.

Hand out assignments at random to n students.

$X =$ number of students that get their own assignment back.

$X = X_1 + \cdots + X_n$ where

$X_m = 1\{\text{student } m \text{ gets his/her own assignment back}\}$.

One has

\[
E[X] = E[X_1 + \cdots + X_n] \\
= E[X_1] + \cdots + E[X_n], \text{ by linearity} \\
= nE[X_1], \text{ because all the } X_m \text{ have the same distribution} \\
= nPr[X_1 = 1],
\]
Using Linearity - 2: Fixed point.

Hand out assignments at random to n students.

$X =$ number of students that get their own assignment back.

$X = X_1 + \cdots + X_n$ where

$X_m = 1\{\text{student } m \text{ gets his/her own assignment back}\}$.

One has

$$E[X] = E[X_1 + \cdots + X_n]$$

$$= E[X_1] + \cdots + E[X_n], \text{ by linearity}$$

$$= nE[X_1], \text{ because all the } X_m \text{ have the same distribution}$$

$$= nPr[X_1 = 1], \text{ because } X_1 \text{ is an indicator}$$
Using Linearity - 2: Fixed point.

Hand out assignments at random to \(n \) students.

\(X = \) number of students that get their own assignment back.

\(X = X_1 + \cdots + X_n \) where

\(X_m = 1\{\text{student } m \text{ gets his/her own assignment back}\} \).

One has

\[
E[X] = E[X_1 + \cdots + X_n] \\
= E[X_1] + \cdots + E[X_n], \text{ by linearity} \\
= nE[X_1], \text{ because all the } X_m \text{ have the same distribution} \\
= nPr[X_1 = 1], \text{ because } X_1 \text{ is an indicator} \\
= n(1/n),
\]
Using Linearity - 2: Fixed point.

Hand out assignments at random to \(n \) students.

\(X \) = number of students that get their own assignment back.

\[X = X_1 + \cdots + X_n \]

where

\(X_m = 1 \{ \text{student } m \text{ gets his/her own assignment back} \} \).

One has

\[
E[X] = E[X_1 + \cdots + X_n] \\
= E[X_1] + \cdots + E[X_n], \text{ by linearity} \\
= nE[X_1], \text{ because all the } X_m \text{ have the same distribution} \\
= nPr[X_1 = 1], \text{ because } X_1 \text{ is an indicator} \\
= n(1/n), \text{ because student 1 is equally likely} \\
\text{to get any one of the } n \text{ assignments}
\]
Using Linearity - 2: Fixed point.

Hand out assignments at random to n students.

$X = \text{number of students that get their own assignment back.}$

$X = X_1 + \cdots + X_n$ where

$X_m = 1\{\text{student } m \text{ gets his/her own assignment back}\}.$

One has

$$E[X] = E[X_1 + \cdots + X_n]$$

$$= E[X_1] + \cdots + E[X_n], \text{ by linearity}$$

$$= nE[X_1], \text{ because all the } X_m \text{ have the same distribution}$$

$$= nPr[X_1 = 1], \text{ because } X_1 \text{ is an indicator}$$

$$= n(1/n), \text{ because student 1 is equally likely}$$

$$\text{to get any one of the } n \text{ assignments}$$

$$= 1.$$
Using Linearity - 2: Fixed point.

Hand out assignments at random to n students.

X = number of students that get their own assignment back.

$X = X_1 + \cdots + X_n$ where

$X_m = 1\{\text{student } m \text{ gets his/her own assignment back}\}$.

One has

$$
E[X] = E[X_1 + \cdots + X_n] \\
= E[X_1] + \cdots + E[X_n], \text{ by linearity} \\
= nE[X_1], \text{ because all the } X_m \text{ have the same distribution} \\
= nPr[X_1 = 1], \text{ because } X_1 \text{ is an indicator} \\
= n(1/n), \text{ because student 1 is equally likely} \\
\hspace{1cm} \text{to get any one of the } n \text{ assignments} \\
= 1.
$$

Note that linearity holds even though the X_m are not independent (whatever that means).
Using Linearity - 3: Binomial Distribution.

Flip n coins with heads probability p.
Using Linearity - 3: Binomial Distribution.

Flip n coins with heads probability p. X - number of heads
Using Linearity - 3: Binomial Distribution.

Flip n coins with heads probability p. X - number of heads

Binomial Distribution: $Pr[X = i]$, for each i.

$$Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}. $$
Using Linearity - 3: Binomial Distribution.

Flip \(n \) coins with heads probability \(p \). \(X \) - number of heads

Binomial Distribution: \(Pr[X = i] \), for each \(i \).

\[
Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}.
\]

\(E[X] \)
Using Linearity - 3: Binomial Distribution.

Flip \(n \) coins with heads probability \(p \). \(X \) - number of heads

Binomial Distribution: \(\Pr[X = i] \), for each \(i \).

\[
\Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}.
\]

\[
E[X] = \sum_i i \times \Pr[X = i]
\]
Using Linearity - 3: Binomial Distribution.

Flip \(n \) coins with heads probability \(p \). \(X \) - number of heads

Binomial Distribution: \(Pr[X = i] \), for each \(i \).

\[
Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}.
\]

\[
E[X] = \sum_i i \times Pr[X = i] = \sum_i i \times \binom{n}{i} p^i (1 - p)^{n-i}.
\]
Using Linearity - 3: Binomial Distribution.

Flip n coins with heads probability p. X - number of heads

Binomial Distribution: $Pr[X = i]$, for each i.

$$Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}.$$

$$E[X] = \sum_i i \times Pr[X = i] = \sum_i i \times \binom{n}{i} p^i (1 - p)^{n-i}.$$

Uh oh. ...
Using Linearity - 3: Binomial Distribution.

Flip n coins with heads probability p. X - number of heads

Binomial Distribution: $Pr[X = i]$, for each i.

$$Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}.$$

$$E[X] = \sum_i i \times Pr[X = i] = \sum_i i \times \binom{n}{i} p^i (1 - p)^{n-i}.$$

Uh oh. ... Or...
Using Linearity - 3: Binomial Distribution.

Flip \(n \) coins with heads probability \(p \). \(X \) - number of heads

Binomial Distribution: \(Pr[X = i] \), for each \(i \).

\[
Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}.
\]

\[
E[X] = \sum_i i \times Pr[X = i] = \sum_i i \times \binom{n}{i} p^i (1 - p)^{n-i}.
\]

Uh oh. ... Or... a better approach: Let
Using Linearity - 3: Binomial Distribution.

Flip \(n \) coins with heads probability \(p \). \(X \) - number of heads

Binomial Distribution: \(Pr[X = i] \), for each \(i \).

\[
Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}.
\]

\[
E[X] = \sum_i i \times Pr[X = i] = \sum_i i \times \binom{n}{i} p^i (1 - p)^{n-i}.
\]

Uh oh. ... Or... a better approach: Let

\[
X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}
\]
Using Linearity - 3: Binomial Distribution.

Flip \(n \) coins with heads probability \(p \). \(X \) - number of heads

Binomial Distribution: \(Pr[X = i] \), for each \(i \).

\[
Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}.
\]

\[
E[X] = \sum_i i \times Pr[X = i] = \sum_i i \times \binom{n}{i} p^i (1 - p)^{n-i}.
\]

Uh oh. ... Or... a better approach: Let

\[
X_i = \begin{cases}
1 & \text{if \(i \)th flip is heads} \\
0 & \text{otherwise}
\end{cases}
\]

\[
E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"]
\]
Using Linearity - 3: Binomial Distribution.

Flip n coins with heads probability p. X - number of heads

Binomial Distribution: $Pr[X = i]$, for each i.

$$Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}.$$

$$E[X] = \sum_i i \times Pr[X = i] = \sum_i i \times \binom{n}{i} p^i (1 - p)^{n-i}.$$

Uh oh. ... Or... a better approach: Let

$$X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"]] = p.$$
Using Linearity - 3: Binomial Distribution.

Flip \(n \) coins with heads probability \(p \). \(X \) - number of heads

Binomial Distribution: \(Pr[X = i] \), for each \(i \).

\[
Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}.
\]

\[
E[X] = \sum_i i \times Pr[X = i] = \sum_i i \times \binom{n}{i} p^i (1 - p)^{n-i}.
\]

Uh oh. ... Or... a better approach: Let

\[
X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}
\]

\[
E[X_i] = 1 \times Pr[“heads”] + 0 \times Pr[“tails”] = p.
\]

Moreover \(X = X_1 + \cdots X_n \) and
Using Linearity - 3: Binomial Distribution.

Flip \(n \) coins with heads probability \(p \). \(X \) - number of heads

Binomial Distribution: \(\Pr[X = i] \), for each \(i \).

\[
\Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}.
\]

\[
E[X] = \sum_i i \times \Pr[X = i] = \sum_i i \times \binom{n}{i} p^i (1 - p)^{n-i}.
\]

Uh oh. ... Or... a better approach: Let

\[
X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}
\]

\[
E[X_i] = 1 \times \Pr["heads"] + 0 \times \Pr["tails"] = p.
\]

Moreover \(X = X_1 + \cdots + X_n \) and

\[
E[X] = E[X_1] + E[X_2] + \cdots + E[X_n]
\]
Using Linearity - 3: Binomial Distribution.

Flip \(n \) coins with heads probability \(p \). \(X \) - number of heads

Binomial Distribution: \(Pr[X = i] \), for each \(i \).

\[
Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}.
\]

\[
E[X] = \sum_i i \times Pr[X = i] = \sum_i i \times \binom{n}{i} p^i (1 - p)^{n-i}.
\]

Uh oh. ... Or... a better approach: Let

\[
X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}
\]

\[
E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.
\]

Moreover \(X = X_1 + \cdots X_n \) and

\[
E[X] = E[X_1] + E[X_2] + \cdots E[X_n] = n \times E[X_i]
\]
Using Linearity - 3: Binomial Distribution.

Flip n coins with heads probability p. X - number of heads

Binomial Distribution: $Pr[X = i]$, for each i.

$$Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}.$$

$$E[X] = \sum_i i \times Pr[X = i] = \sum_i i \times \binom{n}{i} p^i (1 - p)^{n-i}.$$

Uh oh. ... Or... a better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i\text{'th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover $X = X_1 + \cdots X_n$ and

$$E[X] = E[X_1] + E[X_2] + \cdots E[X_n] = n \times E[X_i] = np.$$
Conditional Expectation

How do observations affect expectation?

Example 1:
Roll one die. You are told that the outcome X is at least 3. What is the expected value of X given that information?

Given that $X \geq 3$, we know that X is uniform in \{3, 4, 5, 6\}. Hence, the mean value is 4.5.

We write $E[X | X \geq 3] = 4.5$.

Similarly, we have $E[X | X < 3] = 1.5$ because, given that $X < 3$, X is uniform in \{1, 2\}.

Note that $E[X | X \geq 3] \times \Pr[X \geq 3] + E[X | X < 2] \times \Pr[X < 2] = 4.5 \times 4/6 + 1.5 \times 2/6 = 3.5 + 0.5 = 4 = E[X]$. Is this a coincidence?
Conditional Expectation

How do observations affect expectation?

Example 1:

Roll one die. You are told that the outcome \(X \) is at least 3. What is the expected value of \(X \) given that information?

Given that \(X \geq 3 \), we know that \(X \) is uniform in \(\{3, 4, 5, 6\} \). Hence, the mean value is 4.5.

We write

\[
E [X | X \geq 3] = 4.5.
\]

Similarly, we have

\[
E [X | X < 3] = 1.5
\]

because, given that \(X < 3 \), \(X \) is uniform in \(\{1, 2\} \).

Note that

\[
E [X | X \geq 3] \times \Pr [X \geq 3] + E [X | X < 2] \times \Pr [X < 2] = 4.5 \times 4/6 + 1.5 \times 2/6 = 3 + 0.5 = 3.5 = E [X].
\]
Conditional Expectation

How do observations affect expectation?

Example 1:
Roll one die. You are told that the outcome X is at least 3. What is the expected value of X given that information?

Given that $X \geq 3$, we know that X is uniform in \{3, 4, 5, 6\}. Hence, the mean value is 4.5.

We write $E[X | X \geq 3] = 4.5$.

Similarly, we have $E[X | X < 3] = \frac{1}{2}$ because, given that $X < 3$, X is uniform in \{1, 2\}.

Note that $E[X | X \geq 3] \times \Pr[X \geq 3] + E[X | X < 3] \times \Pr[X < 3] = 4.5 \times \frac{2}{6} + 1.5 \times \frac{4}{6} = 3 + 0.5 = 3.5 = E[X]$. Is this a coincidence?
Conditional Expectation

How do observations affect expectation?

Example 1:
Roll one die. You are told that the outcome X is at least 3.
What is the expected value of X given that information?

Given that $X \geq 3$, we know that X is uniform in $\{3, 4, 5, 6\}$.
Conditional Expectation

How do observations affect expectation?

Example 1:
Roll one die. You are told that the outcome X is at least 3. What is the expected value of X given that information?

Given that $X \geq 3$, we know that X is uniform in $\{3, 4, 5, 6\}$. Hence, the mean value is 4.5.
Conditional Expectation

How do observations affect expectation?

Example 1:
Roll one die. You are told that the outcome X is at least 3. What is the expected value of X given that information?

Given that $X \geq 3$, we know that X is uniform in $\{3, 4, 5, 6\}$. Hence, the mean value is 4.5. We write

$$E[X|X \geq 3] = 4.5.$$
Conditional Expectation

How do observations affect expectation?

Example 1:
Roll one die. You are told that the outcome X is at least 3. What is the expected value of X given that information?

Given that $X \geq 3$, we know that X is uniform in $\{3, 4, 5, 6\}$. Hence, the mean value is 4.5. We write

$$E[X|X \geq 3] = 4.5.$$

Similarly, we have

$$E[X|X < 3] =$$
Conditional Expectation

How do observations affect expectation?

Example 1:
Roll one die. You are told that the outcome X is at least 3. What is the expected value of X given that information?

Given that $X \geq 3$, we know that X is uniform in \{3, 4, 5, 6\}. Hence, the mean value is 4.5. We write

$$E[X|X \geq 3] = 4.5.$$

Similarly, we have

$$E[X|X < 3] = 1.5$$
Conditional Expectation

How do observations affect expectation?

Example 1:
Roll one die. You are told that the outcome \(X \) is at least 3. What is the expected value of \(X \) given that information?

Given that \(X \geq 3 \), we know that \(X \) is uniform in \(\{3, 4, 5, 6\} \). Hence, the mean value is 4.5. We write

\[
E[X|X \geq 3] = 4.5.
\]

Similarly, we have

\[
E[X|X < 3] = 1.5
\]

because, given that \(X < 3 \), \(X \) is uniform in \(\{1, 2\} \).
Conditional Expectation

How do observations affect expectation?

Example 1:
Roll one die. You are told that the outcome X is at least 3. What is the expected value of X given that information?

Given that $X \geq 3$, we know that X is uniform in $\{3, 4, 5, 6\}$. Hence, the mean value is 4.5. We write

$$E[X|X \geq 3] = 4.5.$$

Similarly, we have

$$E[X|X < 3] = 1.5$$

because, given that $X < 3$, X is uniform in $\{1, 2\}$.

Note that

$$E[X|X \geq 3] \times Pr[X \geq 3] + E[X|X < 2] \times Pr[X < 2]$$
Conditional Expectation

How do observations affect expectation?

Example 1:
Roll one die. You are told that the outcome X is at least 3. What is the expected value of X given that information?

Given that $X \geq 3$, we know that X is uniform in $\{3, 4, 5, 6\}$. Hence, the mean value is 4.5. We write

$$E[X|X \geq 3] = 4.5.$$

Similarly, we have

$$E[X|X < 3] = 1.5$$

because, given that $X < 3$, X is uniform in $\{1, 2\}$.

Note that

$$E[X|X \geq 3] \times Pr[X \geq 3] + E[X|X < 2] \times Pr[X < 2]$$

$$= 4.5 \times \frac{4}{6} + 1.5 \times \frac{2}{6}$$

$$= \frac{18}{6} + \frac{3}{6}$$

$$= \frac{21}{6}$$

Is this a coincidence?
Conditional Expectation

How do observations affect expectation?

Example 1:
Roll one die. You are told that the outcome \(X \) is at least 3. What is the expected value of \(X \) given that information?

Given that \(X \geq 3 \), we know that \(X \) is uniform in \(\{3, 4, 5, 6\} \). Hence, the mean value is 4.5. We write

\[
E[X|X \geq 3] = 4.5.
\]

Similarly, we have

\[
E[X|X < 3] = 1.5
\]

because, given that \(X < 3 \), \(X \) is uniform in \(\{1, 2\} \).

Note that

\[
E[X|X \geq 3] \times Pr[X \geq 3] + E[X|X < 2] \times Pr[X < 2]
\]

\[
= 4.5 \times \frac{4}{6} + 1.5 \times \frac{2}{6} = 3 + 0.5 = 3.5
\]
Conditional Expectation

How do observations affect expectation?

Example 1:
Roll one die. You are told that the outcome X is at least 3. What is the expected value of X given that information?

Given that $X \geq 3$, we know that X is uniform in \{3, 4, 5, 6\}. Hence, the mean value is 4.5. We write

$$E[X|X \geq 3] = 4.5.$$

Similarly, we have

$$E[X|X < 3] = 1.5$$

because, given that $X < 3$, X is uniform in \{1, 2\}.

Note that

$$E[X|X \geq 3] \times Pr[X \geq 3] + E[X|X < 2] \times Pr[X < 2]$$

$$= 4.5 \times \frac{4}{6} + 1.5 \times \frac{2}{6} = 3 + 0.5 = 3.5 = E[X].$$
Conditional Expectation

How do observations affect expectation?

Example 1:
Roll one die. You are told that the outcome X is at least 3. What is the expected value of X given that information?

Given that $X \geq 3$, we know that X is uniform in $\{3, 4, 5, 6\}$. Hence, the mean value is 4.5. We write

$$E[X|X \geq 3] = 4.5.$$

Similarly, we have

$$E[X|X < 3] = 1.5$$

because, given that $X < 3$, X is uniform in $\{1, 2\}$.

Note that

$$E[X|X \geq 3] \times Pr[X \geq 3] + E[X|X < 2] \times Pr[X < 2]$$

$$= 4.5 \times \frac{4}{6} + 1.5 \times \frac{2}{6} = 3 + 0.5 = 3.5 = E[X].$$

Is this a coincidence?
Conditional Expectation

How do observations affect expectation?

Example 2:

Roll two dice. You are told that the total number X of pips is at least 8. What is the expected value of X given that information?

Recall the distribution of X:

$\Pr[X = 2] = \Pr[X = 12] = \frac{1}{36}$, $\Pr[X = 3] = \Pr[X = 11] = \frac{2}{36}$,...

Given that $X \geq 8$, the distribution of X becomes

$\left\{ \left(8, \frac{5}{15} \right), \left(9, \frac{4}{15} \right), \left(10, \frac{3}{15} \right), \left(11, \frac{2}{15} \right), \left(12, \frac{1}{15} \right) \right\}$.

For instance, $\Pr[X = 8 | X \geq 8] = \frac{\Pr[X = 8]}{\Pr[X \geq 8]} = \frac{5/36}{15/36} = \frac{5}{15}$.

Hence, $E[X | X \geq 8] = 8 \cdot \frac{5}{15} + 9 \cdot \frac{4}{15} + 10 \cdot \frac{3}{15} + 11 \cdot \frac{2}{15} + 12 \cdot \frac{1}{15} = \frac{140}{15} \approx 9.33$.
Conditional Expectation

How do observations affect expectation?

Example 2:
Roll two dice. You are told that the total number X of pips is at least 8. What is the expected value of X given that information?
Conditional Expectation

How do observations affect expectation?

Example 2:
Roll two dice. You are told that the total number X of pips is at least 8. What is the expected value of X given that information?

Conditional Expectation

How do observations affect expectation?

Example 2:
Roll two dice. You are told that the total number X of pips is at least 8. What is the expected value of X given that information?

Given that $X \geq 8$, the distribution of X becomes

\[
\{(8, 5/15), (9, 4/15), (10, 3/15), (11, 2/15), (12, 1/15)\}.
\]
Conditional Expectation

How do observations affect expectation?

Example 2:
Roll two dice. You are told that the total number X of pips is at least 8. What is the expected value of X given that information?

Given that $X \geq 8$, the distribution of X becomes

$\{(8, 5/15), (9, 4/15), (10, 3/15), (11, 2/15), (12, 1/15)\}$.

For instance,

$$Pr[X = 8|X \geq 8] = \frac{Pr[X = 8]}{Pr[X \geq 8]}$$
Conditional Expectation

How do observations affect expectation?

Example 2:
Roll two dice. You are told that the total number \(X \) of pips is at least 8. What is the expected value of \(X \) given that information?

Recall the distribution of \(X \): \(Pr[X = 2] = Pr[X = 12] = 1/36, Pr[X = 3] = Pr[X = 11] = 2/36, \ldots \)

Given that \(X \geq 8 \), the distribution of \(X \) becomes

\[
\{(8, 5/15), (9, 4/15), (10, 3/15), (11, 2/15), (12, 1/15)\}.
\]

For instance,

\[
Pr[X = 8|X \geq 8] = \frac{Pr[X = 8]}{Pr[X \geq 8]} = \frac{5/36}{15/36} = \frac{5}{15}.
\]
Conditional Expectation

How do observations affect expectation?

Example 2:
Roll two dice. You are told that the total number X of pips is at least 8. What is the expected value of X given that information?

Given that $X \geq 8$, the distribution of X becomes

\{ (8, 5/15), (9, 4/15), (10, 3/15), (11, 2/15), (12, 1/15) \}.

For instance,

$$Pr[X = 8|X \geq 8] = \frac{Pr[X = 8]}{Pr[X \geq 8]} = \frac{5/36}{15/36} = \frac{5}{15}.$$

Hence,

$$E[X|X \geq 8] = 8 \frac{5}{15} + 9 \frac{4}{15} + 10 \frac{3}{15} + 11 \frac{2}{15} + 12 \frac{1}{15} = \frac{140}{15} \approx 9.33.$$
How do observations affect expectation?

Example 2: continued

Roll two dice. You are told that the total number X of pips is less than 8. What is the expected value of X given that information?

We find that $E[X | X < 8] = \frac{21}{2} + \frac{33}{2} + \cdots + \frac{76}{2} = \frac{112}{2} = 5.6$.

Observe that $E[X | X \geq 8] = \Pr[X \geq 8] + E[X | X < 8] \Pr[X < 8] = 0.33 \times \frac{15}{36} + 5.33 \times \frac{31}{36} = 7 = E[X]$.

Coincidence? Probably not.
Conditional Expectation

How do observations affect expectation?

Example 2: continued
Roll two dice. You are told that the total number X of pips is less than 8. What is the expected value of X given that information?

We find that

$$E[X \mid X < 8] = \frac{2}{21} + \frac{3}{21} + \cdots + \frac{7}{21} = \frac{112}{21} \approx 5.33.$$

Observe that

$$E[X \mid X \geq 8] \cdot \text{Pr}[X \geq 8] + E[X \mid X < 8] \cdot \text{Pr}[X < 8] = \frac{9}{36} \times \frac{5}{21} = \frac{7}{21} = E[X].$$

Coincidence? Probably not.
Conditional Expectation

How do observations affect expectation?

Example 2: continued

Roll two dice. You are told that the total number X of pips is less than 8. What is the expected value of X given that information?

We find that

$$E[X|X < 8] = 2 \frac{1}{21} + 3 \frac{3}{21} + \cdots + 7 \frac{6}{21} = \frac{112}{21} \approx 5.33.$$
Conditional Expectation

How do observations affect expectation?

Example 2: continued

Roll two dice. You are told that the total number X of pips is less than 8. What is the expected value of X given that information?

We find that

\[E[X|X < 8] = 2 \frac{1}{21} + 3 \frac{3}{21} + \cdots + 7 \frac{6}{21} = \frac{112}{21} \approx 5.33. \]

Observe that

\[E[X|X \geq 8]Pr[X \geq 8] + E[X|X < 8]Pr[X < 8] \]
Conditional Expectation

How do observations affect expectation?

Example 2: continued

Roll two dice. You are told that the total number X of pips is less than 8. What is the expected value of X given that information?

We find that

$$E[X|X < 8] = 2 \frac{1}{21} + 3 \frac{3}{21} + \cdots + 7 \frac{6}{21} = \frac{112}{21} \approx 5.33.$$

Observe that

$$E[X|X \geq 8] Pr[X \geq 8] + E[X|X < 8] Pr[X < 8]$$

$$= 9.33 \times \frac{15}{36} + 5.33 \frac{21}{36}$$
Conditional Expectation

How do observations affect expectation?

Example 2: continued

Roll two dice. You are told that the total number \(X \) of pips is less than 8. What is the expected value of \(X \) given that information?

We find that

\[
E[X | X < 8] = \frac{1}{21} + 3 \cdot \frac{3}{21} + \cdots + 7 \cdot \frac{6}{21} = \frac{112}{21} \approx 5.33.
\]

Observe that

\[
E[X | X \geq 8] \Pr[X \geq 8] + E[X | X < 8] \Pr[X < 8]
\]

\[
= 9.33 \times \frac{15}{36} + 5.33 \times \frac{21}{36}
\]

\[
= 7
\]
Conditional Expectation

How do observations affect expectation?

Example 2: continued

Roll two dice. You are told that the total number X of pips is less than 8. What is the expected value of X given that information?

We find that

$$E[X|X < 8] = 2 \frac{1}{21} + 3 \frac{3}{21} + \cdots + 7 \frac{6}{21} = \frac{112}{21} \approx 5.33.$$

Observe that

$$E[X|X \geq 8]Pr[X \geq 8] + E[X|X < 8]Pr[X < 8]$$

$$= 9.33 \times \frac{15}{36} + 5.33 \frac{21}{36}$$

$$= 7 = E[X].$$
Conditional Expectation

How do observations affect expectation?

Example 2: continued

Roll two dice. You are told that the total number X of pips is less than 8. What is the expected value of X given that information?

We find that

$$E[X|X < 8] = 2 \frac{1}{21} + 3 \frac{3}{21} + \cdots + 7 \frac{6}{21} = \frac{112}{21} \approx 5.33.$$

Observe that

$$E[X|X \geq 8] Pr[X \geq 8] + E[X|X < 8] Pr[X < 8]$$

$$= 9.33 \times \frac{15}{36} + 5.33 \frac{21}{36}$$

$$= 7 = E[X].$$

Coincidence?
Conditional Expectation

How do observations affect expectation?

Example 2: continued
Roll two dice. You are told that the total number X of pips is less than 8. What is the expected value of X given that information?

We find that

$$E[X|X < 8] = 2 \frac{1}{21} + 3 \frac{3}{21} + \cdots + 7 \frac{6}{21} = \frac{112}{21} \approx 5.33.$$

Observe that

$$E[X|X \geq 8]Pr[X \geq 8] + E[X|X < 8]Pr[X < 8]$$

$$= 9.33 \times \frac{15}{36} + 5.33 \frac{21}{36}$$

$$= 7 = E[X].$$

Coincidence? Probably not.
Conditional Probability

Definition

Let X be a RV and A an event. Then

$$E[X|A] := \sum_{a} a \times Pr[X = a|A].$$

It is easy (really) to see that

$$E[X|A] = \sum_{\omega} X(\omega) \times Pr[\omega|A] = 1 \times \Pr[A] \sum_{\omega \in A} X(\omega) \times Pr[\omega].$$

Theorem Conditional Expectation is linear

$$E[a_1 X_1 + \cdots + a_n X_n|A] = a_1 E[X_1|A] + \cdots + a_n E[X_n|A].$$

Proof:

$$E[a_1 X_1 + \cdots + a_n X_n|A] = \sum_{\omega} [a_1 X_1(\omega) + \cdots + a_n X_n(\omega)] \times Pr[\omega|A] = a_1 \sum_{\omega} X_1(\omega) \times Pr[\omega|A] + \cdots + a_n \sum_{\omega} X_n(\omega) \times Pr[\omega|A] = a_1 E[X_1|A] + \cdots + a_n E[X_n|A].$$
Conditional Probability

Definition

Let X be a RV and A an event.
Conditional Probability

Definition

Let X be a RV and A an event. Then

$$E[X|A] := \sum_a a \times Pr[X = a|A].$$
Conditional Probability

Definition

Let X be a RV and A an event. Then

$$E[X|A] := \sum_a a \times Pr[X = a | A].$$

It is easy
Conditional Probability

Definition

Let X be a RV and A an event. Then

$$E[X|A] := \sum_a a \times Pr[X = a|A].$$

It is easy (really)
Conditional Probability

Definition

Let X be a RV and A an event. Then

$$E[X|A] := \sum_a a \times Pr[X = a|A].$$

It is easy (really) to see that
Conditional Probability

Definition

Let X be a RV and A an event. Then

$$E[X|A] := \sum_a a \times Pr[X = a|A].$$

It is easy (really) to see that

$$E[X|A] = \sum_{\omega} X(\omega) Pr[\omega|A].$$
Conditional Probability

Definition

Let X be a RV and A an event. Then

$$E[X|A] := \sum_a a \times Pr[X = a|A].$$

It is easy (really) to see that

$$E[X|A] = \sum_\omega X(\omega) Pr[\omega|A] = \frac{1}{Pr[A]} \sum_{\omega \in A} X(\omega) Pr[\omega].$$
Conditional Probability

Definition

Let X be a RV and A an event. Then

$$E[X|A] := \sum_{a} a \times Pr[X = a|A].$$

It is easy (really) to see that

$$E[X|A] = \sum_{\omega} X(\omega) Pr[\omega|A] = \frac{1}{Pr[A]} \sum_{\omega \in A} X(\omega) Pr[\omega].$$

Theorem Conditional Expectation is linear
Conditional Probability

Definition

Let X be a RV and A an event. Then

$$E[X|A] := \sum_a a \times Pr[X = a|A].$$

It is easy (really) to see that

$$E[X|A] = \sum_\omega X(\omega) Pr[\omega|A] = \frac{1}{Pr[A]} \sum_{\omega \in A} X(\omega) Pr[\omega].$$

Theorem Conditional Expectation is linear

$$E[a_1 X_1 + \cdots + a_n X_n|A] = a_1 E[X_1|A] + \cdots + a_n E[X_n|A].$$
Conditional Probability

Definition

Let X be a RV and A an event. Then

$$E[X|A] := \sum_{a} a \times Pr[X = a|A].$$

It is easy (really) to see that

$$E[X|A] = \sum_{\omega} X(\omega) Pr[\omega|A] = \frac{1}{Pr[A]} \sum_{\omega \in A} X(\omega) Pr[\omega].$$

Theorem Conditional Expectation is linear

$$E[a_1 X_1 + \cdots + a_n X_n|A] = a_1 E[X_1|A] + \cdots + a_n E[X_n|A].$$

Proof:

$$E[a_1 X_1 + \cdots + a_n X_n|A]$$
Conditional Probability

Definition

Let X be a RV and A an event. Then

$$E[X|A] := \sum_a a \times Pr[X = a|A].$$

It is easy (really) to see that

$$E[X|A] = \sum_{\omega} X(\omega)Pr[\omega|A] = \frac{1}{Pr[A]} \sum_{\omega \in A} X(\omega)Pr[\omega].$$

Theorem Conditional Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n|A] = a_1 E[X_1|A] + \cdots + a_n E[X_n|A].$$

Proof:

$$E[a_1X_1 + \cdots + a_nX_n|A]$$

$$= \sum_{\omega} [a_1X_1(\omega) + \cdots + a_nX_n(\omega)]Pr[\omega|A]$$
Conditional Probability

Definition
Let \(X \) be a RV and \(A \) an event. Then
\[
E[X|A] := \sum_a a \times Pr[X = a|A].
\]
It is easy (really) to see that
\[
E[X|A] = \sum_{\omega} X(\omega)Pr[\omega|A] = \frac{1}{Pr[A]} \sum_{\omega \in A} X(\omega)Pr[\omega].
\]

Theorem
Conditional Expectation is linear
\[
E[a_1 X_1 + \cdots + a_n X_n | A] = a_1 E[X_1 | A] + \cdots + a_n E[X_n | A].
\]

Proof:
\[
E[a_1 X_1 + \cdots + a_n X_n | A]
= \sum_{\omega} [a_1 X_1(\omega) + \cdots + a_n X_n(\omega)] Pr[\omega | A]
= a_1 \sum_{\omega} X_1(\omega) Pr[\omega | A] + \cdots + a_n \sum_{\omega} X_n(\omega) Pr[\omega | A]
\]
Conditional Probability

Definition

Let X be a RV and A an event. Then

$$E[X|A] := \sum_a a \times Pr[X = a|A].$$

It is easy (really) to see that

$$E[X|A] = \sum_\omega X(\omega) Pr[\omega|A] = \frac{1}{Pr[A]} \sum_\omega X(\omega) Pr[\omega].$$

Theorem Conditional Expectation is linear

$$E[a_1 X_1 + \cdots + a_n X_n|A] = a_1 E[X_1|A] + \cdots + a_n E[X_n|A].$$

Proof:

$$E[a_1 X_1 + \cdots + a_n X_n|A]$$

$$= \sum_\omega [a_1 X_1(\omega) + \cdots + a_n X_n(\omega)] Pr[\omega|A]$$

$$= a_1 \sum_\omega X_1(\omega) Pr[\omega|A] + \cdots + a_n \sum_\omega X_n(\omega) Pr[\omega|A]$$

$$= a_1 E[X_1|A] + \cdots a_n E[X_n|A].$$
Conditional Probability

Theorem

\[E[X] = E[X|A]Pr[A] + E[X|\bar{A}]Pr[\bar{A}] . \]
Conditional Probability

Theorem

\[E[X] = E[X|A]Pr[A] + E[X|\bar{A}]Pr[\bar{A}] \]

Proof

The law of total probability says that
Conditional Probability

Theorem

\[E[X] = E[X|A]Pr[A] + E[X|\bar{A}]Pr[\bar{A}] \].

Proof

The law of total probability says that

\[Pr[\omega] = Pr[\omega|A]Pr[A] + Pr[\omega|\bar{A}]Pr[\bar{A}] \].
Conditional Probability

Theorem

\[E[X] = E[X|A]Pr[A] + E[X|\bar{A}]Pr[\bar{A}] \]

Proof

The law of total probability says that

\[Pr[\omega] = Pr[\omega|A]Pr[A] + Pr[\omega|\bar{A}]Pr[\bar{A}] \]

Hence,

\[E[X] = \sum_{\omega} X(\omega)Pr[\omega] \]
Conditional Probability

Theorem

\[E[X] = E[X|A]Pr[A] + E[X|\bar{A}]Pr[\bar{A}]. \]

Proof

The law of total probability says that

\[Pr[\omega] = Pr[\omega|A]Pr[A] + Pr[\omega|\bar{A}]Pr[\bar{A}]. \]

Hence,

\[
E[X] = \sum_\omega X(\omega)Pr[\omega] \\
= \sum_\omega X(\omega)Pr[\omega|A]Pr[A] + \sum_\omega X(\omega)Pr[\omega|\bar{A}]Pr[\bar{A}]
\]
Conditional Probability

Theorem

\[E[X] = E[X|A]Pr[A] + E[X|\bar{A}]Pr[\bar{A}]. \]

Proof

The law of total probability says that

\[Pr[\omega] = Pr[\omega|A]Pr[A] + Pr[\omega|\bar{A}]Pr[\bar{A}]. \]

Hence,

\[
E[X] = \sum_{\omega} X(\omega)Pr[\omega] \\
= \sum_{\omega} X(\omega)Pr[\omega|A]Pr[A] + \sum_{\omega} X(\omega)Pr[\omega|\bar{A}]Pr[\bar{A}] \\
= E[X|A]Pr[A] + E[X|\bar{A}]Pr[\bar{A}].
\]
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.
Geometric Distribution
Let’s flip a coin with $Pr[H] = p$ until we get H.
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

$\omega_1 = H$, or
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

\[\omega_1 = H, \text{ or } \]
\[\omega_2 = T \ H, \text{ or } \]
\[\omega_3 = T \ T \ H, \text{ or } \]
\[\omega_n = T \ T \ T \ T \ \cdots \ T \ H. \]
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

$\omega_1 = H$, or

$\omega_2 = TH$, or

$\omega_3 = TT H$, or
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

$\omega_1 = H$, or
$\omega_2 = T \ H$, or
$\omega_3 = T \ T \ H$, or
$\omega_n = T \ T \ T \ T \ \cdots \ T \ H$.
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

\[
\begin{align*}
\omega_1 &= H, \text{ or } \\
\omega_2 &= T \ H, \text{ or } \\
\omega_3 &= T \ T \ H, \text{ or } \\
\omega_n &= T \ T \ T \ T \ \cdots \ T \ H.
\end{align*}
\]

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}$.
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

$\omega_1 = H$, or
$\omega_2 = T\ H$, or
$\omega_3 = T\ T\ H$, or
$\omega_n = T\ T\ T\ T\ \cdots\ T\ H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}$.

Let X be the number of flips until the first H. Then, $X(\omega_n) =$
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

- $\omega_1 = H$, or
- $\omega_2 = T \ H$, or
- $\omega_3 = T \ T \ H$, or
- $\omega_n = T \ T \ T \ T \ \cdots \ T \ H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}$.

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$.
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

$\omega_1 = H$, or
$\omega_2 = T \ H$, or
$\omega_3 = T \ T \ H$, or
$\omega_n = T \ T \ T \ T \ \ldots \ T \ H$.

Note that $\Omega = \{ \omega_n, n = 1, 2, \ldots \}$.

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$.

Also,

$Pr[X = n] =$
Geometric Distribution

Let’s flip a coin with \(Pr[H] = p \) until we get \(H \).

For instance:

\[
\omega_1 = H, \text{ or } \\
\omega_2 = TH, \text{ or } \\
\omega_3 = TTTH, \text{ or } \\
\omega_n = TT \cdots TTH.
\]

Note that \(\Omega = \{ \omega_n, n = 1, 2, \ldots \} \).

Let \(X \) be the number of flips until the first \(H \). Then, \(X(\omega_n) = n \).

Also,

\[
Pr[X = n] = (1 - p)^{n-1} p, \ n \geq 1.
\]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \ n \geq 1. \]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[\sum_{n=1}^{\infty} Pr[X_n] = \]

Geometric Distribution

\[\Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p =
\]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \ n \geq 1. \]

Note that

\[\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} \]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n.
\]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1}p, \quad n \geq 1. \]

Note that

\[\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1}p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n. \]

Now, if \(|a| < 1\), then \(S := \sum_{n=0}^{\infty} a^n = \)
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n.
\]

Now, if \(|a| < 1\), then \(S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}\).
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \ n \geq 1. \]

Note that

\[\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n. \]

Now, if \(|a| < 1\), then \(S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a} \). Indeed,

\[S = 1 + a + a^2 + a^3 + \cdots \]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^{n}. \]

Now, if \(|a| < 1\), then \(S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a} \). Indeed,

\[
\begin{align*}
S &= 1 + a + a^2 + a^3 + \cdots \\
aS &= a + a^2 + a^3 + a^4 + \cdots
\end{align*}
\]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n.
\]

Now, if \(|a| < 1\), then \(S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}\). Indeed,

\[
S = 1 + a + a^2 + a^3 + \cdots
\]

\[
aS = a + a^2 + a^3 + a^4 + \cdots
\]

\[
(1-a)S = 1 + a - a + a^2 - a^2 + \cdots = 1.
\]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1}p, \ n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1}p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^{n}.
\]

Now, if \(|a| < 1\), then \(S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}\). Indeed,

\[
S = 1 + a + a^2 + a^3 + \cdots
\]

\[
aS = a + a^2 + a^3 + a^4 + \cdots
\]

\[
(1-a)S = 1 + a - a + a^2 - a^2 + \cdots = 1.
\]

Hence,

\[
\sum_{n=1}^{\infty} Pr[X_n] =
\]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \ n \geq 1. \]

Note that

\[\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n. \]

Now, if \(|a| < 1\), then \(S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}\). Indeed,

\[
\begin{align*}
S &= 1 + a + a^2 + a^3 + \cdots \\
aS &= a + a^2 + a^3 + a^4 + \cdots \\
(1-a)S &= 1 + a - a + a^2 - a^2 + \cdots = 1.
\end{align*}
\]

Hence,

\[\sum_{n=1}^{\infty} Pr[X_n] = p \frac{1}{1 - (1-p)} = \]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n. \]

Now, if \(|a| < 1 \), then \(S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a} \). Indeed,

\[
\begin{align*}
S & = 1 + a + a^2 + a^3 + \cdots \\
\frac{aS}{1-a} & = a + a^2 + a^3 + a^4 + \cdots \\
(1-a)S & = 1 + a - a + a^2 - a^2 + \cdots = 1.
\end{align*}
\]

Hence,

\[\sum_{n=1}^{\infty} Pr[X_n] = p \frac{1}{1 - (1 - p)} = 1. \]
Geometric Distribution: Expectation

\[X \equiv_D G(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1} p, n \geq 1. \]
Geometric Distribution: Expectation

\(X \sim D G(p) \), i.e., \(Pr[X = n] = (1 - p)^{n-1} p, n \geq 1 \).

One has

\[
E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1} p.
\]
Geometric Distribution: Expectation

\[X =_{D} G(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1} p, \, n \geq 1. \]

One has

\[E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1} p. \]

Thus,

\[E[X] = p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots \]
Geometric Distribution: Expectation

\[X =_{D} G(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1}p, \ n \geq 1. \]

One has

\[
E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p.
\]

Thus,

\[
E[X] = p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots \\
(1 - p)E[X] = (1 - p)p + 2(1 - p)^2p + 3(1 - p)^3p + \cdots
\]
Geometric Distribution: Expectation

\[X \sim D G(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1}p, n \geq 1. \]

One has

\[E[X] = \sum_{n=1}^{\infty} n Pr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p. \]

Thus,

\[E[X] = p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots \]
\[(1 - p)E[X] = (1 - p)p + 2(1 - p)^2p + 3(1 - p)^3p + \cdots \]
\[pE[X] = p + (1 - p)p + (1 - p)^2p + (1 - p)^3p + \cdots \]
Geometric Distribution: Expectation

\(X \sim G(p) \), i.e., \(Pr[X = n] = (1 - p)^{n-1}p, n \geq 1. \)

One has

\[
E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p.
\]

Thus,

\[
E[X] = p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots
\]

\[
(1 - p)E[X] = (1 - p)p + 2(1 - p)^2p + 3(1 - p)^3p + \cdots
\]

\[
pE[X] = p + (1 - p)p + (1 - p)^2p + (1 - p)^3p + \cdots
\]

by subtracting the previous two identities
Geometric Distribution: Expectation

\[X \sim D G(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1} p, n \geq 1. \]

One has

\[E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1} p. \]

Thus,

\[E[X] = p + 2(1 - p)p + 3(1 - p)^2 p + 4(1 - p)^3 p + \cdots \]

\[(1 - p)E[X] = (1 - p)p + 2(1 - p)^2 p + 3(1 - p)^3 p + \cdots \]

\[pE[X] = p + (1 - p)p + (1 - p)^2 p + (1 - p)^3 p + \cdots \]

by subtracting the previous two identities

\[= \sum_{n=1}^{\infty} Pr[X = n] = \]
Geometric Distribution: Expectation

\[X = D G(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1}p, n \geq 1. \]

One has

\[
E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p.
\]

Thus,

\[
E[X] = p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots
\]
\[
(1 - p)E[X] = (1 - p)p + 2(1 - p)^2p + 3(1 - p)^3p + \cdots
\]
\[
pE[X] = p + (1 - p)p + (1 - p)^2p + (1 - p)^3p + \cdots
\]

by subtracting the previous two identities

\[
= \sum_{n=1}^{\infty} Pr[X = n] = 1.
\]
Geometric Distribution: Expectation

\(X =_{D} G(p) \), i.e., \(\Pr[X = n] = (1 - p)^{n-1} p, n \geq 1 \).

One has

\[
E[X] = \sum_{n=1}^{\infty} n \Pr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1} p.
\]

Thus,

\[
E[X] = p + 2(1 - p)p + 3(1 - p)^2 p + 4(1 - p)^3 p + \cdots
\]

\[
(1 - p)E[X] = (1 - p)p + 2(1 - p)^2 p + 3(1 - p)^3 p + \cdots
\]

\[
pE[X] = p + (1 - p)p + (1 - p)^2 p + (1 - p)^3 p + \cdots
\]

by subtracting the previous two identities

\[
= \sum_{n=1}^{\infty} \Pr[X = n] = 1.
\]

Hence,

\[
E[X] = \frac{1}{p}.
\]
Geometric Distribution: Renewal Trick

A different look at the algebra.
Geometric Distribution: Renewal Trick

A different look at the algebra.

We flip the coin once, and, if we get T, let ω be the following flips.
Geometric Distribution: Renewal Trick

A different look at the algebra.

We flip the coin once, and, if we get T, let ω be the following flips.

$$
\begin{align*}
1 & \ 2 & \ 3 & \ \ldots \ldots \ldots X \\
1 & \ 2 & \ 3 & \ \ldots \ldots Y \\
T & \ T & \ T & \ T & \ \ldots & \ T & \ H \\
H & \ H & \ H & \ H & \ \ldots & \ H & \ H \\
\end{align*}
$$

Hence,

$$
\begin{align*}
E[X] &= \sum_\omega 1 \times \Pr[H_\omega] + \sum_\omega (1 + Y_\omega) \Pr[T_\omega] \\
&= p \sum_\omega \Pr[\omega] + \sum_\omega (1 + E[Y]) (1 - p) \Pr[\omega] \\
&= p + (1 - p)(1 + E[Y]) = 1 + (1 - p) E[Y].
\end{align*}
$$

But,

$$
E[X] = E[Y].
$$

Thus,

$$
E[X] = 1 + (1 - p) E[X],
$$

so that

$$
E[X] = \frac{1}{p}.
$$
Geometric Distribution: Renewal Trick

A different look at the algebra.

We flip the coin once, and, if we get T, let ω be the following flips.

Note that

$$X(H\omega) = 1 \text{ and } X(T\omega) = 1 + Y(\omega).$$
Geometric Distribution: Renewal Trick

A different look at the algebra.

We flip the coin once, and, if we get T, let ω be the following flips.

Note that $X(H\omega) = 1$ and $X(T\omega) = 1 + Y(\omega)$.

Hence,
Geometric Distribution: Renewal Trick

A different look at the algebra.

We flip the coin once, and, if we get T, let ω be the following flips.

Note that $X(H\omega) = 1$ and $X(T\omega) = 1 + Y(\omega)$.

Hence,

$$E[X] = \sum_{\omega} 1 \times Pr[H\omega] + \sum_{\omega} (1 + Y(\omega))Pr[T\omega]$$
Geometric Distribution: Renewal Trick

A different look at the algebra.

We flip the coin once, and, if we get T, let ω be the following flips.

Note that

$$X(H\omega) = 1 \text{ and } X(T\omega) = 1 + Y(\omega).$$

Hence,

$$E[X] = \sum_{\omega} 1 \times Pr[H\omega] + \sum_{\omega} (1 + Y(\omega))Pr[T\omega]$$

$$= \sum_{\omega} pPr[\omega] + \sum_{\omega} (1 + Y(\omega))(1 - p)Pr[\omega]$$
Geometric Distribution: Renewal Trick

A different look at the algebra.

We flip the coin once, and, if we get T, let ω be the following flips.

Note that $X(H\omega) = 1$ and $X(T\omega) = 1 + Y(\omega)$.

Hence,

$$E[X] = \sum_{\omega} 1 \times Pr[H\omega] + \sum_{\omega} (1 + Y(\omega))Pr[T\omega]$$

$$= \sum_{\omega} pPr[\omega] + \sum_{\omega} (1 + Y(\omega))(1 - p)Pr[\omega]$$

$$= p + (1 - p)(1 + E[Y]) =$$
Geometric Distribution: Renewal Trick

A different look at the algebra.

We flip the coin once, and, if we get \(T \), let \(\omega \) be the following flips.

Note that

\[
X(H\omega) = 1 \text{ and } X(T\omega) = 1 + Y(\omega).
\]

Hence,

\[
E[X] = \sum_{\omega} 1 \times Pr[H\omega] + \sum_{\omega} (1 + Y(\omega))Pr[T\omega]
\]

\[
= \sum_{\omega} pPr[\omega] + \sum_{\omega} (1 + Y(\omega))(1 - p)Pr[\omega]
\]

\[
= p + (1 - p)(1 + E[Y]) = 1 + (1 - p)E[Y].
\]
Geometric Distribution: Renewal Trick

A different look at the algebra.

We flip the coin once, and, if we get T, let ω be the following flips.

Note that $X(H\omega) = 1$ and $X(T\omega) = 1 + Y(\omega)$.

Hence,

$$E[X] = \sum_\omega 1 \times Pr[H\omega] + \sum_\omega (1 + Y(\omega))Pr[T\omega]$$

$$= \sum_\omega pPr[\omega] + \sum_\omega (1 + Y(\omega))(1 - p)Pr[\omega]$$

$$= p + (1 - p)(1 + E[Y]) = 1 + (1 - p)E[Y].$$

Geometric Distribution: Renewal Trick

A different look at the algebra.

We flip the coin once, and, if we get T, let ω be the following flips.

Note that $X(H\omega) = 1$ and $X(T\omega) = 1 + Y(\omega)$.

Hence,

$$E[X] = \sum_\omega 1 \times Pr[H\omega] + \sum_\omega (1 + Y(\omega))Pr[T\omega]$$

$$= \sum_\omega pPr[\omega] + \sum_\omega (1 + Y(\omega))(1 - p)Pr[\omega]$$

$$= p + (1 - p)(1 + E[Y]) = 1 + (1 - p)E[Y].$$

But, $E[X] = E[Y]$. Thus, $E[X] = 1 + (1 - p)E[X]$, so that $E[X] =$
Geometric Distribution: Renewal Trick

A different look at the algebra.

We flip the coin once, and, if we get T, let ω be the following flips.

```
1 2 3 ............X
1 2 3 ............ Y
T T T T ..... T H
```

Note that $X(H\omega) = 1$ and $X(T\omega) = 1 + Y(\omega)$.

Hence,

$$E[X] = \sum_{\omega} 1 \times Pr[H\omega] + \sum_{\omega} (1 + Y(\omega))Pr[T\omega]$$

$$= \sum_{\omega} pPr[\omega] + \sum_{\omega} (1 + Y(\omega))(1 - p)Pr[\omega]$$

$$= p + (1 - p)(1 + E[Y]) = 1 + (1 - p)E[Y].$$

Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$\text{Pr}[X > n] = \text{Pr}[\text{first } n \text{ flips are } T] = (1 - p)^n$.

Theorem

$\text{Pr}[X > n + m | X > n] = \text{Pr}[X > m]$,

$m, n \geq 0$.

Proof:

$\text{Pr}[X > n + m | X > n] = \text{Pr}[X > n + m \text{ and } X > n]$

$= \text{Pr}[X > n + m] \times \text{Pr}[X > n]$

$= (1 - p)^{n+m} \times (1 - p)^n$

$= (1 - p)^m = \text{Pr}[X > m]$.

Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] =$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \geq 0.$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \geq 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \cap X > n]}{Pr[X > n]} = \frac{Pr[X > n + m]}{Pr[X > n]} = \frac{(1 - p)^{n + m}}{(1 - p)^n} = (1 - p)^m.$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \geq 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \geq 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], \ m, n \geq 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]} = \frac{Pr[X > n + m]}{Pr[X > n]} = \frac{(1 - p)^{n+m}}{(1 - p)^n} = (1 - p)^m.$$

Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], \ m, n \geq 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n+m}}{(1 - p)^n} = (1 - p)^m$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], \; m, n \geq 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n+m}}{(1 - p)^n} = (1 - p)^m$$

$$= Pr[X > m].$$
Geometric Distribution: Memoryless - Interpretation

\[\Pr[X > n + m | X > n] = \Pr[X > m], \quad m, n \geq 0. \]
Geometric Distribution: Memoryless - Interpretation

\[Pr[X > n + m | X > n] = Pr[X > m], \quad m, n \geq 0. \]
Geometric Distribution: Memoryless - Interpretation

\[Pr[X > n + m | X > n] = Pr[X > m], m, n \geq 0. \]

\[Pr[X > n + m | X > n] = Pr[A|B] = Pr[A] = Pr[X > m]. \]
Geometric Distribution: Memoryless - Interpretation

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \geq 0.$$
Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

[See later for a proof.]
Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

[See later for a proof.]

If $X = G(p)$, then $Pr[X \geq i] = Pr[X > i - 1] = (1 - p)^{i-1}$.

Geometric Distribution: Yet another look
Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

[See later for a proof.]

If $X = G(p)$, then $Pr[X \geq i] = Pr[X > i - 1] = (1 - p)^{i-1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1 - p)^{i-1} = \sum_{i=0}^{\infty} (1 - p)^i$$
Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

[See later for a proof.]

If $X = G(p)$, then $Pr[X \geq i] = Pr[X > i - 1] = (1 - p)^{i-1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1 - p)^{i-1} = \sum_{i=0}^{\infty} (1 - p)^i = \frac{1}{1 - (1 - p)} = \frac{1}{p}.$$
Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \geq i].$$

[See later for a proof.]

If $X = G(p)$, then $\Pr[X \geq i] = \Pr[X > i - 1] = (1 - p)^{i-1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1 - p)^{i-1} = \sum_{i=0}^{\infty} (1 - p)^i = \frac{1}{1 - (1 - p)} = \frac{1}{p}.$$
Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

\[E[X] = \sum_{i=1}^{\infty} Pr[X \geq i]. \]
Expected Value of Integer RV

Theorem: For a r.v. X that takes values in \{0, 1, 2, \ldots\}, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i\{Pr[X \geq i] - Pr[X \geq i+1]\}$$
Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times \Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{\Pr[X \geq i] - \Pr[X \geq i + 1]\}$$

$$= \sum_{i=1}^{\infty} \{i \times \Pr[X \geq i] - i \times \Pr[X \geq i + 1]\}$$
Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times \Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{\Pr[X \geq i] - \Pr[X \geq i+1]\}$$

$$= \sum_{i=1}^{\infty} \{i \times \Pr[X \geq i] - i \times \Pr[X \geq i+1]\}$$

$$= \sum_{i=1}^{\infty} \{i \times \Pr[X \geq i] - (i-1) \times \Pr[X \geq i]\}$$
Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{Pr[X \geq i] - Pr[X \geq i+1]\}$$

$$= \sum_{i=1}^{\infty} \{i \times Pr[X \geq i] - i \times Pr[X \geq i+1]\}$$

$$= \sum_{i=1}^{\infty} \{i \times Pr[X \geq i] - (i-1) \times Pr[X \geq i]\}$$

$$= \sum_{i=1}^{\infty} Pr[X \geq i].$$
Riding the bus.

n buses arrive uniformly at random throughout a 24 hour day.
Riding the bus.

n buses arrive uniformly at random throughout a 24 hour day. What is the time between buses?
Riding the bus.

n buses arrive uniformly at random throughout a 24 hour day. What is the time between buses? What is the time to wait for a bus?
Riding the bus.

\(n \) buses arrive uniformly at random throughout a 24 hour day. What is the time between buses? What is the time to wait for a bus? Here are typical arrival times, independent and uniform in \([0, 24]\).
Riding the bus.

n buses arrive uniformly at random throughout a 24 hour day. What is the time between buses? What is the time to wait for a bus? Here are typical arrival times, independent and uniform in $[0, 24]$.

Here is an alternative picture (left)
Riding the bus.

Add the black dot uniformly at random and pretend that it represents 0/24.
Riding the bus.

Add the black dot uniformly at random and pretend that it represents 0/24.

This is legitimate, because given the black dot, the other dots are uniform at random.
Riding the bus.

Add the black dot uniformly at random and pretend that it represents 0/24.

This is legitimate, because given the black dot, the other dots are uniform at random. Then,

$$24 = E[X_1 + \cdots + X_5]$$
Add the black dot uniformly at random and pretend that it represents 0/24.

This is legitimate, because given the black dot, the other dots are uniform at random. Then,

\[24 = E[X_1 + \cdots + X_5] = 5E[X_1], \]
Riding the bus.

Add the black dot uniformly at random and pretend that it represents $0/24$.

This is legitimate, because given the black dot, the other dots are uniform at random. Then,

$$24 = E[X_1 + \cdots + X_5]$$
$$= 5E[X_1], \text{ by linearity and symmetry}$$
Riding the bus.

Add the black dot uniformly at random and pretend that it represents 0/24.

This is legitimate, because given the black dot, the other dots are uniform at random. Then,

\[24 = E[X_1 + \cdots + X_5] \]
\[= 5E[X_1], \text{ by linearity and symmetry} = 5E(X_1). \]
Riding the bus.

Add the black dot uniformly at random and pretend that it represents $0/24$.

This is legitimate, because given the black dot, the other dots are uniform at random. Then,

$$24 = E[X_1 + \cdots + X_5]$$
$$= 5E[X_1], \text{ by linearity and symmetry } = 5E(X_1).$$

Hence,

$$E[X_1] = E[X_m] = \frac{24}{5} =$$
Riding the bus.

Add the black dot uniformly at random and pretend that it represents 0/24. This is legitimate, because given the black dot, the other dots are uniform at random. Then,

\[
24 = E[X_1 + \cdots + X_5] \\
= 5E[X_1], \text{ by linearity and symmetry} = 5E(X_1).
\]

Hence,

\[
E[X_1] = E[X_m] = \frac{24}{5} = \frac{24}{n+1} \text{ for } n \text{ busses.}
\]
Summary.

Expectation; Conditional Expectation; B(n, p); G(p)
Summary.

Expectation; Conditional Expectation; B(n, p); G(p)
Summary.

Expectation; Conditional Expectation; B(n, p); G(p)

Expectation:

\[
E[X] = \sum_a a \times Pr[X = a] = \sum_\omega X(\omega)Pr[\omega].
\]
Summary.

Expectation; Conditional Expectation; B(n, p); G(p)

Expectation: \(E[X] = \sum_a a \times Pr[X = a] = \sum_\omega X(\omega)Pr[\omega]. \)

Linearity: \(E[a_1 X_1 + \cdots + a_n X_n] = a_1 E[X_1] + \cdots + a_n E[X_n]. \)
Summary.

Expectation; Conditional Expectation; B(n, p); G(p)

Expectation: \(E[X] = \sum_a a \times Pr[X = a] = \sum_\omega X(\omega)Pr[\omega] \).

Linearity: \(E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n] \).

Binomial: \(Pr[X = i] = \binom{n}{k} p^i (1 - p)^{n-i} \).
Summary.

Expectation; Conditional Expectation; B(n, p); G(p)

Expectation:
\[E[X] = \sum_a a \times Pr[X = a] = \sum_\omega X(\omega)Pr[\omega]. \]

Linearity:
\[E[a_1 X_1 + \cdots + a_n X_n] = a_1 E[X_1] + \cdots + a_n E[X_n]. \]

Binomial:
\[Pr[X = i] = \binom{n}{k} p^i (1 - p)^{(n-i)}; E(X) = pn. \]
Summary.

Expectation; Conditional Expectation; $B(n, p)$; $G(p)$

Expectation:
\[E[X] = \sum a \times Pr[X = a] = \sum_{\omega} X(\omega)Pr[\omega]. \]

Linearity:
\[E[a_1 X_1 + \cdots + a_n X_n] = a_1 E[X_1] + \cdots + a_n E[X_n]. \]

Binomial:
\[Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}; \quad E(X) = pn. \]

Geometric:
\[Pr[X = i] = (1 - p)^{i-1} p; \]
Summary.

Expectation: \[E[X] = \sum_a a \times Pr[X = a] = \sum_\omega X(\omega)Pr[\omega]. \]

Linearity: \[E[a_1 X_1 + \cdots + a_n X_n] = a_1 E[X_1] + \cdots + a_n E[X_n]. \]

Binomial: \[Pr[X = i] = \binom{n}{k} p^i (1 - p)^{n-i}; E(X) = pn. \]

Geometric: \[Pr[X = i] = (1 - p)^{(i-1)} p; E(X) = \frac{1}{p}; \]
Summary.

Expectation; Conditional Expectation; \(B(n, p); G(p)\)

Expectation: \(E[X] = \sum_a a \times Pr[X = a] = \sum_\omega X(\omega)Pr[\omega].\)

Linearity: \(E[a_1 X_1 + \cdots + a_n X_n] = a_1 E[X_1] + \cdots + a_n E[X_n].\)

Binomial: \(Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}; E(X) = pn.\)

Geometric: \(Pr[X = i] = (1 - p)^{(i-1)}p; E(X) = \frac{1}{p}; \text{ memoryless.}\)
Summary.

Expectation; Conditional Expectation; B(n, p); G(p)

Expectation: \(E[X] = \sum_a a \times Pr[X = a] = \sum_\omega X(\omega)Pr[\omega] \).

Linearity: \(E[a_1 X_1 + \cdots + a_n X_n] = a_1 E[X_1] + \cdots + a_n E[X_n] \).

Binomial: \(Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}; E(X) = pn \).

Geometric: \(Pr[X = i] = (1 - p)^{i-1} p; E(X) = \frac{1}{p}; \) memoryless.

Condition Expectation: \(E[X|A] \).
Summary.

Expectation; Conditional Expectation; B(n, p); G(p)

Expectation: \(E[X] = \sum_a a \times Pr[X = a] = \sum_\omega X(\omega)Pr[\omega] \).

Linearity: \(E[a_1 X_1 + \cdots + a_n X_n] = a_1 E[X_1] + \cdots + a_n E[X_n] \).

Binomial: \(Pr[X = i] = \binom{n}{k} p^i (1 - p)^{(n-i)}; E(X) = pn \).

Geometric: \(Pr[X = i] = (1 - p)^{(i-1)}p; E(X) = \frac{1}{p}; \) memoryless.

Condition Expectation: \(E[X|A] \). Linear and

\[
E[X] = E[X|A]Pr[A] + E[X|\bar{A}]Pr[\bar{A}].
\]