Variance, Geometric, time to collect coupons; Poisson
Variance, Geometric, time to collect coupons; Poisson

1. Variance
2. Variance of Uniform and Geometric
3. Properties of Variance
4. Variance of $B(n,p)$
5. Coupon Collector
6. Poisson Distribution
Independence and Variance

\[E[g(X,Y,Z)] = \sum_{x,y,z} g(x,y,z) \Pr[X=x,Y=y,Z=z] \]

\[X, Y \text{ independent} \iff \Pr[X \in A, Y \in B] = \Pr[X \in A] \Pr[Y \in B] \]

\[\text{Then, } f(X), g(Y) \text{ are independent} \]

\[E[XY] = E[X]E[Y] \]

\[\text{Variance: } \text{var}[X] = \sigma_X^2(X) := E[(X - E[X])^2] = E[X^2] - E[X]^2. \]
Review of Lecture 28

Independence and Variance

\[E[g(X, Y, Z)] = \sum_{x,y,z} g(x, y, z) Pr[X = x, Y = y, Z = z] \]
Independence and Variance

- \(E[g(X, Y, Z)] = \sum_{x,y,z} g(x, y, z) Pr[X = x, Y = y, Z = z] \)
- \(X, Y \) independent
 \[\Leftrightarrow Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B] \]
Review of Lecture 28

Independence and Variance

- \(E[g(X, Y, Z)] = \sum_{x,y,z} g(x, y, z) Pr[X = x, Y = y, Z = z] \)
- \(X, Y \) independent
 \(\iff Pr[X \in A, Y \in B] = Pr[X \in A] Pr[Y \in B] \)
- Then, \(f(X), g(Y) \) are independent
Independence and Variance

- \(E[g(X, Y, Z)] = \sum_{x,y,z} g(x,y,z) \Pr[X = x, Y = y, Z = z] \)
- \(X, Y \) independent \(\iff \Pr[X \in A, Y \in B] = \Pr[X \in A] \Pr[Y \in B] \)
- Then, \(f(X), g(Y) \) are independent
- Also, \(E[XY] = E[X]E[Y] \)
Independence and Variance

- \(E[g(X, Y, Z)] = \sum_{x,y,z} g(x, y, z) Pr[X = x, Y = y, Z = z] \)
- \(X, Y \) independent
 \[\iff Pr[X \in A, Y \in B] = Pr[X \in A] Pr[Y \in B] \]
- Then, \(f(X), g(Y) \) are independent
- Also, \(E[XY] = E[X] E[Y] \)
- Variance:
 \(\text{var}[X] = \sigma^2(X) := E[(X - E[X])^2] = E[X^2] - E[X]^2. \)
Example

Consider X with

$$X = \begin{cases} -1, & \text{w. p. } 0.99 \\ 99, & \text{w. p. } 0.01. \end{cases}$$

Then $E[X] = -1 \times 0.99 + 99 \times 0.01 = 0$.

$E[X^2] = 1 \times 0.99 + (99)^2 \times 0.01 \approx 100$.

$\text{Var}(X) \approx 100 = \Rightarrow \sigma(X) \approx 10$.

Also, $E(|X|) = -1 \times 0.99 + 99 \times 0.01 = 1.98$.

Thus, $\sigma(X) \neq E[|X - E[X]|]$.

Exercise: How big can you make $\sigma(X)$ $E[|X - E[X]|]$?
Example

Consider X with

$$X = \begin{cases}
-1, & \text{w. p. 0.99} \\
99, & \text{w. p. 0.01}.
\end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$
Example

Consider \(X \) with

\[
X = \begin{cases}
-1, & \text{w. p. } 0.99 \\
99, & \text{w. p. } 0.01.
\end{cases}
\]

Then

\[
E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.
\]

\[
E[X^2] = 1 \times 0.99 + (99)^2 \times 0.01 \approx 100.
\]
Example

Consider X with

$$X = \begin{cases}
-1, & \text{w. p. 0.99} \\
99, & \text{w. p. 0.01}.
\end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$
$$E[X^2] = 1 \times 0.99 + (99)^2 \times 0.01 \approx 100.$$
$$Var(X) \approx 100 \implies \sigma(X) \approx 10.$$
Example

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01}. \end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$
$$E[X^2] = 1 \times 0.99 + (99)^2 \times 0.01 \approx 100.$$
$$Var(X) \approx 100 \implies \sigma(X) \approx 10.$$

Also,

$$E(|X|) = 1 \times 0.99 + 99 \times 0.01 = 1.98.$$
Example

Consider X with

$$X = \begin{cases}
-1, & \text{w. p. 0.99} \\
99, & \text{w. p. 0.01}.
\end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$
$$E[X^2] = 1 \times 0.99 + (99)^2 \times 0.01 \approx 100.$$
$$Var(X) \approx 100 \implies \sigma(X) \approx 10.$$

Also,

$$E(|X|) = 1 \times 0.99 + 99 \times 0.01 = 1.98.$$

Thus, $\sigma(X) \neq E[|X - E[X]|]$.

Example

Consider X with

\[X = \begin{cases}
-1, \ & \text{w. p. } 0.99 \\
99, \ & \text{w. p. } 0.01.
\end{cases} \]

Then

\[E[X] = -1 \times 0.99 + 99 \times 0.01 = 0. \]
\[E[X^2] = 1 \times 0.99 + (99)^2 \times 0.01 \approx 100. \]
\[Var(X) \approx 100 \implies \sigma(X) \approx 10. \]

Also,

\[E(|X|) = 1 \times 0.99 + 99 \times 0.01 = 1.98. \]

Thus, $\sigma(X) \neq E[|X - E[X]|]$!

Exercise: How big can you make $\frac{\sigma(X)}{E[|X - E[X]|]}$?
Uniform

Assume that $Pr[X = i] = 1/n$ for $i \in \{1, \ldots, n\}$. Then
Uniform

Assume that $Pr[X = i] = 1/n$ for $i \in \{1, \ldots, n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i$$
Uniform

Assume that $Pr[X = i] = 1/n$ for $i \in \{1, \ldots, n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i$$

$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$
Uniform

Assume that $Pr[X = i] = 1/n$ for $i \in \{1, \ldots, n\}$. Then

\[
E[X] = \sum_{i=1}^{n} i \times Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i
\]

\[
= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.
\]

Also,

\[
E[X^2] = \sum_{i=1}^{n} i^2 Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i^2
\]

\[
= \frac{1}{n} \frac{n(n+1)(2n+1)}{6} = \frac{1}{6} n(n+1)(2n+1) = \frac{n(n+1)(2n+1)}{6}.
\]
Uniform

Assume that $Pr[X = i] = 1/n$ for $i \in \{1, \ldots, n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Also,

$$E[X^2] = \sum_{i=1}^{n} i^2 Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i^2 = \frac{1 + 3n + 2n^2}{6},$$
Assume that \(Pr[X = i] = 1/n \) for \(i \in \{1, \ldots, n\} \). Then

\[
E[X] = \sum_{i=1}^{n} i \times Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2}.
\]

Also,

\[
E[X^2] = \sum_{i=1}^{n} i^2 Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i^2 = \frac{1 + 3n + 2n^2}{6}, \text{ as you can verify.}
\]
Uniform

Assume that $Pr[X = i] = 1/n$ for $i \in \{1, \ldots, n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Also,

$$E[X^2] = \sum_{i=1}^{n} i^2 Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i^2 = \frac{1+3n+2n^2}{6},$$

as you can verify.

This gives

$$\text{var}(X) = \frac{1+3n+2n^2}{6} - \frac{(n+1)^2}{4} = \frac{n^2 - 1}{12}.$$
Fixed points.

Number of fixed points in a random permutation of n items.
Fixed points.

Number of fixed points in a random permutation of \(n \) items.
\(X = \) Number of student that get assignment back.
Fixed points.

Number of fixed points in a random permutation of n items. $X = \text{Number of student that get assignment back.}$

$$X = X_1 + X_2 \cdots + X_n$$
Fixed points.

Number of fixed points in a random permutation of n items. X = Number of student that get assignment back.

$$X = X_1 + X_2 \cdots + X_n$$

where X_i is indicator variable for ith student getting assignment back.
Fixed points.

Number of fixed points in a random permutation of n items.

$X = \text{Number of student that get assignment back.}$

$$X = X_1 + X_2 \cdots + X_n$$

where X_i is indicator variable for ith student getting assignment back.

$$E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_iX_j].$$
Fixed points.

Number of fixed points in a random permutation of n items.

\[X = \text{Number of student that get assignment back.} \]

\[X = X_1 + X_2 \cdots + X_n \]

Where X_i is indicator variable for ith student getting assignment back.

\[E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_iX_j]. \]

\[= + \]
Fixed points.

Number of fixed points in a random permutation of \(n \) items.
\[X = \text{Number of student that get assignment back.} \]
\[X = X_1 + X_2 \cdots + X_n \]

where \(X_i \) is indicator variable for \(i \)th student getting assignment back.

\[
E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_iX_j].
\]

\[
= +
\]
Fixed points.

Number of fixed points in a random permutation of n items.

$X = \text{Number of student that get assignment back.}$

$$X = X_1 + X_2 \cdots + X_n$$

where X_i is indicator variable for ith student getting assignment back.

$$E[X^2] = \sum_i E[X_i^2] + \sum_{i\neq j} E[X_iX_j].$$

$$= +$$
Fixed points.

Number of fixed points in a random permutation of n items.

$X = $ Number of student that get assignment back.

$$X = X_1 + X_2 \cdots + X_n$$

where X_i is indicator variable for ith student getting assignment back.

$$E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_iX_j].$$

$$= +$$

$$E[X_i^2] = E[X_i]$$
Fixed points.

Number of fixed points in a random permutation of n items.

$X = $ Number of student that get assignment back.

$$X = X_1 + X_2 \cdots + X_n$$

where X_i is indicator variable for ith student getting assignment back.

$$E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_i X_j].$$

$$E[X_i^2] = E[X_i] = 1/n$$
Fixed points.

Number of fixed points in a random permutation of n items.

$X = \text{Number of student that get assignment back.}$

$$X = X_1 + X_2 \cdots + X_n$$

where X_i is indicator variable for ith student getting assignment back.

$$E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_iX_j].$$

$$= 1/n +$$

$$E[X_i^2] = E[X_i] = 1/n$$
Fixed points.

Number of fixed points in a random permutation of \(n \) items.
\(X = \) Number of student that get assignment back.
\[
X = X_1 + X_2 \cdots + X_n
\]

where \(X_i \) is indicator variable for \(i \)th student getting assignment back.

\[
E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_i X_j].
\]

\[
= n \times \frac{1}{n} +
\]

\[
E[X_i^2] = E[X_i] = 1/n
\]
Fixed points.

Number of fixed points in a random permutation of n items.

$X = \text{Number of student that get assignment back.}$

$$X = X_1 + X_2 \cdots + X_n$$

where X_i is indicator variable for ith student getting assignment back.

$$E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_iX_j].$$

$$= n \times \frac{1}{n} +$$

$$E[X_i^2] = E[X_i] = 1/n$$

$$E[X_iX_j] = 1 \times Pr[X_i = 1 \text{ and } X_j = 1] + 0 \times Pr[\text{“anything else’}]$$
Fixed points.

Number of fixed points in a random permutation of \(n \) items.
\(X = \text{Number of student that get assignment back.} \)

\[X = X_1 + X_2 \cdots + X_n \]

where \(X_i \) is indicator variable for \(i \)th student getting assignment back.

\[E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_i X_j]. \]

\[= n \times \frac{1}{n} + \]

\(E[X_i^2] = E[X_i] = 1/n \)

\(E[X_i X_j] = 1 \times Pr[X_i = 1 \text{ and } X_j = 1] + 0 \times Pr["anything else"] \)

\[= \frac{1 \times 1 \times (n-2)!}{n!} \]
Fixed points.

Number of fixed points in a random permutation of \(n \) items.
\(X = \) Number of student that get assignment back.

\[
X = X_1 + X_2 \cdots + X_n
\]

where \(X_i \) is indicator variable for \(i \)th student getting assignment back.

\[
E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_iX_j].
\]

\[
= n \times \frac{1}{n} + \\
E[X_i^2] = E[X_i] = 1/n
\]

\[
E[X_iX_j] = 1 \times Pr[X_i = 1 \text{ and } X_j = 1] + 0 \times Pr[\text{“anything else’}]
\]

\[
= \frac{1 \times 1 \times (n-2)!}{n!} = \frac{1}{n(n-1)}
\]
Fixed points.

Number of fixed points in a random permutation of n items.
$X = \text{Number of student that get assignment back.}$

\[X = X_1 + X_2 \cdots + X_n \]

where X_i is indicator variable for ith student getting assignment back.

\[E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_i X_j]. \]

\[= n \times \frac{1}{n} + \]

$E[X_i^2] = E[X_i] = 1/n$

$E[X_i X_j] = 1 \times Pr[X_i = 1 \text{ and } X_j = 1] + 0 \times Pr[\text{“anything else’}]$

\[= \frac{1 \times 1 \times (n-2)!}{n!} = \frac{1}{n(n-1)} \]
Fixed points.

Number of fixed points in a random permutation of \(n \) items.
\(X = \) Number of student that get assignment back.

\[
X = X_1 + X_2 \cdots + X_n
\]

where \(X_i \) is indicator variable for \(i \)th student getting assignment back.

\[
E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_iX_j].
\]

\[
= n \times \frac{1}{n} + (n)(n-1) \times \frac{1}{n(n-1)}
\]

\[
E[X_i^2] = E[X_i] = 1/n
\]

\[
E[X_iX_j] = 1 \times Pr[X_i = 1 \text{ and } X_j = 1] + 0 \times Pr["anything else"]
\]

\[
= \frac{1 \times 1 \times (n-2)!}{n!} = \frac{1}{n(n-1)}
\]
Fixed points.

Number of fixed points in a random permutation of n items.

$X = \text{Number of student that get assignment back.}$

$$X = X_1 + X_2 \cdots + X_n$$

where X_i is indicator variable for ith student getting assignment back.

$$E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_iX_j].$$

$$= n \times \frac{1}{n} + (n)(n-1) \times \frac{1}{n(n-1)} = 1 + 1$$

$E[X_i^2] = E[X_i] = 1/n$

$$E[X_iX_j] = 1 \times Pr[X_i = 1 \text{ and } X_j = 1] + 0 \times Pr[\text{“anything else’}]$$

$$= \frac{1 \times 1 \times (n-2)!}{n!} = \frac{1}{n(n-1)}$$
Fixed points.

Number of fixed points in a random permutation of n items. $X = \text{Number of student that get assignment back.}$

$$X = X_1 + X_2 \cdots + X_n$$

where X_i is indicator variable for ith student getting assignment back.

$$E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_iX_j].$$

$$= n \times \frac{1}{n} + (n)(n-1) \times \frac{1}{n(n-1)} = 1 + 1 = 2.$$

$E[X_i^2] = E[X_i] = 1/n$

$E[X_iX_j] = 1 \times Pr[X_i = 1 \text{ and } X_j = 1] + 0 \times Pr[\text{“anything else”}]$

$$= \frac{1 \times 1 \times (n-2)!}{n!} = \frac{1}{n(n-1)}$$
Fixed points.

Number of fixed points in a random permutation of n items.

$X = $ Number of student that get assignment back.

$$X = X_1 + X_2 \cdots + X_n$$

where X_i is indicator variable for ith student getting assignment back.

$$E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_iX_j].$$

$$= n \times \frac{1}{n} + (n)(n-1) \times \frac{1}{n(n-1)} = 1 + 1 = 2.$$

$E[X_i^2] = E[X_i] = 1/n$

$E[X_iX_j] = 1 \times Pr[X_i = 1 \text{ and } X_j = 1] + 0 \times Pr[\text{"anything else"}']$

$$= \frac{1 \times 1 \times (n-2)!}{n!} = \frac{1}{n(n-1)}$$

$var[X] = E[X^2] − E[X]^2$
Fixed points.

Number of fixed points in a random permutation of \(n \) items.
\[X = \text{Number of student that get assignment back.} \]

\[X = X_1 + X_2 \cdots + X_n \]

where \(X_i \) is indicator variable for \(i \)th student getting assignment back.

\[
E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_i X_j].
\]

\[
= n \times \frac{1}{n} + (n)(n-1) \times \frac{1}{n(n-1)} = 1 + 1 = 2.
\]

\[E[X_i^2] = E[X_i] = 1/n \]

\[E[X_i X_j] = 1 \times Pr[X_i = 1 \text{ and } X_j = 1] + 0 \times Pr[\text{“anything else’}] \]

\[= \frac{1 \times 1 \times (n-2)!}{n!} = \frac{1}{n(n-1)} \]

\[var[X] = E[X^2] - E[X]^2 = 2 - 1 \]
Fixed points.

Number of fixed points in a random permutation of n items.

$X = \text{Number of student that get assignment back.}$

$$X = X_1 + X_2 \cdots + X_n$$

where X_i is indicator variable for ith student getting assignment back.

$$E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_iX_j].$$

$$= n \times \frac{1}{n} + (n)(n-1) \times \frac{1}{n(n-1)} = 1 + 1 = 2.$$

$$E[X_i^2] = E[X_i] = 1/n$$

$$E[X_iX_j] = 1 \times Pr[X_i = 1 \text{ and } X_j = 1] + 0 \times Pr[\text{“anything else”}]$$

$$= \frac{1 \times 1 \times (n-2)!}{n!} = \frac{1}{n(n-1)}$$

$$var[X] = E[X^2] - E[X]^2 = 2 - 1 = 1.$$
Fixed points.

Number of fixed points in a random permutation of \(n \) items.

\[X = \text{Number of student that get assignment back.} \]

\[X = X_1 + X_2 \cdots + X_n \]

where \(X_i \) is indicator variable for \(i \)th student getting assignment back.

\[
E[X^2] = \sum_i E[X_i^2] + \sum_{i \neq j} E[X_i X_j].
\]

\[
= n \times \frac{1}{n} + (n)(n-1) \times \frac{1}{n(n-1)} = 1 + 1 = 2.
\]

\[
E[X_i^2] = E[X_i] = 1/n
\]

\[
E[X_i X_j] = 1 \times Pr[X_i = 1 \text{ and } X_j = 1] + 0 \times Pr[\text{"anything else"}]
\]

\[
= \frac{1 \times 1 \times (n-2)!}{n!} = \frac{1}{n(n-1)}
\]

\[
\text{var}[X] = E[X^2] - E[X]^2 = 2 - 1 = 1.
\]

Slide animation by Satish Rao
Variance: binomial.

\[E[X^2] = \sum_{i=0}^{n} i^2 \binom{n}{i} p^i (1 - p)^{n-i}. \]
Variance: binomial.

\[E[X^2] = \sum_{i=0}^{n} \binom{n}{i} i^2 p^i (1 - p)^{n-i}. \]
Variance: binomial.

\[E[X^2] = \sum_{i=0}^{n} i^2 \binom{n}{i} p^i (1 - p)^{n-i} . \]

\[= \text{Really??!!##...} \]

Too hard!
Variance: binomial.

\[E[X^2] = \sum_{i=0}^{n} i^2 \binom{n}{i} p^i (1 - p)^{n-i} . \]

\[= \text{Really??!!##...} \]

Too hard!

Ok..
Variance: binomial.

\[E[X^2] = \sum_{i=0}^{n} i^2 \binom{n}{i} p^i (1 - p)^{n-i}. \]

= Really??!!##...

Too hard!

Ok.. fine.
Variance: binomial.

\[E[X^2] = \sum_{i=0}^{n} i^2 \binom{n}{i} p^i (1-p)^{n-i} \]

= Really??!!#...

Too hard!

Ok.. fine.
Let’s do something else.
Variance: binomial.

\[
E[X^2] = \sum_{i=0}^{n} i^2 \binom{n}{i} p^i (1 - p)^{n-i}.
\]

= Really??!!##...

Too hard!

Ok.. fine.

Let’s do something else.

Maybe not much easier...
Variance: binomial.

\[E[X^2] = \sum_{i=0}^{n} i^2 \binom{n}{i} p^i (1 - p)^{n-i}. \]

= Really??!!#...

Too hard!

Ok.. fine.

Let’s do something else.

Maybe not much easier...but there is a payoff.
Properties of variance.

1. \(\text{var}[cX] = c^2 \text{var}[X] \), where \(c \) is a constant.
Properties of variance.

1. \(\text{var}[cX] = c^2 \text{var}[X] \), where \(c \) is a constant.
 Scales by \(c^2 \).
Properties of variance.

1. $\text{var}[cX] = c^2 \text{var}[X]$, where c is a constant.
 Scales by c^2.
2. $\text{var}[X + c] = \text{var}[X]$, where c is a constant.
Properties of variance.

1. \(\text{var}[cX] = c^2 \text{var}[X] \), where \(c \) is a constant.
 Scales by \(c^2 \).

2. \(\text{var}[X + c] = \text{var}[X] \), where \(c \) is a constant.
 Shifts center.
Properties of variance.

1. \(\text{var}[cX] = c^2 \text{var}[X] \), where \(c \) is a constant. Scales by \(c^2 \).

2. \(\text{var}[X + c] = \text{var}[X] \), where \(c \) is a constant. Shifts center.

Proof:

\[
\text{var}[cX] = E[(cX)^2] - (E[cX])^2
\]
Properties of variance.

1. $\text{var}[cX] = c^2 \text{var}[X]$, where c is a constant.
 Scales by c^2.
2. $\text{var}[X + c] = \text{var}[X]$, where c is a constant.
 Shifts center.

Proof:

$$\text{var}[cX] = E[(cX)^2] - (E[cX])^2$$
$$= c^2 E[X^2] - c^2 E[X]^2$$
Properties of variance.

1. \(\text{var}[cX] = c^2 \text{var}[X] \), where \(c \) is a constant.
 Scales by \(c^2 \).

2. \(\text{var}[X + c] = \text{var}[X] \), where \(c \) is a constant.
 Shifts center.

Proof:

\[
\text{var}[cX] = E[(cX)^2] - (E[cX])^2 \\
= c^2 E[X^2] - c^2 E[X]^2 = c^2 (E[X^2] - E[X]^2)
\]
Properties of variance.

1. \(\text{var}[cX] = c^2 \text{var}[X] \), where \(c \) is a constant. Scales by \(c^2 \).

2. \(\text{var}[X + c] = \text{var}[X] \), where \(c \) is a constant. Shifts center.

Proof:

\[
\text{var}[cX] &= E[(cX)^2] - (E[cX])^2 \\
&= c^2 E[X^2] - c^2 E[X]^2 = c^2 (E[X^2] - E[X]^2) \\
&= c^2 \text{var}[X]
\]
Properties of variance.

1. \(\text{var}[cX] = c^2 \text{var}[X] \), where \(c \) is a constant.
 Scales by \(c^2 \).

2. \(\text{var}[X + c] = \text{var}[X] \), where \(c \) is a constant.
 Shifts center.

Proof:

\[
\text{var}[cX] = E[(cX)^2] - (E[cX])^2 \\
= c^2 E[X^2] - c^2 E[X]^2 = c^2 (E[X^2] - E[X]^2) \\
= c^2 \text{var}[X] \\
\text{var}[X + c] = E[(X + c - E[X + c])^2]
\]
Properties of variance.

1. \(\text{var}[cX] = c^2 \text{var}[X] \), where \(c \) is a constant.
 Scales by \(c^2 \).

2. \(\text{var}[X + c] = \text{var}[X] \), where \(c \) is a constant.
 Shifts center.

Proof:

\[
\begin{align*}
\text{var}[cX] &= E[(cX)^2] - (E[cX])^2 \\
&= c^2 E[X^2] - c^2 E[X]^2 \\
&= c^2 (E[X^2] - E[X]^2) \\
&= c^2 \text{var}[X]
\end{align*}
\]

\[
\begin{align*}
\text{var}[X + c] &= E[(X + c - E[X + c])^2] \\
&= E[(X + c - E[X] - c)^2]
\end{align*}
\]
Properties of variance.

1. \(\text{var}[cX] = c^2 \text{var}[X] \), where \(c \) is a constant.
 Scales by \(c^2 \).

2. \(\text{var}[X + c] = \text{var}[X] \), where \(c \) is a constant.
 Shifts center.

Proof:

\[
\text{var}[cX] = E[(cX)^2] - (E[cX])^2 \\
= c^2 E[X^2] - c^2 E[X]^2 = c^2 (E[X^2] - E[X]^2) \\
= c^2 \text{var}[X]
\]

\[
\text{var}[X + c] = E[(X + c - E[X + c])^2] \\
= E[(X + c - E[X] - c)^2] \\
= E[(X - E[X])^2]
\]
Properties of variance.

1. $\text{var}[cX] = c^2 \text{var}[X]$, where c is a constant.
 Scales by c^2.

2. $\text{var}[X + c] = \text{var}[X]$, where c is a constant.
 Shifts center.

Proof:

\[
\begin{align*}
\text{var}[cX] &= E[(cX)^2] - (E[cX])^2 \\
&= c^2 E[X^2] - c^2 E[X]^2 = c^2 (E[X^2] - E[X]^2) \\
&= c^2 \text{var}[X] \\
\text{var}[X + c] &= E[(X + c - E[X + c])^2] \\
&= E[(X + c - E[X] - c)^2] \\
&= E[(X - E[X])^2] = \text{var}[X]
\end{align*}
\]
Properties of variance.

1. \(\text{var}[cX] = c^2 \text{var}[X] \), where c is a constant.
 Scales by \(c^2 \).

2. \(\text{var}[X + c] = \text{var}[X] \), where c is a constant.
 Shifts center.

Proof:

\[
\text{var}[cX] = E[(cX)^2] - (E[cX])^2 \\
= c^2 E[X^2] - c^2 E[X]^2 = c^2(E[X^2] - E[X]^2) \\
= c^2 \text{var}[X]
\]

\[
\text{var}[X + c] = E[(X + c - E[X + c])^2] \\
= E[(X + c - E[X] - c)^2] \\
= E[(X - E[X])^2] = \text{var}[X]
\]
Variance of sum of independent random variables

Theorem:
If X and Y are independent, then

$$\text{var}[X + Y] = \text{var}[X] + \text{var}[Y].$$
Variance of sum of independent random variables

Theorem:
If X and Y are independent, then

$$\text{var}[X + Y] = \text{var}[X] + \text{var}[Y].$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.
Variance of sum of independent random variables

Theorem:
If X and Y are independent, then

$$\text{var}[X + Y] = \text{var}[X] + \text{var}[Y].$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.
That is, we assume that $E[X] = 0$ and $E[Y] = 0$.
Variance of sum of independent random variables

Theorem:
If X and Y are independent, then

$$\text{var}[X + Y] = \text{var}[X] + \text{var}[Y].$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = 0$ and $E[Y] = 0$.

Then, by independence,

Variance of sum of independent random variables

Theorem:
If X and Y are independent, then

$$\text{var}[X + Y] = \text{var}[X] + \text{var}[Y].$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = 0$ and $E[Y] = 0$.

Then, by independence,

Hence,

$$\text{var}[X + Y] = E[(X + Y)^2]$$
Variance of sum of independent random variables

Theorem:
If X and Y are independent, then

$$\text{var}[X + Y] = \text{var}[X] + \text{var}[Y].$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = 0$ and $E[Y] = 0$.

Then, by independence,

Hence,

$$\text{var}[X + Y] = E[(X + Y)^2] = E[X^2 + 2XY + Y^2]$$
Variance of sum of independent random variables

Theorem:
If X and Y are independent, then

$$\text{var}[X + Y] = \text{var}[X] + \text{var}[Y].$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = 0$ and $E[Y] = 0$.

Then, by independence,

Hence,

$$\text{var}[X + Y] = E[(X + Y)^2] = E[X^2 + 2XY + Y^2]$$

$$= E[X^2] + 2E[XY] + E[Y^2]$$
Variance of sum of independent random variables

Theorem:
If X and Y are independent, then

$$\text{var}[X + Y] = \text{var}[X] + \text{var}[Y].$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.
That is, we assume that $E[X] = 0$ and $E[Y] = 0$.
Then, by independence,

Hence,

$$\text{var}[X + Y] = E[(X + Y)^2] = E[X^2 + 2XY + Y^2]$$
Variance of sum of independent random variables

Theorem:
If X and Y are independent, then

$$\text{var}[X + Y] = \text{var}[X] + \text{var}[Y].$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = 0$ and $E[Y] = 0$.

Then, by independence,

Hence,

$$\text{var}[X + Y] = E[(X + Y)^2] = E[X^2 + 2XY + Y^2]$$

$$= \text{var}[X] + \text{var}[Y].$$
Variance of Binomial Distribution.

Flip coin with heads probability p.
Variance of Binomial Distribution.

Flip coin with heads probability p.
X- how many heads?
Variance of Binomial Distribution.

Flip coin with heads probability p. X- how many heads?

$$X_i = \begin{cases} 1 & \text{if } i\text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$\text{var} \left[X_i \right] = p - \left(p \right)^2 = p(1-p).$$

Note: $p = 0 \Rightarrow \text{var} \left[X_i \right] = 0$. Also, $p = 1 \Rightarrow \text{var} \left[X_i \right] = 0$.

Now, $X = X_1 + \ldots + X_n$. X_i and X_j are independent. Hence,

$$\text{var} \left[X \right] = n \times \text{var} \left[X_1 \right] = np(1-p).$$
Variance of Binomial Distribution.

Flip coin with heads probability p.
X- how many heads?

\[
X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}
\]

$E[X_i^2]$
Variance of Binomial Distribution.

Flip coin with heads probability p.
X- how many heads?

$$X_i = \begin{cases} 1 & \text{if } i\text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i^2] = E[X_i]$$
Variance of Binomial Distribution.

Flip coin with heads probability p.
X- how many heads?

$$X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}$$

Note: $p = 0 \Rightarrow \text{var}[X_i] = 0$.
Also, $p = 1 \Rightarrow \text{var}[X_i] = 0$.

Now, $X = X_1 + \cdots + X_n$.

X_i and X_j are independent.

Hence, $\text{var}[X] = \text{var}[X_1 + \cdots + X_n] = n \times \text{var}[X_1] = np(1 - p)$.

Variance of Binomial Distribution.

Flip coin with heads probability \(p \).

\(X \)- how many heads?

\[
X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}
\]

\[
\]

\[
\text{var}[X_i] = p - E[X]^2
\]
Variance of Binomial Distribution.

Flip coin with heads probability p. X- how many heads?

$$X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}$$

$$E[X_i^2] = E[X_i] = p.$$ $$\text{var}[X_i] = p - E[X]^2 = p - p^2$$
Variance of Binomial Distribution.

Flip coin with heads probability p.
X- how many heads?

$$X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}$$

$$\text{var}[X_i] = p - E[X]^2 = p - p^2 = p(1 - p).$$
Variance of Binomial Distribution.

Flip coin with heads probability p. X- how many heads?

$$X_i = \begin{cases} 1 & \text{if } i\text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$\text{var}[X_i] = p - E[X]^2 = p - p^2 = p(1 - p).$$

Note: $p = 0$
Variance of Binomial Distribution.

Flip coin with heads probability p. X- how many heads?

$$X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}$$

$\text{var}[X_i] = p - E[X]^2 = p - p^2 = p(1 - p).$

Note: $p = 0 \implies \text{var}[X_i] = 0.$
Variance of Binomial Distribution.

Flip a coin with heads probability p. Let X be the number of heads?

$$X_i = \begin{cases}
1 & \text{if ith flip is heads} \\
0 & \text{otherwise}
\end{cases}$$

$$\text{var}[X_i] = p - E[X]^2 = p - p^2 = p(1 - p).$$

Note: $p = 0 \implies \text{var}[X_i] = 0$. Also, $p = 1$
Variance of Binomial Distribution.

Flip coin with heads probability p. X- how many heads?

$$X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}$$

$$\text{var}[X_i] = p - E[X]^2 = p - p^2 = p(1 - p).$$

Note: $p = 0 \implies \text{var}[X_i] = 0$. Also, $p = 1 \implies \text{var}[X_i] = 0$
Variance of Binomial Distribution.

Flip coin with heads probability p.
X- how many heads?

$$X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}$$

$\text{var}[X_i] = p - E[X]^2 = p - p^2 = p(1 - p)$.

Note: $p = 0 \implies \text{var}[X_i] = 0$. Also, $p = 1 \implies \text{var}[X_i] = 0$

Now,

$$X = X_1 + X_2 + \ldots X_n.$$
Variance of Binomial Distribution.

Flip coin with heads probability \(p \).

\(X \)- how many heads?

\[
X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}
\]

\[
\]

\[
\text{var}[X_i] = p - E[X]^2 = p - p^2 = p(1 - p).
\]

Note: \(p = 0 \implies \text{var}[X_i] = 0 \). Also, \(p = 1 \implies \text{var}[X_i] = 0 \)

Now,

\[
X = X_1 + X_2 + \ldots X_n.
\]

\(X_i \) and \(X_j \) are independent.
Variance of Binomial Distribution.

Flip coin with heads probability p. X- how many heads?

$$X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}$$

$\text{var}[X_i] = p - E[X]^2 = p - p^2 = p(1 - p)$.

Note: $p = 0 \implies \text{var}[X_i] = 0$. Also, $p = 1 \implies \text{var}[X_i] = 0$

Now,

$$X = X_1 + X_2 + \ldots X_n.$$

X_i and X_j are independent. Hence,

$$\text{var}[X] = \text{var}[X_1 + \ldots X_n]$$
Variance of Binomial Distribution.

Flip coin with heads probability p. X - how many heads?

$$X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}$$

$var[X_i] = p - E[X]^2 = p - p^2 = p(1 - p).$

Note: $p = 0 \implies var[X_i] = 0.$ Also, $p = 1 \implies var[X_i] = 0$

Now,

$$X = X_1 + X_2 + \ldots X_n.$$

X_i and X_j are independent. Hence,

$$var[X] = var[X_1 + \cdots X_n] = n \times var[X_1]$$
Variance of Binomial Distribution.

Flip coin with heads probability p. X- how many heads?

$$X_i = \begin{cases} 1 & \text{if } i\text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$\text{var}[X_i] = p - E[X]^2 = p - p^2 = p(1 - p).$$

Note: $p = 0 \implies \text{var}[X_i] = 0$. Also, $p = 1 \implies \text{var}[X_i] = 0$

Now,

$$X = X_1 + X_2 + \ldots X_n.$$

X_i and X_j are independent. Hence,

$$\text{var}[X] = \text{var}[X_1 + \ldots X_n] = n \times \text{var}[X_1] = np(1 - p).$$
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p.

Recall $E[X] = 1/p$.

$E[X^2] = p + 4p(1-p) + 9p(1-p)^2 + \ldots$

$= p + 3p(1-p) + 5p(1-p)^2 + \ldots$

$= 2(p + 2p(1-p) + 3p(1-p)^2 + \ldots)$

$\Rightarrow E[X^2] = (2 - p)/p^2$

and

$\text{var}(X) = E[X^2] - [E[X]]^2 = (2 - p)/p^2 - 1/p^2 = 1 - p/p^2 \approx E[X]$ when p is small(ish).
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$.

$E[X] = \frac{1}{p}$.

$E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ...$

$\frac{PE[X^2]}{p} = 2\left(p + 2p(1 - p) + 3p(1 - p)^2 + ...
ight)$

$\sigma(X) = \sqrt{1 - \frac{p}{p^2}} \approx E[X]$ when p is small(ish).
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

$E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + \ldots

pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + \ldots

E[X^2] = 2(p + 2p(1 - p) + 3p(1 - p)^2 + \ldots)

\Rightarrow E[X^2] = \frac{2}{p^2} - \frac{1}{p}

\Rightarrow \sigma(X) = \sqrt{\frac{1 - p}{p^2}} \approx E[X] \text{ when } p \text{ is small(ish).}
Variance of geometric distribution.

\(X \) is a geometrically distributed RV with parameter \(p \). Thus, \(\Pr[X = n] = (1 - p)^{n-1}p \) for \(n \geq 1 \). Recall \(E[X] = 1/p \).

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + \ldots
\]
Variance of geometric distribution.

Let X be a geometrically distributed RV with parameter p. Thus, $\Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

$$E[X^2] = p + 4p(1-p) + 9p(1-p)^2 + \ldots$$
$$-(1-p)E[X^2] = -[p(1-p) + 4p(1-p)^2 + \ldots]$$

$\sigma(X) = \sqrt{1 - p/p} \approx E[X]$ when p is small(ish).
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ... \\
-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + ...] \\
pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + ...
\]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + \ldots \\
-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + \ldots] \\
pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + \ldots \\
= 2(p + 2p(1 - p) + 3p(1 - p)^2 + \ldots) - (p + p(1 - p) + p(1 - p)^2 + \ldots) \\
\]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ... \\
-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + ...] \\
pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + ... \\
= 2(p + 2p(1 - p) + 3p(1 - p)^2 + ..) \\
-(p + p(1 - p) + p(1 - p)^2 + ...) \quad E[X]!
\]

$\sigma(X) = \sqrt{1 - \frac{p}{p^2}} \approx E[X]$ when p is small(ish).
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = \quad p + 4p(1 - p) + 9p(1 - p)^2 + ... \\
-(1 - p)E[X^2] = \quad -[p(1 - p) + 4p(1 - p)^2 + ...] \\
pE[X^2] = \quad p + 3p(1 - p) + 5p(1 - p)^2 + ... \\
\quad = 2(p + 2p(1 - p) + 3p(1 - p)^2 + ..) \quad E[X]^2! \\
-(p + p(1 - p) + p(1 - p)^2 + ...) \quad \text{Distribution.}
\]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ... \\
-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + ...] \\
pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + ... \\
\quad = 2(p + 2p(1 - p) + 3p(1 - p)^2 + ...) \quad E[X]! \\
\quad - (p + p(1 - p) + p(1 - p)^2 + ...) \quad \text{Distribution.} \\
pE[X^2] = 2E[X] - 1 \]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
\begin{align*}
E[X^2] &= p + 4p(1 - p) + 9p(1 - p)^2 + ... \\
-(1 - p)E[X^2] &= -[p(1 - p) + 4p(1 - p)^2 + ...] \\
pE[X^2] &= p + 3p(1 - p) + 5p(1 - p)^2 + ... \\
&= 2(p + 2p(1 - p) + 3p(1 - p)^2 + ... - (p + p(1 - p) + p(1 - p)^2 + ...))
\end{align*}
\]

$\implies E[X]$!

\[
\begin{align*}
pE[X^2] &= 2E[X] - 1 \\
&= 2\left(\frac{1}{p}\right) - 1
\end{align*}
\]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1} p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ... \\
-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + ...] \\
pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + ... \\
\quad = 2(p + 2p(1 - p) + 3p(1 - p)^2 + ...) \\n\quad = (p + p(1 - p) + p(1 - p)^2 + ...) \\n\quad = 2E[X] - 1 \\n\quad = 2\left(\frac{1}{p}\right) - 1 = \frac{2 - p}{p}
\]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X] = \frac{1}{p}
\]

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ... \\
-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + ...] \\
pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + ...
\]

\[
pE[X^2] = 2(p + 2p(1 - p) + 3p(1 - p)^2 + ..) \Rightarrow E[X]!
\]

\[
h = p + p(1 - p) + p(1 - p)^2 + ...
\]

\[
h = (1 - p)E[X^2] \\
pE[X^2] = 2E[X] - 1
\]

\[
pE[X^2] = 2\left(\frac{1}{p}\right) - 1 = \frac{2 - p}{p}
\]

\[
\Rightarrow E[X^2] = \frac{2 - p}{p^2}
\]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ...
\]
\[-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + ...] \]
\[pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + ...
\]
\[= 2(p + 2p(1 - p) + 3p(1 - p)^2 + ..) \quad E[X]^\dagger \]
\[-(p + p(1 - p) + p(1 - p)^2 + ...) \quad \text{Distribution.} \]
\[pE[X^2] = 2E[X] - 1 \]
\[= 2\left(\frac{1}{p}\right) - 1 = \frac{2 - p}{p} \]

$\implies E[X^2] = (2 - p)/p^2$ and $\text{var}[X] = E[X^2] - E[X]^2$
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
\begin{align*}
E[X^2] &= p + 4p(1 - p) + 9p(1 - p)^2 + ... \\
-(1 - p)E[X^2] &= -[p(1 - p) + 4p(1 - p)^2 + ...] \\
pE[X^2] &= p + 3p(1 - p) + 5p(1 - p)^2 + ... \\
&= 2(p + 2p(1 - p) + 3p(1 - p)^2 + ..) E[X]! \\
P &= -(p + p(1 - p) + p(1 - p)^2 + ...) \text{ Distribution.} \\
pE[X^2] &= 2E[X] - 1 \\
&= 2\left(\frac{1}{p}\right) - 1 = \frac{2 - p}{p}
\end{align*}
\]

$\implies E[X^2] = (2 - p)/p^2$ and

$\text{var}[X] = E[X^2] - E[X]^2 = \frac{2-p}{p^2} - \frac{1}{p^2}$
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ...
\]
\[-(1 - p)E[X^2] = -(p(1 - p) + 4p(1 - p)^2 + ...)
\]
\[pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + ...
\]
\[= 2(p + 2p(1 - p) + 3p(1 - p)^2 + ..) \quad E[X]!
\]
\[-(p + p(1 - p) + p(1 - p)^2 + ...) \quad \text{Distribution.}
\]
\[pE[X^2] = 2E[X] - 1
\]
\[= 2\left(\frac{1}{p}\right) - 1 = \frac{2 - p}{p}
\]

\[\Rightarrow E[X^2] = (2 - p)/p^2 \quad \text{and}
\]
\[\text{var}[X] = E[X^2] - E[X]^2 = \frac{2-p}{p^2} - \frac{1}{p^2} = \frac{1-p}{p^2}
\]
\[\sigma(X) = \frac{\sqrt{1-p}}{p}
\]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ...
\]

\[
-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + ...]
\]

\[
pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + ...
\]

\[
= 2(p + 2p(1 - p) + 3p(1 - p)^2 + ..) \quad E[X]!
\]

\[
-(p + p(1 - p) + p(1 - p)^2 + ...) \quad \text{Distribution.}
\]

\[
pE[X^2] = 2E[X] - 1
\]

\[
= 2 \left(\frac{1}{p} \right) - 1 = \frac{2 - p}{p}
\]

\[
\implies E[X^2] = (2 - p)/p^2 \quad \text{and}
\]

\[
\text{var}[X] = E[X^2] - E[X]^2 = \frac{2-p}{p^2} - \frac{1}{p^2} = \frac{1-p}{p^2}.
\]

\[
\sigma(X) = \frac{\sqrt{1-p}}{p} \approx E[X] \quad \text{when} \ p \text{ is small(ish).}
\]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ... \\
-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + ...] \\
pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + ... \\
= 2(p + 2p(1 - p) + 3p(1 - p)^2 + ...) \quad E[X]! \\
-(p + p(1 - p) + p(1 - p)^2 + ...) \quad Distribution. \\
pE[X^2] = 2E[X] - 1 \\
= 2\left(\frac{1}{p}\right) - 1 = \frac{2 - p}{p}
\]

\[\implies E[X^2] = (2 - p)/p^2 \text{ and} \]
\[\text{var}[X] = E[X^2] - E[X]^2 = \frac{2-p}{p^2} - \frac{1}{p^2} = \frac{1-p}{p^2}. \]
\[\sigma(X) = \frac{\sqrt{1-p}}{p} \approx E[X] \text{ when } p \text{ is small(ish)}. \]
Variance of $G(p)$ by renewal

Recall our renewal trip for $X = G(p)$: Let $Z = 1$ if the first coin flip is T and $Z = 0$, otherwise. Thus, $\Pr[Z = 1] = q = 1 - p$.

Then $Z^2 = Z$ and $X = 1 + ZY$ where Y, Z are independent and X, Y are identically distributed.

Thus, $pE[X^2] = 1 + 2q/p = (p + 2q)/p = (2 - p)/p$, so that $E[X^2] = (2 - p)/p^2$. Hence, $\text{var}(X) = E[X^2] - E[X]^2 = \frac{1 - p}{p^2}$.

Recall our renewal trip for $X = G(p)$: Let $Z = 1$ if the first coin flip is T and $Z = 0$, otherwise.
Recall our renewal trip for $X = G(p)$: Let $Z = 1$ if the first coin flip is T and $Z = 0$, otherwise. Thus, $Pr[Z = 1] = q = 1 - p$. Then $Z^2 = Z$ and

$$X = 1 + ZY$$

where Y, Z are independent and X, Y are identically distributed.
Variance of $G(p)$ by renewal

Recall our renewal trip for $X = G(p)$: Let $Z = 1$ if the first coin flip is T and $Z = 0$, otherwise. Thus, $Pr[Z = 1] = q = 1 - p$. Then $Z^2 = Z$ and

$$X = 1 + ZY$$

where Y, Z are independent and X, Y are identically distributed.

Hence,

$$E[X^2] = E[(1 + ZY)^2] = E[1 + 2ZY + Z^2Y^2]$$
Variance of G(p) by renewal

Recall our renewal trip for \(X = G(p) \): Let \(Z = 1 \) if the first coin flip is \(T \) and \(Z = 0 \), otherwise. Thus, \(Pr[Z = 1] = q = 1 - p \). Then \(Z^2 = Z \) and

\[
X = 1 + ZY
\]

where \(Y, Z \) are independent and \(X, Y \) are identically distributed.

Hence,

\[
E[X^2] = E[(1 + ZY)^2] = E[1 + 2ZY + Z^2Y^2]
\]

\[
= 1 + 2qE[Y] + qE[Y^2]
\]
Variance of $G(p)$ by renewal

Recall our renewal trip for $X = G(p)$: Let $Z = 1$ if the first coin flip is T and $Z = 0$, otherwise. Thus, $Pr[Z = 1] = q = 1 - p$. Then $Z^2 = Z$ and

$$X = 1 + ZY$$

where Y, Z are independent and X, Y are identically distributed. Hence,

Variance of $G(p)$ by renewal

Recall our renewal trip for $X = G(p)$: Let $Z = 1$ if the first coin flip is T and $Z = 0$, otherwise. Thus, $Pr[Z = 1] = q = 1 - p$. Then $Z^2 = Z$ and

$$X = 1 + ZY$$

where Y, Z are independent and X, Y are identically distributed.

Hence,

$$E[X^2] = E[(1 + ZY)^2] = E[1 + 2ZY + Z^2Y^2]$$

$$= 1 + 2qE[Y] + qE[Y^2] = 1 + 2q/p + qE[X^2].$$

Thus, $pE[X^2] = 1 + 2q/p = (p + 2q)/p = (2 - p)/p$, so that $E[X^2] = (2 - p)/p^2$.
Variance of $G(p)$ by renewal

Recall our renewal trip for $X = G(p)$: Let $Z = 1$ if the first coin flip is T and $Z = 0$, otherwise. Thus, $Pr[Z = 1] = q = 1 - p$.

Then $Z^2 = Z$ and

$$X = 1 + ZY$$

where Y, Z are independent and X, Y are identically distributed. Hence,

$$E[X^2] = E[(1 + ZY)^2] = E[1 + 2ZY + Z^2Y^2]$$

$$= 1 + 2qE[Y] + qE[Y^2] = 1 + 2q/p + qE[X^2].$$

Thus, $pE[X^2] = 1 + 2q/p = (p + 2q)/p = (2 - p)/p$, so that $E[X^2] = (2 - p)/p^2$. Hence,

$$var(X) = E[X^2] - E[X]^2 =$$
Variance of $G(p)$ by renewal

Recall our renewal trip for $X = G(p)$: Let $Z = 1$ if the first coin flip is T and $Z = 0$, otherwise. Thus, $Pr[Z = 1] = q = 1 - p$. Then $Z^2 = Z$ and

$$X = 1 + ZY$$

where Y, Z are independent and X, Y are identically distributed. Hence,

Thus, $pE[X^2] = 1 + 2q/p = (p + 2q)/p = (2 - p)/p$, so that $E[X^2] = (2 - p)/p^2$. Hence,

Experiment: Get coupons at random from n until collect all n coupons.
Experiment: Get coupons at random from n until collect all n coupons.

Outcomes: \{123145..., 56765...\}
Experiment: Get coupons at random from n until collect all n coupons.
Outcomes: \{123145..., 56765...\}
Random Variable: X - length of outcome.
Experiment: Get coupons at random from n until collect all n coupons.

Outcomes: \{123145..., 56765...\}

Random Variable: X - length of outcome.
Experiment: Get coupons at random from n until collect all n coupons.

Outcomes: \{123145..., 56765...\}

Random Variable: X - length of outcome.

Before: $Pr[X \geq n \ln 2n] \leq \frac{1}{2}$.
Experiment: Get coupons at random from n until collect all n coupons.

Outcomes: \{123145..., 56765...\}

Random Variable: X - length of outcome.

Before: $Pr[X \geq n \ln 2n] \leq \frac{1}{2}$.

Today: $E[X]$?
Experiment: Get coupons at random from n until collect all n coupons.

Outcomes: $\{123145..., 56765...\}$

Random Variable: X - length of outcome.

Before: $Pr[X \geq n \ln 2n] \leq \frac{1}{2}$.

Today: $E[X]$?
Time to collect coupons

\(X \)-time to get \(n \) coupons.
Time to collect coupons

X - time to get n coupons.

X_1 - time to get first coupon.
Time to collect coupons

X - time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$.
Time to collect coupons

X - time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
Time to collect coupons

X - time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|“got milk”}]$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|“got milk first coupon”}] = \frac{n-1}{n}$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|\text{“got milk first coupon”}] = \frac{n-1}{n}$

$E[X_2]$?
Time to collect coupons

X-time to get n coupons.
X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”} | \text{“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric
Time to collect coupons

- time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$$Pr[\text{“get second coupon”}\mid \text{“got milk first coupon”}] = \frac{n-1}{n}$$

$E[X_2]$? Geometric!
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr["get second coupon"|"got milk first coupon"] = \frac{n-1}{n}$

$E[X_2]$? Geometric !!
Time to collect coupons

X - time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”} | \text{“got milk first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric !!!
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”} | \text{“got milk first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{\rho} =$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|“got milk first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{n}}$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|“got milk first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}$.
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”}\mid \text{“got milk first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n}{n-1}} = \frac{n}{n-1}$.

$Pr[\text{“getting i^{th} coupon”}\mid \text{“got $i-1^{st}$ coupons”}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|“got milk first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric !! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}.$

$Pr[\text{“getting ith coupon|“got $i-1$rst coupons”}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i]$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|“got milk first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}$.

$Pr[\text{“getting i^{th} coupon|“got $i-1^{rst}$ coupons”}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p}$
Time to collect coupons

X-time to get n coupons.
X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
X_2 - time to get second coupon after getting first.

$Pr[“get second coupon”|“got milk first coupon”] = \frac{n-1}{n}$

$E[X_2]$? Geometric !!! $\Rightarrow E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}$.

$Pr[“getting ith coupon”|“got i – 1rst coupons”] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}$,
Time to collect coupons

\(X\)-time to get \(n\) coupons.

\(X_1\) - time to get first coupon. Note: \(X_1 = 1\). \(E(X_1) = 1\).

\(X_2\) - time to get second coupon after getting first.

\(Pr[\text{“get second coupon”} | \text{“got milk first coupon”}] = \frac{n-1}{n}\)

\(E[X_2]? \text{ Geometric ! ! !} \implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1} \cdot \)

\(Pr[\text{“getting \(i\)th coupon”} | \text{“got \(i-1\)rst coupons”}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}

\(E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n.\)
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|“got milk first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n}{n-1}} = \frac{n}{n-1}$.

$Pr[\text{“getting ith coupon|“got $i-1$rst coupons”}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n.$

$E[X] = E[X_1] + \cdots + E[X_n] =$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$\Pr[\text{"get second coupon"|\"got milk \text{ first coupon}\}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}$.

$\Pr[\text{"getting ith coupon"|\"got $i-1$rst coupons\}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n.$

$E[X] = E[X_1] + \cdots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + \frac{n}{1}$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr["get second coupon"|"got milk first coupon"] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{\frac{1}{n}} = \frac{n}{n-1}$.

$Pr["getting i\text{th coupon}|"got i-1\text{rst coupons")] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{\frac{1}{n}} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n.$

$E[X] = E[X_1] + \cdots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + \frac{n}{1}$

$= n(1 + \frac{1}{2} + \cdots + \frac{1}{n}) =: nH(n)$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[“\text{get second coupon”} | “\text{got milk first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}$.

$Pr[“\text{getting } i\text{th coupon”} | “\text{got } i-1\text{rst coupons”}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n.$

$$E[X] = E[X_1] + \cdots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + \frac{n}{1}$$

$$= n(1 + \frac{1}{2} + \cdots + \frac{1}{n}) =: nH(n) \approx n(\ln n + \gamma)$$
Review: Harmonic sum

\[H(n) = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \approx \int_1^n \frac{1}{x} \, dx = \ln(n). \]
Review: Harmonic sum

\[H(n) = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \approx \int_1^n \frac{1}{x} \, dx = \ln(n). \]
Review: Harmonic sum

\[H(n) = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \approx \int_1^n \frac{1}{x} \, dx = \ln(n). \]

A good approximation is

\[H(n) \approx \ln(n) + \gamma \] where \(\gamma \approx 0.58 \) (Euler-Mascheroni constant).
Harmonic sum: Paradox

Consider this stack of cards (no glue!):
Harmonic sum: Paradox

Consider this stack of cards (no glue!):
Harmonic sum: Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend $H(n)$ to the right of the table.
Harmonic sum: Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend $H(n)$ to the right of the table. As n increases, you can go as far as you want!
par·a·dox

/ˈpərə,ˌdæks/

noun

a statement or proposition that, despite sound (or apparently sound) reasoning from acceptable premises, leads to a conclusion that seems senseless, logically unacceptable, or self-contradictory.

"a potentially serious conflict between quantum mechanics and the general theory of relativity known as the information paradox"

- a seemingly absurd or self-contradictory statement or proposition that when investigated or explained may prove to be well founded or true.
 "in a paradox, he has discovered that stepping back from his job has increased the rewards he gleans from it"

 synonyms: contradiction, contradiction in terms, self-contradiction, inconsistency, incongruity; More

- a situation, person, or thing that combines contradictory features or qualities.
 "the mingling of deciduous trees with elements of desert flora forms a fascinating ecological paradox"
Stacking

The cards have width 2. Induction shows that the center of gravity after \(n \) cards is \(H(n) \) away from the right-most edge.

\[
H(n) = 1 + \frac{1}{2}
\]

\[
H(n + 1) = \frac{nx}{1 - x} = \frac{1}{n + 1}
\]

\[
x = \frac{1}{n + 1}
\]
Stacking

The cards have width 2.

Induction shows that the center of gravity after n cards is $H(n)$ away from the right-most edge.

$n x = 1 - x$

$\Rightarrow x = 1/(n + 1)$
The cards have width 2. Induction shows that the center of gravity after n cards is $H(n)$ away from the right-most edge.
Simeon Poisson

The Poisson distribution is named after:
The Poisson distribution is named after:
Equal Time: B. Geometric

The geometric distribution is named after:
The geometric distribution is named after:

B. Geometric (b. 300 BC)
Equal Time: B. Geometric

The geometric distribution is named after:

I could not find a picture of D. Binomial, sorry.
Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.
Random Variable: X - number of heads.
Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda / n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda / n)$.

Poisson
Experiment: flip a coin n times. The coin is such that
$$Pr[H] = \lambda / n.$$
Random Variable: X - number of heads. Thus, $X = B(n, \lambda / n)$.

Poisson Distribution is distribution of X “for large n.”
Poisson

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda / n$.
Random Variable: X - number of heads. Thus, $X = B(n, \lambda / n)$.

Poisson Distribution is distribution of X “for large n.”
Poisson

Experiment: flip a coin \(n \) times. The coin is such that \(Pr[H] = \frac{\lambda}{n} \).

Random Variable: \(X \) - number of heads. Thus, \(X = B(n, \lambda/n) \).

Poisson Distribution is distribution of \(X \) “for large \(n \).”
Poisson

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda / n$.
Random Variable: X - number of heads. Thus, $X = B(n, \lambda / n)$.

Poisson Distribution is distribution of X “for large n.”

$$Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, \text{ with } p =$$
Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of X “for large n.”

$$Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, \text{ with } p = \lambda/n$$
Poisson

Experiment: flip a coin n times. The coin is such that $\Pr[H] = \lambda / n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda / n)$.

Poisson Distribution is distribution of X “for large n.”

$$\Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, \text{ with } p = \lambda / n$$

$$= \frac{n(n-1) \cdots (n-m+1)}{m!} \left(\frac{\lambda}{n} \right)^m \left(1 - \frac{\lambda}{n} \right)^{n-m}$$
Experiment: flip a coin \(n \) times. The coin is such that \(Pr[H] = \lambda / n \).

Random Variable: \(X \) - number of heads. Thus, \(X = B(n, \lambda / n) \).

Poisson Distribution is distribution of \(X \) “for large \(n \).”

\[
Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, \text{ with } p = \frac{\lambda}{n}
\]

\[
= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n} \right)^m \left(1 - \frac{\lambda}{n} \right)^{n-m}
\]

\[
\approx \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^{n-m}
\]
Poisson

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.
Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.
Poisson Distribution is distribution of X “for large n.”

$$Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1) \cdots (n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1 - \frac{\lambda}{n}\right)^{n-m}$$

$$\approx \frac{n(n-1) \cdots (n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n}\right)^{n-m}$$

$$\approx \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n}\right)^{n-m}$$
Poisson

Experiment: flip a coin \(n \) times. The coin is such that \(Pr[H] = \lambda / n \).

Random Variable: \(X \) - number of heads. Thus, \(X = B(n, \lambda / n) \).

Poisson Distribution is distribution of \(X \) “for large \(n \).”

\[
Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, \text{ with } p = \frac{\lambda}{n}
\]

\[
= \frac{n(n-1) \cdots (n-m+1)}{m!} \left(\frac{\lambda}{n} \right)^m \left(1 - \frac{\lambda}{n} \right)^{n-m}
\]

\[
\approx \frac{n(n-1) \cdots (n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^{n-m}
\]

\[
\approx \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^{n-m} \approx \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^n
\]
Poisson

Experiment: flip a coin \(n \) times. The coin is such that \(Pr[H] = \lambda/n. \)

Random Variable: \(X \) - number of heads. Thus, \(X = B(n, \lambda/n). \)

Poisson Distribution is distribution of \(X \) “for large \(n. \)"

\[
Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, \text{ with } p = \frac{\lambda}{n}
\]

\[
= \frac{n(n-1) \cdots (n-m+1)}{m!} \left(\frac{\lambda}{n} \right)^m \left(1 - \frac{\lambda}{n} \right)^{n-m}
\]

\[
\approx \frac{n(n-1) \cdots (n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^{n-m}
\]

\[
\approx \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^{n-m} \approx \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}.
\]
Poisson

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of X “for large n.”

$$Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1) \cdots (n-m+1)}{m!} \left(\frac{\lambda}{n} \right)^m \left(1 - \frac{\lambda}{n} \right)^{n-m}$$

$$\approx \frac{n(n-1) \cdots (n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^{n-m}$$

$$\approx \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^{n-m} \approx \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}.$$

We used $(1 - a/n)^n \approx e^{-a}$.
Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter \(\lambda > 0 \)

\[
X = P(\lambda) \iff Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \geq 0.
\]
Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \iff Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \geq 0.$$

Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda}.$$
Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \iff Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \geq 0.$$

Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
Poisson Distribution: Definition and Mean

Definition Poison Distribution with parameter \(\lambda > 0 \)

\[X = P(\lambda) \iff Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, \ m \geq 0. \]

Fact: \(E[X] = \lambda \).

Proof:

\[
E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}
\]

\[
= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!}
\]
Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \geq 0.$$

Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$

$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \iff Pr[X = m] = \frac{\lambda^m}{m!}e^{-\lambda}, \ m \geq 0.$$

Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!}e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$

$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$

$$= e^{-\lambda} \lambda e^\lambda$$
Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \iff \Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \geq 0.$$

Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$

$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$

$$= e^{-\lambda} \lambda e^\lambda = \lambda.$$
Poisson Distribution: Variance

Recall: $X = P(\lambda) \Leftrightarrow Pr[X = n] = \frac{\lambda^n}{n!} e^{-\lambda}, n \geq 0.$
Poisson Distribution: Variance

Recall: $X = P(\lambda) \Leftrightarrow Pr[X = n] = \frac{\lambda^n}{n!} e^{-\lambda}, n \geq 0$.

Fact: $\text{var}[X] = \lambda$.
Poisson Distribution: Variance

Recall: $X = P(\lambda) \iff Pr[X = n] = \frac{\lambda^n}{n!} e^{-\lambda}, n \geq 0$.

Fact: $\text{var}[X] = \lambda$. One finds

$$E[X(X - 1)] = \sum_{n \geq 0} n(n - 1) \frac{\lambda^n}{n!} e^{-\lambda}$$
Poisson Distribution: Variance

Recall: $X = P(\lambda) \iff \Pr[X = n] = \frac{\lambda^n}{n!} e^{-\lambda}, n \geq 0.$

Fact: $\text{var}[X] = \lambda$. One finds

$$E[X(X - 1)] = \sum_{n \geq 0} n(n-1) \frac{\lambda^n}{n!} e^{-\lambda} = e^{-\lambda} \sum_{n \geq 2} \frac{\lambda^n}{(n-2)!}$$
Poisson Distribution: Variance

Recall: \(X = P(\lambda) \iff Pr[X = n] = \frac{\lambda^n}{n!} e^{-\lambda}, n \geq 0. \)

Fact: \(\text{var}[X] = \lambda. \) One finds

\[
E[X(X - 1)] = \sum_{n \geq 0} n(n - 1) \frac{\lambda^n}{n!} e^{-\lambda} = e^{-\lambda} \sum_{n \geq 2} \frac{\lambda^n}{(n - 2)!}
\]

\[
= \lambda^2 e^{-\lambda} \sum_{n \geq 2} \frac{\lambda^{n-2}}{(n - 2)!}
\]
Poisson Distribution: Variance

Recall: \(X = P(\lambda) \iff Pr[X = n] = \frac{\lambda^n}{n!}e^{-\lambda}, n \geq 0. \)

Fact: \(\text{var}[X] = \lambda. \) One finds

\[
E[X(X - 1)] = \sum_{n \geq 0} n(n-1) \frac{\lambda^n}{n!}e^{-\lambda} = e^{-\lambda} \sum_{n \geq 2} \frac{\lambda^n}{(n-2)!}
\]

\[
= \lambda^2 e^{-\lambda} \sum_{n \geq 2} \frac{\lambda^{n-2}}{(n-2)!} = \lambda^2 e^{-\lambda} \sum_{m \geq 0} \frac{\lambda^m}{m!}
\]
Poisson Distribution: Variance

Recall: \(X = P(\lambda) \iff Pr[X = n] = \frac{\lambda^n}{n!} e^{-\lambda}, n \geq 0. \)

Fact: \(\text{var}[X] = \lambda. \) One finds

\[
E[X(X - 1)] = \sum_{n \geq 0} n(n-1) \frac{\lambda^n}{n!} e^{-\lambda} = e^{-\lambda} \sum_{n \geq 2} \frac{\lambda^n}{(n-2)!}
\]

\[
= \lambda^2 e^{-\lambda} \sum_{n \geq 2} \frac{\lambda^{n-2}}{(n-2)!} = \lambda^2 e^{-\lambda} \sum_{m \geq 0} \frac{\lambda^m}{m!}
\]

\[
= \lambda^2.
\]
Poisson Distribution: Variance

Recall: \(X = P(\lambda) \iff \Pr[X = n] = \frac{\lambda^n}{n!} e^{-\lambda}, n \geq 0. \)

Fact: \(\text{var}[X] = \lambda. \) One finds

\[
E[X(X - 1)] = \sum_{n \geq 0} n(n-1) \frac{\lambda^n}{n!} e^{-\lambda} = e^{-\lambda} \sum_{n \geq 2} \frac{\lambda^n}{(n-2)!} \\
= \lambda^2 e^{-\lambda} \sum_{n \geq 2} \frac{\lambda^{n-2}}{(n-2)!} = \lambda^2 e^{-\lambda} \sum_{m \geq 0} \frac{\lambda^m}{m!} \\
= \lambda^2.
\]

Hence,

\[
E[X^2] - E[X] = \lambda^2.
\]
Poisson Distribution: Variance

Recall: $X = P(\lambda) \iff Pr[X = n] = \frac{\lambda^n}{n!} e^{-\lambda}, n \geq 0.$

Fact: $\text{var}[X] = \lambda$. One finds

$$E[X(X - 1)] = \sum_{n \geq 0} n(n-1) \frac{\lambda^n}{n!} e^{-\lambda} = e^{-\lambda} \sum_{n \geq 2} \frac{\lambda^n}{(n-2)!}$$

$$= \lambda^2 e^{-\lambda} \sum_{n \geq 2} \frac{\lambda^{n-2}}{(n-2)!} = \lambda^2 e^{-\lambda} \sum_{m \geq 0} \frac{\lambda^m}{m!}$$

$$= \lambda^2.$$

Hence,

$$E[X^2] - E[X] = \lambda^2.$$

Thus,

$$E[X^2] = \lambda^2 + E[X] = \lambda^2 + \lambda.$$
Poisson Distribution: Variance

Recall: \(X = P(\lambda) \Leftrightarrow Pr[X = n] = \frac{\lambda^n}{n!} e^{-\lambda}, n \geq 0. \)

Fact: \(\text{var}[X] = \lambda. \) One finds

\[
E[X(X - 1)] = \sum_{n \geq 0} n(n-1) \frac{\lambda^n}{n!} e^{-\lambda} = e^{-\lambda} \sum_{n \geq 2} \frac{\lambda^n}{(n-2)!}
\]

\[
= \lambda^2 e^{-\lambda} \sum_{n \geq 2} \frac{\lambda^{n-2}}{(n-2)!} = \lambda^2 e^{-\lambda} \sum_{m \geq 0} \frac{\lambda^m}{m!}
\]

\[= \lambda^2.\]

Hence,

\[
E[X^2] - E[X] = \lambda^2.
\]

Thus,

\[
E[X^2] = \lambda^2 + E[X] = \lambda^2 + \lambda.
\]

Consequently,

\[
\text{var}[X] = E[X^2] - E[X]^2 = E[X^2] - \lambda^2 = \lambda.
\]
Review: Distributions
Review: Distributions

Geometric Distribution
- Probability mass function: $(1 - p)^{x-1}p$
- Mean: $\frac{1}{p}$
- Variance: $\frac{1-p}{p^2}$

Poisson Distribution
- Probability mass function: $\frac{(\lambda^k/k!)}{e^{-\lambda}}$
- Mean: λ
- Variance: λ

Binomial Distribution PDF
- Probability mass function: $\binom{n}{k}p^k(1-p)^{n-k}$
- Mean: np
- Variance: $np(1-p)$
Summary

Variance, Geometric, time to collect coupons; Poisson
Summary

Variance, Geometric, time to collect coupons; Poisson

- $\text{var}[a + bX] = b^2 \text{var}[X]$;
Summary

Variance, Geometric, time to collect coupons; Poisson

- \(\text{var}[a + bX] = b^2 \text{var}[X] \);
- \(X, Y \) independent \(\Rightarrow \text{var}[X + Y] = \text{var}[X] + \text{var}[Y] \);
Summary

Variance, Geometric, time to collect coupons; Poisson

- $\text{var}[a + bX] = b^2 \text{var}[X]$;
- X, Y independent $\Rightarrow \text{var}[X + Y] = \text{var}[X] + \text{var}[Y]$;
- Time to collect all of n coupons:
Summary

- Variance, Geometric, time to collect coupons; Poisson

- \(\text{var}[a + bX] = b^2 \text{var}[X] \);
- \(X, Y \) independent \(\Rightarrow \) \(\text{var}[X + Y] = \text{var}[X] + \text{var}[Y] \);
- Time to collect all of \(n \) coupons: \(nH(n) \approx n(\ln(n) + 0.58) \);
Summary

Variance, Geometric, time to collect coupons; Poisson

- $\text{var}[a + bX] = b^2 \text{var}[X]$;
- X, Y independent $\Rightarrow \text{var}[X + Y] = \text{var}[X] + \text{var}[Y]$;
- Time to collect all of n coupons: $nH(n) \approx n(\ln(n) + 0.58)$;
- Intuition: Last coupon takes $1/n$ to collect!
Summary

Variance, Geometric, time to collect coupons; Poisson

- $\text{var}[a + bX] = b^2 \text{var}[X]$;
- X, Y independent $\Rightarrow \text{var}[X + Y] = \text{var}[X] + \text{var}[Y]$;
- Time to collect all of n coupons: $nH(n) \approx n(\ln(n) + 0.58)$;
- Intuition: Last coupon takes $1/n$ to collect!
- Remember: $E[X_1 + \cdots + X_n] = E[X_1] + \cdots + E[X_n]$.
Summary

Variance, Geometric, time to collect coupons; Poisson

- \(\text{var}[a + bX] = b^2 \text{var}[X] \);
- \(X, Y \) independent \(\Rightarrow \text{var}[X + Y] = \text{var}[X] + \text{var}[Y] \);
- Time to collect all of \(n \) coupons: \(nH(n) \approx n(\ln(n) + 0.58) \);
- Intuition: Last coupon takes \(1/n \) to collect!
- Remember: \(E[X_1 + \cdots + X_n] = E[X_1] + \cdots + E[X_n] \).
- Distributions:
Summary

Variance, Geometric, time to collect coupons; Poisson

- \(\text{var}[a + bX] = b^2 \text{var}[X] \);
- \(X, Y \) independent \(\Rightarrow \) \(\text{var}[X + Y] = \text{var}[X] + \text{var}[Y] \);
- Time to collect all of \(n \) coupons: \(nH(n) \approx n(\ln(n) + 0.58) \);
- Intuition: Last coupon takes \(1/n \) to collect!
- Remember: \(E[X_1 + \cdots + X_n] = E[X_1] + \cdots + E[X_n] \).
- Distributions:
 - \(G(p) : E[X] = 1/p, \text{var}[X] = (1-p)/p^2 \);
Summary

- $\text{var}[a + bX] = b^2 \text{var}[X]$;
- X, Y independent $\Rightarrow \text{var}[X + Y] = \text{var}[X] + \text{var}[Y]$;
- Time to collect all of n coupons: $nH(n) \approx n(\ln(n) + 0.58)$;
- Intuition: Last coupon takes $1/n$ to collect!
- Remember: $E[X_1 + \cdots + X_n] = E[X_1] + \cdots + E[X_n]$.
- Distributions:
 - $G(p) : E[X] = 1/p, \text{var}[X] = (1 - p)/p^2$;
 - $B(n, p) : E[X] = np, \text{var}[X] = np(1 - p)$.
Summary

Variance, Geometric, time to collect coupons; Poisson

- \(\text{var}[a + bX] = b^2 \text{var}[X] \);
- If \(X, Y \) independent, \(\Rightarrow \text{var}[X + Y] = \text{var}[X] + \text{var}[Y] \);
- Time to collect all of \(n \) coupons: \(nH(n) \approx n(\ln(n) + 0.58) \);
- Intuition: Last coupon takes \(1/n \) to collect!
- Remember: \(E[X_1 + \cdots + X_n] = E[X_1] + \cdots + E[X_n] \).
- Distributions:
 - \(G(p) : E[X] = 1/p, \text{var}[X] = (1 - p)/p^2 \);
 - \(B(n, p) : E[X] = np, \text{var}[X] = np(1 - p) \);
 - \(P(\lambda) : E[X] = \lambda, \text{var}[X] = \lambda \)