Warning:

This lecture is also rated R.

1. Review of continuous probability
2. Motivation for Gaussian
3. Gaussian
4. CLT
Warning:
Gaussian and CLT

Warning: This lecture is also rated R.
Warning: This lecture is also rated R.

1. Review of continuous probability
2. Motivation for Gaussian
3. Gaussian
4. CLT
Review of Continuous Probability

Ω is continuous space.
Review of Continuous Probability

Ω is continuous space.
Probability of any outcome is 0.
Review of Continuous Probability

Ω is continuous space.
Probability of any outcome is 0.
Work with events.
Review of Continuous Probability

\(\Omega \) is continuous space.
Probability of any outcome is 0.
Work with events.
Example: James Bond lands on position uniformly \([0, 1000]\).
\(\Omega \) is continuous space.
Probability of any outcome is 0.
Work with events.
Example: James Bond lands on position uniformly \([0, 1000]\).
Probability lands in an interval \([a, b] \subseteq [0, 1000]\) is
Review of Continuous Probability

Ω is continuous space.
Probability of any outcome is 0.
Work with events.
Example: James Bond lands on position uniformly $[0, 1000]$. Probability lands in an interval $[a, b] \subseteq [0, 1000]$ is

$$\frac{b - a}{1000}.$$
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

Cumulative Distribution Function (cdf).
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

Cumulative Distribution Function (cdf).

$Pr[a < X \leq b] = F_X(b) - F_X(a)$
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

Cumulative Distribution Function (cdf).

$Pr[a < X \leq b] = F_X(b) - F_X(a)$

1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

Cumulative Distribution Function (cdf).

$Pr[a < X \leq b] = F_X(b) - F_X(a)$

1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.

1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.
 Cumulative Distribution Function (cdf).
 $Pr[a < X \leq b] = F_X(b) - F_X(a)$

 1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.
 1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^{x} f_X(y)dy$
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

 Cumulative Distribution Function (cdf).
 $Pr[a < X \leq b] = F_X(b) - F_X(a)$

 1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.
 1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^{x} f_X(y)dy$ or $f_X(x) = \frac{d(F_X(x))}{dx}$.
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

 Cumulative Distribution Function (cdf).

 $Pr[a < X \leq b] = F_X(b) - F_X(a)$

 1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.
 1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^{x} f_X(y)dy$ or $f_X(x) = \frac{d(F_X(x))}{dx}$.

 Probability Density Function (pdf).
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.
 Cumulative Distribution Function (cdf).
 $Pr[a < X \leq b] = F_X(b) - F_X(a)$

 1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.
 1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^{x} f_X(y)dy$ or $f_X(x) = \frac{d(F_X(x))}{dx}$.
 Probability Density Function (pdf).
 $Pr[a < X \leq b] = \int_{a}^{b} f_X(x)dx = F_X(b) - F_X(a)$
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

Cumulative Distribution Function (cdf).
$Pr[a < X \leq b] = F_X(b) - F_X(a)$

1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.
1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^{x} f_X(y) \, dy$ or $f_X(x) = \frac{d(F_X(x))}{dx}$.

Probability Density Function (pdf).
$Pr[a < X \leq b] = \int_{a}^{b} f_X(x) \, dx = F_X(b) - F_X(a)$

2.1 $f_X(x) \geq 0$ for all $x \in \mathbb{R}$.
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

Cumulative Distribution Function (cdf).

$Pr[a < X \leq b] = F_X(b) - F_X(a)$

1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.
1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^{x} f_X(y) dy$ or $f_X(x) = \frac{d(F_X(x))}{dx}$.

Probability Density Function (pdf).

$Pr[a < X \leq b] = \int_{a}^{b} f_X(x) dx = F_X(b) - F_X(a)$

2.1 $f_X(x) \geq 0$ for all $x \in \mathbb{R}$.
2.2 $\int_{-\infty}^{\infty} f_X(x) dx = 1$.

Recall that $Pr[X \in (x, x+\delta)] \approx f_X(x)\delta$.

Think of X taking discrete values $n\delta$ for $n = \ldots, -2, -1, 0, 1, 2, \ldots$ with $Pr[X = n\delta] = f_X(n\delta)\delta$.

Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

 Cumulative Distribution Function (cdf).

 $Pr[a < X \leq b] = F_X(b) - F_X(a)$

 1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.
 1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^{x} f_X(y)dy$ or $f_X(x) = \frac{d(F_X(x))}{dx}$.

 Probability Density Function (pdf).

 $Pr[a < X \leq b] = \int_{a}^{b} f_X(x)dx = F_X(b) - F_X(a)$

 2.1 $f_X(x) \geq 0$ for all $x \in \mathbb{R}$.
 2.2 $\int_{-\infty}^{\infty} f_X(x)dx = 1$.

Recall that $Pr[X \in (x, x + \delta)] \approx f_X(x)\delta$.
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.
 Cumulative Distribution Function (cdf).
 $Pr[a < X \leq b] = F_X(b) - F_X(a)$

 1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.
 1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^{x} f_X(y)dy$ or $f_X(x) = \frac{d(F_X(x))}{dx}$.
 Probability Density Function (pdf).
 $Pr[a < X \leq b] = \int_{a}^{b} f_X(x)dx = F_X(b) - F_X(a)$

 2.1 $f_X(x) \geq 0$ for all $x \in \mathbb{R}$.
 2.2 $\int_{-\infty}^{\infty} f_X(x)dx = 1$.

Recall that $Pr[X \in (x, x + \delta)] \approx f_X(x)\delta$. Think of X taking discrete values $n\delta$ for $n = \ldots, -2, -1, 0, 1, 2, \ldots$ with $Pr[X = n\delta] = f_X(n\delta)\delta$.
A Picture

The pdf $f_X(x)$ is a nonnegative function that integrates to 1.

The cdf $F_X(x)$ is the integral of $f_X(x)$.

$Pr[x < X < x + \delta] \approx f_X(x)\delta$

$Pr[X \leq x] = F_X(x) = \int_{-\infty}^{x} f_X(y) dy$
The pdf $f_X(x)$ is a nonnegative function that integrates to 1.
The pdf $f_X(x)$ is a nonnegative function that integrates to 1.
The cdf $F_X(x)$ is the integral of f_X.

\[Pr[x < X < x + \delta] \approx f_X(x)\delta \]
\[Pr[X \leq x] = F_X(x) = \int_{-\infty}^{x} f_X(y) \, dy \]
The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of f_X.

\[Pr[x < X < x + \delta] \approx f_X(x) \delta \]
The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of f_X.

\[
Pr[x < X < x + \delta] \approx f_X(x)\delta
\]

\[
Pr[X \leq x] = F_X(x) = \int_{-\infty}^{x} f_X(y)\,dy
\]
Example: $U[a, b]$
The exponential distribution with parameter $\lambda > 0$ is defined by
$\text{Expo}(\lambda)$

The exponential distribution with parameter $\lambda > 0$ is defined by

$$f_X(x) = \lambda e^{-\lambda x} 1\{x \geq 0\}$$
The exponential distribution with parameter $\lambda > 0$ is defined by

$$f_X(x) = \lambda e^{-\lambda x} 1\{x \geq 0\}$$

$$F_X(x) = \begin{cases}
0, & \text{if } x < 0 \\
1 - e^{-\lambda x}, & \text{if } x \geq 0.
\end{cases}$$
Shooting in a circle

Random Variable

Event $\{Y \leq y\}$

Outcome

$Y(\omega)$

ω

1

2

$f_Y(y)$

$F_Y(y)$

y^2

1

$2y$

1
Expectation

Definition The *expectation* of a random variable X with pdf $f(x)$ is defined as
Expectation

Definition The expectation of a random variable X with pdf $f(x)$ is defined as

$$E[X] = \int_{-\infty}^{\infty} xf_X(x) \, dx.$$
Definition The expectation of a random variable X with pdf $f(x)$ is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$.

Note: The integral notation in the definition of expectation is correct and standard in probability theory.
Expectation

Definition The expectation of a random variable X with pdf $f(x)$ is defined as

$$E[X] = \int_{-\infty}^{\infty} xf_X(x) \, dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta]$$
Expectation

Definition The expectation of a random variable X with pdf $f(x)$ is defined as

$$E[X] = \int_{-\infty}^{\infty} xf_X(x) \, dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$. Then,

$$E[X] = \sum_n (n\delta)Pr[X = n\delta] = \sum_n (n\delta)f_X(n\delta)\delta$$
Expectation

Definition The expectation of a random variable X with pdf $f(x)$ is defined as

$$E[X] = \int_{-\infty}^{\infty} xf_X(x)dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$. Then,

$$E[X] = \sum_n (n\delta)Pr[X = n\delta] = \sum_n (n\delta)f_X(n\delta)\delta = \int_{-\infty}^{\infty} xf_X(x)dx.$$
Definition The expectation of a random variable X with pdf $f(x)$ is defined as

$$E[X] = \int_{\infty}^{\infty} xf_X(x)dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$. Then,

$$E[X] = \sum_{n} (n\delta)Pr[X = n\delta] = \sum_{n} (n\delta)f_X(n\delta)\delta = \int_{\infty}^{\infty} xf_X(x)dx.$$

Indeed, $\int g(x)dx \approx \sum_{n} g(n\delta)\delta$ with $g(x) = xf_X(x)$.
Expectation

Definition The expectation of a random variable X with pdf $f(x)$ is defined as

$$E[X] = \int_{-\infty}^{\infty} xf_X(x)dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$. Then,

$$E[X] = \sum_n (n\delta)Pr[X = n\delta] = \sum_n (n\delta)f_X(n\delta)\delta = \int_{-\infty}^{\infty} xf_X(x)dx.$$

Indeed, $\int g(x)dx \approx \sum_n g(n\delta)\delta$ with $g(x) = xf_X(x)$.

![Diagram showing the relationship between $g(x)$ and the expectation of X](image)
Definition The expectation of a function of a random variable is defined as

$$E[h(X)] = \int_{-\infty}^{\infty} h(x)f_X(x) \, dx.$$
Definition The expectation of a function of a random variable is defined as

\[E[h(X)] = \int_{-\infty}^{\infty} h(x)f_X(x)dx. \]
Definition The expectation of a function of a random variable is defined as

\[E[h(X)] = \int_{-\infty}^{\infty} h(x)f_X(x)dx. \]

Justification: Say \(X = n\delta \) w.p. \(f_X(n\delta)\delta \).
Definition The expectation of a function of a random variable is defined as

\[E[h(X)] = \int_{-\infty}^{\infty} h(x)f_X(x)dx. \]

Justification: Say \(X = n\delta \) w.p. \(f_X(n\delta)\delta \). Then,

\[E[h(X)] = \sum_n h(n\delta)Pr[X = n\delta] \]
Definition The expectation of a function of a random variable is defined as

\[
E[h(X)] = \int_{-\infty}^{\infty} h(x)f_X(x)dx.
\]

Justification: Say \(X = n\delta \) w.p. \(f_X(n\delta)\delta \). Then,

\[
E[h(X)] = \sum_n h(n\delta)Pr[X = n\delta] = \sum_n h(n\delta)f_X(n\delta)\delta
\]
Definition The expectation of a function of a random variable is defined as

\[
E[h(X)] = \int_{-\infty}^{\infty} h(x)f_X(x)\,dx.
\]

Justification: Say \(X = n\delta\) w.p. \(f_X(n\delta)\delta\). Then,

\[
E[h(X)] = \sum_n h(n\delta)\Pr[X = n\delta] = \sum_n h(n\delta)f_X(n\delta)\delta = \int_{-\infty}^{\infty} h(x)f_X(x)\,dx.
\]

Indeed, \(\int g(x)\,dx \approx \sum_n g(n\delta)\delta\) with \(g(x) = h(x)f_X(x)\).
Definition The expectation of a function of a random variable is defined as

\[E[h(X)] = \int_{-\infty}^{\infty} h(x)f_X(x)dx. \]

Justification: Say \(X = n\delta \) w.p. \(f_X(n\delta)\delta \). Then,

\[E[h(X)] = \sum_n h(n\delta)Pr[X = n\delta] = \sum_n h(n\delta)f_X(n\delta)\delta = \int_{-\infty}^{\infty} h(x)f_X(x)dx. \]

Indeed, \(\int g(x)dx \approx \sum_n g(n\delta)\delta \) with \(g(x) = h(x)f_X(x) \).

Fact Expectation is linear.
Variance

Definition: The **variance** of a continuous random variable X is defined as

\[
\text{var}[X] = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2.
\]
Variance

Definition: The variance of a continuous random variable X is defined as

\[\text{var}[X] = E((X - E(X))^2) \]
Definition: The variance of a continuous random variable X is defined as

$$\text{var}[X] = E((X - E(X))^2) = E(X^2) - (E(X))^2$$
Definition: The variance of a continuous random variable X is defined as

$$\text{var}[X] = E((X - E(X))^2) = E(X^2) - (E(X))^2$$

$$= \int_{-\infty}^{\infty} x^2 f(x) \, dx - \left(\int_{-\infty}^{\infty} x f(x) \, dx \right)^2.$$
Motivation for Gaussian Distribution

Key fact:
Motivation for Gaussian Distribution

Key fact: The sum of many small independent RVs has a Gaussian distribution.
Motivation for Gaussian Distribution

Key fact: The sum of many small independent RVs has a Gaussian distribution.

This is the Central Limit Theorem.
Motivation for Gaussian Distribution

Key fact: The sum of many small independent RVs has a Gaussian distribution.

This is the Central Limit Theorem. (See later.)
Motivation for Gaussian Distribution

Key fact: The sum of many small independent RVs has a Gaussian distribution.

This is the Central Limit Theorem. (See later.)

Examples: Binomial and Poisson suitably scaled.
Motivation for Gaussian Distribution

Key fact: The sum of many small independent RVs has a Gaussian distribution.

This is the Central Limit Theorem. (See later.)

Examples: Binomial and Poisson suitably scaled.

This explains why the Gaussian distribution
Motivation for Gaussian Distribution

Key fact: The sum of many small independent RVs has a Gaussian distribution.

This is the Central Limit Theorem. (See later.)

Examples: Binomial and Poisson suitably scaled.

This explains why the Gaussian distribution (the bell curve)
Motivation for Gaussian Distribution

Key fact: The sum of many small independent RVs has a Gaussian distribution.

This is the Central Limit Theorem. (See later.)

Examples: Binomial and Poisson suitably scaled.

This explains why the Gaussian distribution (the bell curve) shows up everywhere.
Normal Distribution.

For any μ and σ, a normal (aka Gaussian)
Normal Distribution.

For any μ and σ, a normal (aka Gaussian) random variable Y, which we write as $Y = \mathcal{N}(\mu, \sigma^2)$, has pdf
Normal Distribution.

For any μ and σ, a **normal** (aka **Gaussian**) random variable Y, which we write as $Y = \mathcal{N}(\mu, \sigma^2)$, has pdf

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}.$$

Standard normal has $\mu = 0$ and $\sigma = 1$.

Note: $\Pr[|Y - \mu| > 1\sigma] = 10\%$; $\Pr[|Y - \mu| > 2\sigma] = 5\%$.
Normal Distribution.

For any \(\mu \) and \(\sigma \), a **normal** (aka **Gaussian**) random variable \(Y \), which we write as \(Y = \mathcal{N}(\mu, \sigma^2) \), has pdf

\[
f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}.
\]

Standard normal has \(\mu = 0 \) and \(\sigma = 1 \).
Normal Distribution.

For any μ and σ, a normal (aka Gaussian) random variable Y, which we write as $Y = \mathcal{N}(\mu, \sigma^2)$, has pdf

$$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma^2}e^{-\frac{(y-\mu)^2}{2\sigma^2}}.$$

Standard normal has $\mu = 0$ and $\sigma = 1$.

![Graph of normal distribution](image)
Normal Distribution.

For any μ and σ, a normal (aka Gaussian) random variable Y, which we write as $Y = \mathcal{N}(\mu, \sigma^2)$, has pdf

$$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma^2} e^{-(y-\mu)^2/2\sigma^2}.$$

Standard normal has $\mu = 0$ and $\sigma = 1$.

Note: $Pr[|Y - \mu| > 1.65\sigma] = 10\%$;
Normal Distribution.

For any μ and σ, a normal (aka Gaussian) random variable Y, which we write as $Y = \mathcal{N}(\mu, \sigma^2)$, has pdf

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}.$$

Standard normal has $\mu = 0$ and $\sigma = 1$.

Note: $Pr[|Y - \mu| > 1.65\sigma] = 10\%$; $Pr[|Y - \mu| > 2\sigma] = 5\%$.
Theorem Let $X \sim \mathcal{N}(0, 1)$ and $Y = \mu + \sigma X$. Then

$$Y \sim \mathcal{N}(\mu, \sigma^2).$$
Scaling and Shifting

Theorem Let $X \sim \mathcal{N}(0, 1)$ and $Y = \mu + \sigma X$. Then

$$Y \sim \mathcal{N}(\mu, \sigma^2).$$

Proof: $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{x^2}{2}\}$.
Scaling and Shifting

Theorem Let $X = \mathcal{N}(0, 1)$ and $Y = \mu + \sigma X$. Then

$$Y = \mathcal{N}(\mu, \sigma^2).$$

Proof: $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}$. Now,
Scaling and Shifting

Theorem Let $X = \mathcal{N}(0, 1)$ and $Y = \mu + \sigma X$. Then

$$Y = \mathcal{N}(\mu, \sigma^2).$$

Proof: $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}$. Now,

$$f_Y(y)dy = Pr[Y \in [y, y + dy]] =$$
Theorem Let $X = \mathcal{N}(0, 1)$ and $Y = \mu + \sigma X$. Then

$$Y = \mathcal{N}(\mu, \sigma^2).$$

Proof: $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{x^2}{2}\}$. Now,

$$f_Y(y)dy = Pr[Y \in [y, y + dy]] = Pr[\mu + \sigma X \in [y, y + dy]]$$
Scaling and Shifting

Theorem Let $X = \mathcal{N}(0, 1)$ and $Y = \mu + \sigma X$. Then

$$Y = \mathcal{N}(\mu, \sigma^2).$$

Proof: $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{x^2}{2}\}$. Now,

$$f_Y(y)dy = Pr[Y \in [y, y + dy]] = Pr[\mu + \sigma X \in [y, y + dy]]$$

$$= Pr[\sigma X \in [y - \mu, y - \mu + dy]]$$
Scaling and Shifting

Theorem Let $X = \mathcal{N}(0, 1)$ and $Y = \mu + \sigma X$. Then

$$Y = \mathcal{N}(\mu, \sigma^2).$$

Proof: $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}$. Now,

$$f_Y(y)dy = Pr[Y \in [y, y + dy]] = Pr[\mu + \sigma X \in [y, y + dy]]$$
$$= Pr[\sigma X \in [y - \mu, y - \mu + dy]]$$
$$= Pr[X \in \left[\frac{y - \mu}{\sigma}, \frac{y - \mu}{\sigma} + \frac{dy}{\sigma}\right]]$$
Scaling and Shifting

Theorem Let \(X = \mathcal{N}(0, 1) \) and \(Y = \mu + \sigma X \). Then

\[
Y = \mathcal{N}(\mu, \sigma^2).
\]

Proof: \(f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\} \). Now,

\[
f_Y(y)dy = Pr[Y \in [y, y + dy]] = Pr[\mu + \sigma X \in [y, y + dy]]
\]

\[
= Pr[\sigma X \in [y - \mu, y - \mu + dy]]
\]

\[
= Pr[X \in \left[\frac{y - \mu}{\sigma}, \frac{y - \mu}{\sigma} + \frac{dy}{\sigma}\right]]
\]

\[
= f_X\left(\frac{y - \mu}{\sigma}\right) \frac{dy}{\sigma}
\]
Theorem Let $X = \mathcal{N}(0, 1)$ and $Y = \mu + \sigma X$. Then

$$Y = \mathcal{N}(\mu, \sigma^2).$$

Proof: $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{x^2}{2}\}$. Now,

$$f_Y(y)dy = Pr[Y \in [y, y + dy]] = Pr[\mu + \sigma X \in [y, y + dy]]$$

$$= Pr[\sigma X \in [y - \mu, y - \mu + dy]]$$

$$= Pr[X \in \left[\frac{y - \mu}{\sigma}, \frac{y - \mu}{\sigma} + \frac{dy}{\sigma}\right]]$$

$$= f_x\left(\frac{y - \mu}{\sigma}\right) \frac{dy}{\sigma} = \frac{1}{\sigma} f_X\left(\frac{y - \mu}{\sigma}\right)dy$$
Theorem Let $X = \mathcal{N}(0, 1)$ and $Y = \mu + \sigma X$. Then

$$Y = \mathcal{N}(\mu, \sigma^2).$$

Proof: $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}$. Now,

$$f_Y(y)dy = Pr[Y \in [y, y + dy]] = Pr[\mu + \sigma X \in [y, y + dy]] = Pr[\sigma X \in [y - \mu, y - \mu + dy]] = Pr[X \in \left[\frac{y - \mu}{\sigma}, \frac{y - \mu}{\sigma} + \frac{dy}{\sigma}\right]] = f_X\left(\frac{y - \mu}{\sigma}\right)\frac{dy}{\sigma} = \frac{1}{\sigma} f_X\left(\frac{y - \mu}{\sigma}\right)dy = \frac{1}{\sqrt{2\pi}\sigma^2} \exp\left\{-\frac{(y - \mu)^2}{2\sigma^2}\right\}dy. \quad \square$$
Expectation, Variance.

Theorem If $Y = \mathcal{N}(\mu, \sigma^2)$, then

$$E[Y] = \mu$$
Theorem If $Y \sim \mathcal{N}(\mu, \sigma^2)$, then

$$E[Y] = \mu \text{ and } \text{var}[Y] = \sigma^2.$$
Expectation, Variance.

Theorem If $Y = \mathcal{N}(\mu, \sigma^2)$, then

$$E[Y] = \mu \text{ and } \text{var}[Y] = \sigma^2.$$

Proof: It suffices to show the result for $X = \mathcal{N}(0, 1)$ since $Y = \mu + \sigma X$.
Expectation, Variance.

Theorem If \(Y = \mathcal{N}(\mu, \sigma^2) \), then

\[
E[Y] = \mu \text{ and } var[Y] = \sigma^2.
\]

Proof: It suffices to show the result for \(X = \mathcal{N}(0, 1) \) since \(Y = \mu + \sigma X, \ldots \).

Thus, \(f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{x^2}{2}\} \).

First note that \(E[X] = 0 \), by symmetry.

\[
var[X] = E[X^2] = \int x^2 \frac{1}{\sqrt{2\pi}} \exp\{-\frac{x^2}{2}\} \, dx = -\frac{1}{\sqrt{2\pi}} \int x \exp\{-\frac{x^2}{2}\} \, dx = \frac{1}{\sqrt{2\pi}} \int \exp\{-\frac{x^2}{2}\} \, dx \text{ by IBP}
\]

Thus, \(f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{x^2}{2}\} \).
Expectation, Variance.

Theorem If $Y = \mathcal{N}(\mu, \sigma^2)$, then

$$E[Y] = \mu \text{ and } \text{var}[Y] = \sigma^2.$$

Proof: It suffices to show the result for $X = \mathcal{N}(0, 1)$ since $Y = \mu + \sigma X, \ldots$

Thus, $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{x^2}{2}\}$.

First note that $E[X] = 0$, by symmetry.
Theorem If $Y \sim \mathcal{N}(\mu, \sigma^2)$, then

$$E[Y] = \mu \text{ and } var[Y] = \sigma^2.$$

Proof: It suffices to show the result for $X \sim \mathcal{N}(0, 1)$ since $Y = \mu + \sigma X$.

Thus, $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}$.

First note that $E[X] = 0$, by symmetry.

$$var[X] = E[X^2]$$
Expectation, Variance.

Theorem If $Y = \mathcal{N}(\mu, \sigma^2)$, then

$$E[Y] = \mu \text{ and } \text{var}[Y] = \sigma^2.$$

Proof: It suffices to show the result for $X = \mathcal{N}(0, 1)$ since $Y = \mu + \sigma X, \ldots$.

Thus, $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{- \frac{x^2}{2}\right\}$.

First note that $E[X] = 0$, by symmetry.

$$\text{var}[X] = E[X^2] = \int x^2 \frac{1}{\sqrt{2\pi}} \exp\left\{- \frac{x^2}{2}\right\} dx$$
Expectation, Variance.

Theorem If \(Y = \mathcal{N}(\mu, \sigma^2) \), then

\[
E[Y] = \mu \text{ and } \text{var}[Y] = \sigma^2.
\]

Proof: It suffices to show the result for \(X = \mathcal{N}(0, 1) \) since \(Y = \mu + \sigma X \), ...

Thus, \(f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\} \).

First note that \(E[X] = 0 \), by symmetry.

\[
\text{var}[X] = E[X^2] = \int x^2 \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\} dx
\]

\[
= -\frac{1}{\sqrt{2\pi}} \int x d\exp\left\{-\frac{x^2}{2}\right\}
\]
Expectation, Variance.

Theorem If \(Y = \mathcal{N}(\mu, \sigma^2) \), then

\[
E[Y] = \mu \text{ and } \text{var}[Y] = \sigma^2.
\]

Proof: It suffices to show the result for \(X = \mathcal{N}(0, 1) \) since \(Y = \mu + \sigma X, \ldots \)

Thus, \(f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{ -\frac{x^2}{2} \right\} \).

First note that \(E[X] = 0 \), by symmetry.

\[
\text{var}[X] = E[X^2] = \int x^2 \frac{1}{\sqrt{2\pi}} \exp\left\{ -\frac{x^2}{2} \right\} dx
\]

\[
= -\frac{1}{\sqrt{2\pi}} \int xd\exp\{-\frac{x^2}{2}\} = \frac{1}{\sqrt{2\pi}} \int \exp\{-\frac{x^2}{2}\} dx \quad \text{by IBP}
\]
Theorem If $Y = \mathcal{N}(\mu, \sigma^2)$, then

$$E[Y] = \mu \text{ and } var[Y] = \sigma^2.$$

Proof: It suffices to show the result for $X = \mathcal{N}(0, 1)$ since $Y = \mu + \sigma X, \ldots.$

Thus, $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}.$

First note that $E[X] = 0$, by symmetry.

$$var[X] = E[X^2] = \int x^2 \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\} dx$$

$$= -\frac{1}{\sqrt{2\pi}} \int xd\exp\left\{-\frac{x^2}{2}\right\} = \frac{1}{\sqrt{2\pi}} \int \exp\left\{-\frac{x^2}{2}\right\} d\text{ by IBP}$$

$$= \int f_X(x) dx$$
Expectation, Variance.

Theorem If \(Y = \mathcal{N}(\mu, \sigma^2) \), then

\[
E[Y] = \mu \quad \text{and} \quad \text{var}[Y] = \sigma^2.
\]

Proof: It suffices to show the result for \(X = \mathcal{N}(0, 1) \) since

\(Y = \mu + \sigma X, \ldots \)

Thus, \(f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\} \).

First note that \(E[X] = 0 \), by symmetry.

\[
\begin{align*}
\text{var}[X] &= E[X^2] = \int x^2 \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\} \, dx \\
&= -\frac{1}{\sqrt{2\pi}} \int xd\exp\left\{-\frac{x^2}{2}\right\} = \frac{1}{\sqrt{2\pi}} \int \exp\left\{-\frac{x^2}{2}\right\} \, dx \quad \text{by IBP} \\
&= \int f_X(x) \, dx = 1. \quad \square
\end{align*}
\]
Central limit theorem.

Law of Large Numbers: For any set of independent identically distributed random variables, X_i, $A_n = \frac{1}{n} \sum X_i$ “tends to the mean.”
Central limit theorem.

Law of Large Numbers: For any set of independent identically distributed random variables, X_i, $A_n = \frac{1}{n} \sum X_i$ “tends to the mean.”

Say X_i have expectation $\mu = E(X_i)$ and variance σ^2.
Central limit theorem.

Law of Large Numbers: For any set of independent identically distributed random variables, X_i, $A_n = \frac{1}{n} \sum X_i$ “tends to the mean.”

Say X_i have expectation $\mu = E(X_i)$ and variance σ^2.

Mean of A_n is μ, and variance is $\frac{\sigma^2}{n}$.

Let $A_n' = A_n - \mu \frac{\sigma}{\sqrt{n}}$.

$E(A_n') = 0$.

$\text{Var}(A_n') = \frac{\sigma^2}{n}$.

Central limit theorem: As n goes to infinity the distribution of A_n' approaches the standard normal distribution.

$$\Pr[A_n' \leq \alpha] \rightarrow 1 \sqrt{2\pi} \int_{\alpha}^{\infty} e^{-x^2/2} dx.$$
Central limit theorem.

Law of Large Numbers: For any set of independent identically distributed random variables, X_i, $A_n = \frac{1}{n} \sum X_i$ “tends to the mean.”

Say X_i have expectation $\mu = E(X_i)$ and variance σ^2.

Mean of A_n is μ, and variance is $\frac{\sigma^2}{n}$.

Let $A'_n = \frac{A_n - \mu}{\sigma/\sqrt{n}}$.
Central limit theorem.

Law of Large Numbers: For any set of independent identically distributed random variables, \(X_i \), \(A_n = \frac{1}{n} \sum X_i \) “tends to the mean.”

Say \(X_i \) have expectation \(\mu = E(X_i) \) and variance \(\sigma^2 \).

Mean of \(A_n \) is \(\mu \), and variance is \(\frac{\sigma^2}{n} \).

Let \(A'_n = \frac{A_n - \mu}{\sigma/\sqrt{n}} \).

\[E(A'_n) \]
Law of Large Numbers: For any set of independent identically distributed random variables, X_i, $A_n = \frac{1}{n} \sum X_i$ “tends to the mean.”

Say X_i have expectation $\mu = E(X_i)$ and variance σ^2.

Mean of A_n is μ, and variance is $\frac{\sigma^2}{n}$.

Let $A'_n = \frac{A_n - \mu}{\sigma/\sqrt{n}}$.

$E(A'_n) = \frac{1}{\sigma/\sqrt{n}} (E(A_n) - \mu)$
Central limit theorem.

Law of Large Numbers: For any set of independent identically distributed random variables, X_i, $A_n = \frac{1}{n} \sum X_i$ “tends to the mean.”

Say X_i have expectation $\mu = E(X_i)$ and variance σ^2.

Mean of A_n is μ, and variance is $\frac{\sigma^2}{n}$.

Let $A'_n = \frac{A_n - \mu}{\sigma/\sqrt{n}}$.

$E(A'_n) = \frac{1}{\sigma/\sqrt{n}} (E(A_n) - \mu) = 0$.
Central limit theorem.

Law of Large Numbers: For any set of independent identically distributed random variables, \(X_i, A_n = \frac{1}{n} \sum X_i \) “tends to the mean.”

Say \(X_i \) have expectation \(\mu = E(X_i) \) and variance \(\sigma^2 \).

Mean of \(A_n \) is \(\mu \), and variance is \(\frac{\sigma^2}{n} \).

Let \(A'_n = \frac{A_n - \mu}{\sigma/\sqrt{n}} \).

\[
E(A'_n) = \frac{1}{\sigma/\sqrt{n}}(E(A_n) - \mu) = 0.
\]

\[
Var(A'_n)
\]
Central limit theorem.

Law of Large Numbers: For any set of independent identically distributed random variables, \(X_i, A_n = \frac{1}{n} \sum X_i\) “tends to the mean.”

Say \(X_i\) have expectation \(\mu = E(X_i)\) and variance \(\sigma^2\).

Mean of \(A_n\) is \(\mu\), and variance is \(\frac{\sigma^2}{n}\).

Let \(A'_n = \frac{A_n - \mu}{\sigma/\sqrt{n}}\).

\[
E(A'_n) = \frac{1}{\sigma/\sqrt{n}}(E(A_n) - \mu) = 0.
\]

\[
Var(A'_n) = \frac{1}{\sigma^2/n} Var(A_n)
\]
Central limit theorem.

Law of Large Numbers: For any set of independent identically distributed random variables, $X_i, A_n = \frac{1}{n} \sum X_i$ “tends to the mean.”

Say X_i have expectation $\mu = E(X_i)$ and variance σ^2.

Mean of A_n is μ, and variance is $\frac{\sigma^2}{n}$.

Let $A'_n = \frac{A_n - \mu}{\sigma/\sqrt{n}}$.

$$E(A'_n) = \frac{1}{\sigma/\sqrt{n}} (E(A_n) - \mu) = 0.$$
$$Var(A'_n) = \frac{1}{\sigma^2/n} Var(A_n) = 1.$$
Central limit theorem.

Law of Large Numbers: For any set of independent identically distributed random variables, $X_i, A_n = \frac{1}{n} \sum X_i$ “tends to the mean.”

Say X_i have expectation $\mu = E(X_i)$ and variance σ^2.

Mean of A_n is μ, and variance is $\frac{\sigma^2}{n}$.

Let $A'_n = \frac{A_n - \mu}{\sigma/\sqrt{n}}$.

$E(A'_n) = \frac{1}{\sigma/\sqrt{n}} (E(A_n) - \mu) = 0$.

$Var(A'_n) = \frac{1}{\sigma^2/n} Var(A_n) = 1$.

Central limit theorem: As n goes to infinity the distribution of A'_n approaches the standard normal distribution.

$$Pr[A'_n \leq \alpha] \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha} e^{-x^2/2} dx.$$
Coins and normal..

Let X_1, X_2, \ldots be i.i.d. $B(p)$.
Coins and normal..
Let X_1, X_2, \ldots be i.i.d. $B(p)$. Thus, $X_1 + \cdots + X_n = B(n, p)$.
Coins and normal..

Let X_1, X_2, \ldots be i.i.d. $B(p)$. Thus, $X_1 + \cdots + X_n = B(n, p)$.

CLT states that

$$\frac{X_1 + \cdots + X_n - np}{\sqrt{p(1-p)n}} \to \mathcal{N}(0,1).$$
Coins and normal...

Let X_1, X_2, \ldots be i.i.d. $B(p)$. Thus, $X_1 + \cdots + X_n = B(n, p)$.

CLT states that

$$\frac{X_1 + \cdots + X_n - np}{\sqrt{p(1-p)n}} \to \mathcal{N}(0,1).$$
Coins and normal...

Let X_1, X_2, \ldots be i.i.d. $B(p)$. Thus, $X_1 + \cdots + X_n = B(n, p)$.

CLT states that

$$\frac{X_1 + \cdots + X_n - np}{\sqrt{p(1-p)n}} \to \mathcal{N}(0,1).$$
Coins and normal..

Let X_1, X_2, \ldots be i.i.d. $B(p)$.
Coins and normal..

Let X_1, X_2, \ldots be i.i.d. $B(p)$. Thus, $X_1 + \cdots + X_n = B(n, p)$.

CLT states that $X_1 + \cdots + X_n - np \sqrt{p(1-p)} n \to N(0,1)$.

Thus, $\Pr\left[\left| X_1 + \cdots + X_n - np \sqrt{p(1-p)} n \right| \geq 2 \right] \approx 5\%$.

Hence, $\Pr\left[\left| X_1 + \cdots + X_n - np \left(\frac{1}{2} \right) \sqrt{n} \right| \geq 2 \right] \leq 5\%$.

This implies that $\Pr\left[p \in \left[X_1 + \cdots + X_n - 1 \sqrt{n}, X_1 + \cdots + X_n + 1 \sqrt{n} \right] \right] \geq 95\%$.

Coins and normal..

Let X_1, X_2, \ldots be i.i.d. $B(p)$. Thus, $X_1 + \cdots + X_n = B(n, p)$.

CLT states that

$$
\frac{X_1 + \cdots + X_n - np}{\sqrt{p(1 - p)n}} \to \mathcal{N}(0, 1).
$$
Let \(X_1, X_2, \ldots \) be i.i.d. \(B(p) \). Thus, \(X_1 + \cdots + X_n = B(n, p) \).

CLT states that

\[
\frac{X_1 + \cdots + X_n - np}{\sqrt{p(1-p)n}} \to \mathcal{N}(0,1).
\]

Thus,

\[
\Pr\left[\left| \frac{X_1 + \cdots + X_n - np}{\sqrt{p(1-p)n}} \right| \geq 2 \right] \approx 5\%.
\]
Let X_1, X_2, \ldots be i.i.d. $B(p)$. Thus, $X_1 + \cdots + X_n = B(n, p)$.

CLT states that

$$\frac{X_1 + \cdots + X_n - np}{\sqrt{p(1-p)n}} \to \mathcal{N}(0, 1).$$

Thus,

$$Pr[|\frac{X_1 + \cdots + X_n - np}{\sqrt{p(1-p)n}}| \geq 2] \approx 5\%.$$

Hence,

$$Pr[|\frac{X_1 + \cdots + X_n - np}{(1/2)\sqrt{n}}| \geq 2] \leq 5\%.$$
Coins and normal..

Let X_1, X_2, \ldots be i.i.d. $B(p)$. Thus, $X_1 + \cdots + X_n = B(n, p)$.

CLT states that

$$\frac{X_1 + \cdots + X_n - np}{\sqrt{p(1-p)n}} \to \mathcal{N}(0,1).$$

Thus,

$$Pr\left[\frac{X_1 + \cdots + X_n - np}{\sqrt{p(1-p)n}} \geq 2\right] \approx 5\%.$$

Hence,

$$Pr\left[\frac{X_1 + \cdots + X_n - np}{(1/2)\sqrt{n}} \geq 2\right] \leq 5\%.$$

This implies that

$$Pr[p \in \left(\frac{X_1 + \cdots + X_n}{n} - \frac{1}{\sqrt{n}}, \frac{X_1 + \cdots + X_n}{n} + \frac{1}{\sqrt{n}}\right)] \geq 95\%.$$.
Let X_1, X_2, \ldots be i.i.d. $B(p)$.
Let X_1, X_2, \ldots be i.i.d. $B(p)$. We just saw that

$$Pr[p \in \left[\frac{X_1 + \cdots + X_n}{n} - \frac{1}{\sqrt{n}}, \frac{X_1 + \cdots + X_n}{n} + \frac{1}{\sqrt{n}} \right] \geq 95\%].$$
Let X_1, X_2, \ldots be i.i.d. $B(p)$. We just saw that

$$\Pr[p \in \left[\frac{X_1 + \cdots + X_n}{n} - \frac{1}{\sqrt{n}}, \frac{X_1 + \cdots + X_n}{n} + \frac{1}{\sqrt{n}} \right] \geq 95\%].$$

Hence,

$$\left[\frac{X_1 + \cdots + X_n}{n} - \frac{1}{\sqrt{n}}, \frac{X_1 + \cdots + X_n}{n} + \frac{1}{\sqrt{n}} \right] \text{ is a 95\% - CI for } p.$$
CI for Mean

Let X_1, X_2, \ldots be i.i.d. with mean μ and variance σ^2.

Recall that $E[A_n] = \mu$ and $\text{var}[A_n] = \sigma^2/n$.

The CLT states that $A_n - \mu \sigma / \sqrt{n} \rightarrow N(0,1)$ as $n \rightarrow \infty$.

Thus, for $n \gg 1$, one has $\Pr[-2 \leq |A_n - \mu \sigma / \sqrt{n}| \leq 2] \approx 95\%$.

Equivalently, $\Pr[\mu \in [A_n - 2\sigma \sqrt{n}, A_n + 2\sigma \sqrt{n}]] \approx 95\%$.

That is, $[A_n - 2\sigma \sqrt{n}, A_n + 2\sigma \sqrt{n}]$ is a 95\% CI for μ.
CI for Mean

Let X_1, X_2, \ldots be i.i.d. with mean μ and variance σ^2. Let

$$A_n = \frac{X_1 + \cdots + X_n}{n}.$$

Recall that $E[A_n] = \mu$ and $\text{var}[A_n] = \frac{\sigma^2}{n}$.

Thus, for $n \gg 1$, one has

$$\Pr[-2 \leq |A_n - \mu| \leq 2] \approx 95\%.$$

Equivalently,

$$\Pr[\mu \in [A_n - 2\sigma \sqrt{n}, A_n + 2\sigma \sqrt{n}]] \approx 95\%.$$

That is, $[A_n - 2\sigma \sqrt{n}, A_n + 2\sigma \sqrt{n}]$ is a 95\% CI for μ.

CI for Mean

Let X_1, X_2, \ldots be i.i.d. with mean μ and variance σ^2. Let

$$A_n = \frac{X_1 + \cdots + X_n}{n}.$$

Recall that $E[A_n] = \mu$ and $\text{var}[A_n] = \frac{\sigma^2}{n}$. The CLT states that

$$\frac{A_n - \mu}{\sigma/\sqrt{n}} \to \mathcal{N}(0, 1) \text{ as } n \to \infty.$$
CI for Mean

Let X_1, X_2, \ldots be i.i.d. with mean μ and variance σ^2. Let

$$A_n = \frac{X_1 + \cdots + X_n}{n}.$$

Recall that $E[A_n] = \mu$ and $\text{var}[A_n] = \frac{\sigma^2}{n}$. The CLT states that

$$\frac{A_n - \mu}{\sigma/\sqrt{n}} \to \mathcal{N}(0, 1) \text{ as } n \to \infty.$$

Thus, for $n \gg 1$, one has

$$\Pr[-2 \leq \left| \frac{A_n - \mu}{\sigma/\sqrt{n}} \right| \leq 2] \approx 95\%.$$
Cl for Mean

Let X_1, X_2, \ldots be i.i.d. with mean μ and variance σ^2. Let

$$A_n = \frac{X_1 + \cdots + X_n}{n}.$$

Recall that $E[A_n] = \mu$ and $\text{var}[A_n] = \frac{\sigma^2}{n}$. The CLT states that

$$\frac{A_n - \mu}{\sigma/\sqrt{n}} \rightarrow \mathcal{N}(0, 1) \text{ as } n \rightarrow \infty.$$

Thus, for $n \gg 1$, one has

$$\text{Pr}[-2 \leq \left| \frac{A_n - \mu}{\sigma/\sqrt{n}} \right| \leq 2] \approx 95\%.$$

Equivalently,

$$\text{Pr}[\mu \in [A_n - 2\frac{\sigma}{\sqrt{n}}, A_n + 2\frac{\sigma}{\sqrt{n}}]] \approx 95\%.$$
CI for Mean

Let X_1, X_2, \ldots be i.i.d. with mean μ and variance σ^2. Let

$$A_n = \frac{X_1 + \cdots + X_n}{n}.$$

Recall that $E[A_n] = \mu$ and $\text{var}[A_n] = \frac{\sigma^2}{n}$. The CLT states that

$$\frac{A_n - \mu}{\sigma/\sqrt{n}} \rightarrow \mathcal{N}(0, 1) \text{ as } n \rightarrow \infty.$$

Thus, for $n \gg 1$, one has

$$Pr[-2 \leq |\frac{A_n - \mu}{\sigma/\sqrt{n}}| \leq 2] \approx 95\%.$$

Equivalently,

$$Pr[\mu \in [A_n - 2 \frac{\sigma}{\sqrt{n}}, A_n + 2 \frac{\sigma}{\sqrt{n}}]] \approx 95\%.$$

That is,

$$[A_n - 2 \frac{\sigma}{\sqrt{n}}, A_n + 2 \frac{\sigma}{\sqrt{n}}] \text{ is a } 95\% - \text{CI for } \mu.$$
Summary

Gaussian and CLT

1. Gaussian: \(\mathcal{N}(\mu, \sigma^2) : f_X(x) = \ldots \) “bell curve”
2. CLT: \(X_n \) i.i.d. \(\implies \frac{A_n - \mu}{\sigma / \sqrt{n}} \to \mathcal{N}(0, 1) \)
3. CI: \([A_n - 2 \frac{\sigma}{\sqrt{n}}, A_n + 2 \frac{\sigma}{\sqrt{n}}] = 95\%-\text{CI for } \mu. \)