Conditional Expectation

Definition Let X and Y be RVs on Ω. The conditional expectation of Y given X is defined as

$$E[Y|X] = g(X)$$

where

$$g(x) := E[Y|X = x] := \sum_y y \Pr[Y = y|X = x].$$

Properties of Conditional Expectation

$$E[Y|X = x] = \sum_y y \Pr[Y = y|X = x]$$

Theorem

(a) X, Y independent $\Rightarrow E[Y|X] = E[Y]$;
(b) $E[aY + b|X] = aE[Y|X] + bE[Z|X]$;
(c) $E[Yh(X)|X] = h(x)E[Y|X], \forall h(\cdot)$;
(d) $E[h(X)E[Y|X]] = E[h(X)Y], \forall h(\cdot)$;
(e) $E[E[Y|X]] = E[Y]$.

Application: Going Viral

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Walrand is really weird).

You have d friends. Each of your friend retweets w.p. p.

Each of your friends has d friends, etc.

Does the rumor spread? Does it die out (mercifully)?

In this example, $d = 4$.

Fact: Let $X = \sum_{n=1}^{\infty} X_n$. Then, $E[X] < \infty$ iff $pd < 1$.

Proof:

Given $X_0 = k, X_{n+1} = B(kd, p)$. Hence, $E[X_n|X_0 = k] = kpd$.

Thus, $E[X_n+1|X_0] = pdX_n$. Consequently, $E[X_n] = (pd)^n \cdot n \geq 1$.

If $pd < 1$, then $E[X_1 + \cdots + X_n] \leq (1 - pd)^{-1} \Rightarrow E[X] \leq (1 - pd)^{-1}$.

If $pd \geq 1$, then for all C one can find n s.t.

$$E[X] \geq E[X_1 + \cdots + X_n] \geq C.$$

In fact, one can show that $pd \geq 1 \Rightarrow \Pr[X = \infty] > 0$.

We conclude as before.
Application: Wald’s Identity

Here is an extension of an identity we used in the last slide.

Theorem: Wald’s Identity
Assume that X_1, X_2, \ldots and Z are independent, where Z takes values in $\{0, 1, 2, \ldots\}$ and $E[X_n] = \mu$ for all $n \geq 1$.

Then, $E[X_1 + \cdots + X_2] = \mu E[Z]$.

Proof:
$E[X_1 + \cdots + X_2] = \mu k$.
Thus, $E[X_1 + \cdots + X_2|Z = k] = \mu k$.
Hence, $E[X_1 + \cdots + X_2] = E[\mu k] = \mu E[Z]$.

CE = MMSE

Theorem
$E[Y|X]$ is the ‘best’ guess about Y based on X.
Specifically, it is the function $g(X)$ of X that minimizes $E[(Y - g(X))^2]$.

Proof:
First recall the projection property of CE:
$E[(Y - E[Y|X])h(X)] = 0, \forall h(\cdot)$.
That is, the error $Y - E[Y|X]$ is orthogonal to any $h(X)$.

But,
$E[(Y - g(X))(g(X) - h(X))] = 0$ by the projection property.
Thus, $E[(Y - h(X))^2] \geq E[(Y - g(X))^2]$.

CE = MMSE

$E[Y|X]$ and $L[Y|X]$ as projections

$L[Y|X]$ is the projection of Y on $\{a + bX, a, b \in \mathbb{R}\}$: LLSE

$E[Y|X]$ is the projection of Y on $\{g(X), g(\cdot) : \mathbb{R} \to \mathbb{R}\}$: MMSE.

Continuous Probability - James Bond.

- Escapes from SPECTRE sometime during 1,000 mile flight.
- Uniformly likely to be at any point along path.

What is the chance he is at any point along the path?
Discrete Setting: Uniform over $\Omega = \{1, \ldots, 1000\}$.
Continuous setting: probability at any point in $[0, 1000]$?
Probability at any one of an infinite number of points is
...uh

...
Continuous Probability: the interval!

Consider \([a, b] \subseteq [0, \ell]\) (for James, \(\ell = 1000\)). Let \([a, b]\) also denote the event that point is in the interval \([a, b]\).

\[
Pr[[a, b]] = \frac{\text{length of } [a, b]}{\text{length of } [0, \ell]} = \frac{b - a}{\ell} = \frac{b - a}{1000}
\]

Again, \([a, b] \subseteq \Omega = [0, \ell]\) are events. Events in this space are unions of intervals. Example: the event \(A\) - "within 50 miles of base" is \([0, 50] \cup [950, 1000]\).

\[
Pr[A] = Pr[[0, 50]] + Pr[[950, 1000]] = \frac{1}{10}
\]

Buffon's needle.

Throw a needle on a board with horizontal lines at random.

Lines 1 unit apart, needle has length 1.

What is the chance he hits gas tank?

\[
\text{Gas tank is a one foot circle and the buggy is } 4 \times 5 \text{ rectangle.}
\]

Shooting..

Another Bond example:
Spectre is chasing him in a buggie.
Bond shoots at buggy and hits it at random spot.
What is the chance he hits gas tank?

Gas tank is a one foot circle and the buggy is \(4 \times 5\) rectangle.

Continuous Random Variables: CDF

\(Pr[a \leq X \leq b]\) instead of \(Pr[X = a]\).

For all \(a\) and \(b\) specifies the behavior!
Simpler: \(P[X \leq x]\) for all \(x\).

Cumulative probability Distribution Function of \(X\) is

\[
F(x) = Pr[X \leq x]
\]

\[
Pr[a < X \leq b] = Pr[X \leq b] - Pr[X \leq a] = F(b) - F(a).
\]

Idea: two events \(X \leq b\) and \(X \leq a\).
Difference is the event \(a < X \leq b\).

Example: CDF

Example: Bond's position.

\(F(x) = Pr[X \leq x] = \begin{cases} 0 & \text{for } x < 0 \\ \frac{x}{1000} & \text{for } 0 \leq x \leq 1000 \\ 1 & \text{for } x > 1000 \end{cases}\)

Probability that Bond is within 50 miles of center:

\[
Pr[450 < X \leq 550] = Pr[X \leq 550] - Pr[X \leq 450] = \frac{550}{1000} - \frac{450}{1000} = \frac{100}{1000} = \frac{1}{10}
\]
Density function.

Is the dart more like to be (near) .5 or .1?
Probability of “Near x” is $Pr[x < X ≤ x + δ]$.

Try

$$Pr[x < X < x + δ] = \lim_{δ \to 0} \frac{Pr[X ≤ x + δ] − Pr[X ≤ x]}{δ} = \lim_{δ \to 0} \frac{F_X(x + δ) − F_X(x)}{δ} = d\left(\frac{dF(x)}{dx}\right)$$

The limit as $δ$ goes to zero.

Examples: Density.

Example: “Dart” board.
Recall that

$$F_Y(y) = Pr[Y ≤ y] = \begin{cases}
0 & \text{for } y < 0 \\
y^2 & \text{for } 0 ≤ y ≤ 1 \\
1 & \text{for } y > 1
\end{cases}$$

Example: uniform over interval $[0, 1000]$

$$f_X(x) = F_X'(x) = \begin{cases}
0 & \text{for } x < 0 \\
y & \text{for } 0 ≤ x ≤ 1000 \\
0 & \text{for } x > 1000
\end{cases}$$

Example: uniform over interval $[0, ℓ]$

$$f_X(x) = F_X'(x) = \begin{cases}
0 & \text{for } x < 0 \\
y & \text{for } 0 ≤ x ≤ ℓ \\
0 & \text{for } x > ℓ
\end{cases}$$

The cumulative distribution function (cdf) and probability distribution function (pdf) give full information.

Use whichever is convenient.

Calculation of event with dartboard.

Probability between .5 and .6 of center?
Recall CDF.

$$F_Y(y) = Pr[Y ≤ y] = \begin{cases}
0 & \text{for } y < 0 \\
y^2 & \text{for } 0 ≤ y ≤ 1 \\
1 & \text{for } y > 1
\end{cases}$$

$$Pr[0.5 < Y ≤ 0.6] = Pr[Y ≤ 0.6] − Pr[Y ≤ 0.5] = F_Y(0.6) − F_Y(0.5) = .36 − .25 = .11$$

**Definition: (Density) A probability density function for a random variable X with cdf $F_X(x) = Pr[X ≤ x]$ is the function $f_X(x)$ where

$$F_X(x) = \int_{-∞}^{x} f_X(x)dx.$$**

Thus,

$$Pr[X ∈ (x, x + δ)] = F_X(x + δ) − F_X(x) = f_X(x)δ.$$
Uniform in \([a, b]\)

Let \(X = U[a, b]\). That is,
\[
f_X(x) = \frac{1}{b-a} 1\{a \leq x \leq b\}.
\]
Hence,
\[
E[X] = \int_{-\infty}^{\infty} x f_X(x)\,dx = \int_a^b x \cdot \frac{1}{b-a} \,dx = \frac{1}{b-a} \int_a^b x \,dx = \frac{1}{2(b-a)} \left[b^2 - a^2 \right] = \frac{a+b}{2}.
\]

Expo(\(\lambda\))

The exponential distribution with parameter \(\lambda > 0\) is defined by
\[
f_X(x) = \lambda e^{-\lambda x} \cdot 1(x \geq 0)
\]
\[
F_X(x) = \begin{cases}
0, & \text{if } x < 0 \\
1 - e^{-\lambda x}, & \text{if } x \geq 0.
\end{cases}
\]

Recall that
\[
Pr[X \in (i\delta, (i+1)\delta)] = f_X(i\delta)\delta.
\]
Thus,
\[
E[X] = \sum_{i=-\infty}^{\infty} (i\delta)Pr[i\delta < X \leq (i+1)\delta] = \sum_{i=-\infty}^{\infty} (i\delta)f_X(i\delta)\delta = \int_{-\infty}^{\infty} x f_X(x)\,dx.
\]

Definition The expectation, \(E[X]\) of a continuous random variable is defined as
\[
E[X] = \int_{-\infty}^{\infty} x f(x)\,dx.
\]

Expectation: dartboard.

Example: distance from center on radius 1 dartboard. Recall:
\[
f_Y(y) = 2y 1\{0 \leq y \leq 1\}.
\]
Hence,
\[
E[Y] = \int_{-\infty}^{\infty} y f_Y(y)\,dy = \int_0^1 y 2y\,dy = \frac{2}{3}.
\]
Try whole process for general radius. What do you get?

Expectation: Exponential.

Let \(X = \text{Expo}(\lambda)\). Then,
\[
E[X] = \int_{-\infty}^{\infty} x f_X(x)\,dx = \int_0^{\infty} x \lambda e^{-\lambda x}\,dx = -\int_0^{\infty} xde^{-\lambda x} = -\left[\frac{xe^{-\lambda x}}{\lambda} \right]_0^{\infty} - \frac{1}{\lambda} \int_0^{\infty} e^{-\lambda x}\,dx = -\frac{1}{\lambda} - \frac{1}{\lambda} = -\frac{1}{\lambda}.
\]
\(^{(*)}\) We used the integration by parts formula:
\[
\int_a^b f(x)g'(x)\,dx = [f(x)g(x)]_a^b - \int_a^b g(x)df(x),
\]
which follows from \([f(x)g(x)] = f'(x)g(x) + f(x)g'(x)\).
Variance

Definition: The variance of a continuous random variable X is

$$
E((X - E(X))^2) = E(X^2) - (E(X))^2 = \int_{-\infty}^{\infty} x^2 f(x) \, dx - \left(\int_{-\infty}^{\infty} x f(x) \, dx \right)^2.
$$

Example: uniform on $[0, \ell]$.

$$
\int_{0}^{\ell} x^2 \, dx = \frac{x^3}{3} \bigg|_{0}^{\ell} = \frac{\ell^3}{3}
$$

And, $E(X) = \frac{\ell}{2}$. So

$$
\text{Var}(X) = \frac{\ell^2}{3} - \left(\frac{\ell}{2} \right)^2 = \frac{\ell^2}{12}.
$$

Approximately $n^2 - \frac{1}{12}$ for uniform discrete distribution on $\{1, \ldots, n\}$.

Summary

Conditional Expectation, Continuous Probability

1. $E[Y|X] := \sum_{y} y \Pr(Y = y|X = x)$.
2. Properties: Linearity,, MMSE.
3. Applications: Diluting, Mixing, Going Viral, Wald.
4. Motivation for Continuous Probability: The world is continuous
5. PDF: $\Pr(X \in (x, x+\delta]) = f_X(x)\delta$.
6. CDF: $\Pr(X \leq x) = F_X(x) = \int_{-\infty}^{x} f_X(y) \, dy$.
7. $U[a, b], \text{Expo}(\lambda)$, target.
8. Expectation: $E[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx$.