Final - Probability Review
Final - Probability Review

- True or False
- Some Key Results
- Sample Problems
- Common Mistakes
True or False

- Ω and A are independent.
True or False

- Ω and A are independent. True
True or False

- Ω and A are independent. True
- $Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]$. False:
- $Pr[A \backslash B] \geq Pr[A] - Pr[B]$. True
- X_1, \ldots, X_n i.i.d. $\Rightarrow var(X_1 + \cdots + X_n) = var(X_1)$. False:
- $Pr(|X - a| \geq b) \leq E[(X - a)^2]^{b^2}$. True
- X_1, \ldots, X_n i.i.d. $\Rightarrow X_1 + \cdots + X_n - nE[X_1] \rightarrow N(0, \sigma^2(X_1))$. False:
- $X = \text{Exponential}(\lambda) \Rightarrow Pr[X > 5 | X > 3] = Pr[X > 2]$. True:
- $\exp\{-\lambda \cdot 5\} \cdot \exp\{-\lambda \cdot 3\} = \exp\{-\lambda \cdot 2\}$. False:
True or False

- Ω and A are independent. **True**
- \(Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B] \). **True**
True or False

- Ω and A are independent. True
- $Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]$. True
- $Pr[A \setminus B] \geq Pr[A] - Pr[B]$. True
True or False

- \(\Omega \) and \(A \) are independent. \textbf{True}
- \(\Pr[A \cap B] = \Pr[A] + \Pr[B] - \Pr[A \cup B] \). \textbf{True}
- \(\Pr[A \setminus B] \geq \Pr[A] - \Pr[B] \). \textbf{True}
True or False

- Ω and A are independent. True
- $Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]$. True
- $Pr[A \setminus B] \geq Pr[A] - Pr[B]$. True
- X_1, \ldots, X_n i.i.d. $\implies \text{var}(\frac{X_1 + \cdots + X_n}{n}) = \text{var}(X_1)$. False

\[\exp\{-\lambda x\} = \exp\{-\lambda y\} \]
True or False

- Ω and A are independent. True
- $Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]$. True
- $Pr[A \setminus B] \geq Pr[A] - Pr[B]$. True
- X_1, \ldots, X_n i.i.d. $\implies var\left(\frac{X_1 + \cdots + X_n}{n}\right) = var(X_1)$. False: $\times \frac{1}{n}$
True or False

- Ω and A are independent. True
- $Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]$. True
- $Pr[A \setminus B] \geq Pr[A] - Pr[B]$. True
- X_1, \ldots, X_n i.i.d. $\implies \text{var}(\frac{X_1+\cdots+X_n}{n}) = \text{var}(X_1)$. False: $\times \frac{1}{n}
- Pr[|X-a| \geq b] \leq \frac{E[(X-a)^2]}{b^2}$. True.
True or False

- Ω and A are independent. True
- $Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]$. True
- $Pr[A \setminus B] \geq Pr[A] - Pr[B]$. True
- X_1, \ldots, X_n i.i.d. $\implies var\left(\frac{X_1+\cdots+X_n}{n}\right) = var(X_1)$. False: $\times \frac{1}{n}$
- $Pr[|X - a| \geq b] \leq \frac{E[(X-a)^2]}{b^2}$. True
True or False

- \(\Omega \) and \(A \) are independent. **True**
- \(\Pr[A \cap B] = \Pr[A] + \Pr[B] - \Pr[A \cup B] \). **True**
- \(\Pr[A \setminus B] \geq \Pr[A] - \Pr[B] \). **True**
- \(X_1, \ldots, X_n \) i.i.d. \(\implies \) \(\text{var}(\frac{X_1+\cdots+X_n}{n}) = \text{var}(X_1) \). **False**: \(\times \frac{1}{n} \)
- \(\Pr[|X - a| \geq b] \leq \frac{E[(X-a)^2]}{b^2} \). **True**
- \(X_1, \ldots, X_n \) i.i.d. \(\implies \frac{X_1+\cdots+X_n-nE[X_1]}{n\sigma(X_1)} \to \mathcal{N}(0,1) \).
True or False

- \(\Omega \) and \(A \) are independent. True
- \(\Pr[A \cap B] = \Pr[A] + \Pr[B] - \Pr[A \cup B] \). True
- \(\Pr[A \setminus B] \geq \Pr[A] - \Pr[B] \). True
- \(X_1, \ldots, X_n \) i.i.d. \(\implies \text{var}(\frac{X_1 + \cdots + X_n}{n}) = \text{var}(X_1) \). False: \(\times \frac{1}{n} \)
- \(\Pr[|X - a| \geq b] \leq \frac{E[(X-a)^2]}{b^2} \). True
- \(X_1, \ldots, X_n \) i.i.d. \(\implies \frac{X_1 + \cdots + X_n - nE[X_1]}{n\sigma(X_1)} \rightarrow \mathcal{N}(0,1) \). False: \(\sqrt{n} \)
True or False

- ▶ Ω and A are independent. True
- ▶ $Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]$. True
- ▶ $Pr[A \setminus B] \geq Pr[A] - Pr[B]$. True
- ▶ X_1, \ldots, X_n i.i.d. $\implies var\left(\frac{X_1+\ldots+X_n}{n}\right) = var(X_1)$. False: $\times \frac{1}{n}$
- ▶ $Pr[|X - a| \geq b] \leq \frac{E[(X-a)^2]}{b^2}$. True
- ▶ X_1, \ldots, X_n i.i.d. $\implies \frac{X_1+\ldots+X_n-nE[X_1]}{n\sigma(X_1)} \to \mathcal{N}(0,1)$. False: \sqrt{n}
- ▶ $X = Expo(\lambda) \implies Pr[X > 5|X > 3] = Pr[X > 2]$. True
True or False

- Ω and A are independent. True
- $Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]$. True
- $Pr[A \setminus B] \geq Pr[A] - Pr[B]$. True
- X_1, \ldots, X_n i.i.d. $\implies var(\frac{X_1 + \cdots + X_n}{n}) = var(X_1)$. False: $\times \frac{1}{n}$
- $Pr[|X - a| \geq b] \leq \frac{E[(X-a)^2]}{b^2}$. True
- X_1, \ldots, X_n i.i.d. $\implies \frac{X_1 + \cdots + X_n - nE[X_1]}{n\sigma(X_1)} \rightarrow \mathcal{N}(0,1)$. False: \sqrt{n}
- $X = Expo(\lambda) \implies Pr[X > 5|X > 3] = Pr[X > 2]$. True:
True or False

- Ω and A are independent. True
- $Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]$. True
- $Pr[A \setminus B] \geq Pr[A] - Pr[B]$. True
- X_1, \ldots, X_n i.i.d. $\implies \text{var}(\frac{X_1 + \cdots + X_n}{n}) = \text{var}(X_1)$. False: $\times \frac{1}{n}$
- $Pr[|X - a| \geq b] \leq \frac{E[(X-a)^2]}{b^2}$. True
- X_1, \ldots, X_n i.i.d. $\implies \frac{X_1 + \cdots + X_n - nE[X_1]}{n\sigma(X_1)} \to N(0,1)$. False: \sqrt{n}
- $X = \text{Expo}(\lambda) \implies Pr[X > 5|X > 3] = Pr[X > 2]$. True:
 $$\frac{\exp{-\lambda 5}}{\exp{-\lambda 3}} = \exp{-\lambda 2}.$$
Correct or not?

- $[A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%$-CI for μ. Yes
Correct or not?

- \([A_n - 2\sigma \frac{1}{n}, A_n + 2\sigma \frac{1}{n}] = 95\%\text{-CI for } \mu\). No
Correct or not?

- \([A_n - 2\sigma_n, A_n + 2\sigma_n] = 95\%-\text{CI for } \mu\). No
- \([A_n - 2\sigma_n^{1/n}, A_n + 2\sigma_n^{1/n}] = 95\%-\text{CI for } \mu\). Yes
Correct or not?

- \([A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%\text{-CI for } \mu. \) No
- \([A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%\text{-CI for } \mu. \) Yes
Correct or not?

- $[A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%$-CI for μ. No
- $[A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%$-CI for μ. Yes
- If $0.3 < \sigma < 3$, then
 $[A_n - 0.6 \frac{1}{\sqrt{n}}, A_n + 0.6 \frac{1}{\sqrt{n}}] = 95\%$-CI for μ. Yes
Correct or not?

- $[A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%-\text{CI for } \mu$. No
- $[A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%-\text{CI for } \mu$. Yes
- If $0.3 < \sigma < 3$, then
 $[A_n - 0.6 \frac{1}{\sqrt{n}}, A_n + 0.6 \frac{1}{\sqrt{n}}] = 95\%-\text{CI for } \mu$. No
Correct or not?

- \([A_n - 2\sigma_n^1, A_n + 2\sigma_n^1] = 95\%\text{-CI for } \mu\). No
- \([A_n - 2\sigma_\sqrt{n}, A_n + 2\sigma_\sqrt{n}] = 95\%\text{-CI for } \mu\). Yes
- If \(0.3 < \sigma < 3\), then
 \([A_n - 0.6 \frac{1}{\sqrt{n}}, A_n + 0.6 \frac{1}{\sqrt{n}}] = 95\%\text{-CI for } \mu\). No
- If \(0.3 < \sigma < 3\), then
 \([A_n - 6 \frac{1}{\sqrt{n}}, A_n + 6 \frac{1}{\sqrt{n}}] = 95\%\text{-CI for } \mu\).
Correct or not?

- \([A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%-\text{CI for } \mu. \) No
- \([A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%-\text{CI for } \mu. \) Yes
- If 0.3 < \(\sigma\) < 3, then
 \([A_n - 0.6 \frac{1}{\sqrt{n}}, A_n + 0.6 \frac{1}{\sqrt{n}}] = 95\%-\text{CI for } \mu. \) No
- If 0.3 < \(\sigma\) < 3, then
 \([A_n - 6 \frac{1}{\sqrt{n}}, A_n + 6 \frac{1}{\sqrt{n}}] = 95\%-\text{CI for } \mu. \) Yes
Correct or not?

- $[A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%-\text{CI for } \mu$. No
- $[A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%-\text{CI for } \mu$. Yes
- If $0.3 < \sigma < 3$, then $[A_n - 0.6 \frac{1}{\sqrt{n}}, A_n + 0.6 \frac{1}{\sqrt{n}}] = 95\%-\text{CI for } \mu$. No
- If $0.3 < \sigma < 3$, then $[A_n - 6 \frac{1}{\sqrt{n}}, A_n + 6 \frac{1}{\sqrt{n}}] = 95\%-\text{CI for } \mu$. Yes
Match Items

[1] $Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)}$

[2] $Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2}$

[3] $Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}}$

[4] $g(\cdot)$ convex $\Rightarrow E[g(X)] \geq g(E[X])$

[5] $E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X])$

[6] $\sum_y yPr[Y = y | X = x]$

[7] $Pr[\frac{X_1 + \cdots + X_n}{n} - E[X_1] \geq \varepsilon] \to 0,$

[8] $E[(Y - E[Y|X])h(X)] = 0.$
Match Items

1. \(\Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)
2. \(\Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)
3. \(\Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)
4. \(g(\cdot) \) convex \(\Rightarrow E[g(X)] \geq g(E[X]) \)
5. \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \)
6. \(\sum_y y \Pr[Y = y | X = x] \)
7. \(\Pr[\frac{X_1 + \cdots + X_n}{n} - E[X_1] \geq \varepsilon] \to 0 \)
8. \(E[(Y - E[Y|X])h(X)] = 0 \)

- Chernoff
Match Items

1. \[\Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \]

2. \[\Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \]

3. \[\Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \]

4. \[g(\cdot) \text{ convex } \Rightarrow E[g(X)] \geq g(E[X]) \]

5. \[E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \]

6. \[\sum_y y \Pr[Y = y | X = x] \]

7. \[\Pr[\left| \frac{X_1 + \cdots + X_n}{n} - E[X_1] \right| \geq \varepsilon] \to 0 \]

8. \[E[(Y - E[Y|X])h(X)] = 0 \]

- Chernoff (3)
Match Items

[1] \(Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)

[2] \(Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)

[3] \(Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)

[4] \(g(\cdot) \text{ convex} \Rightarrow E[g(X)] \geq g(E[X]) \)

[5] \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \)

[6] \(\sum_y y Pr[Y = y | X = x] \)

[7] \(Pr[\left| \frac{X_1 + \cdots + X_n}{n} - E[X_1] \right| \geq \varepsilon] \to 0 \)

[8] \(E[(Y - E[Y|X])h(X)] = 0. \)

- Chernoff (3)
- WLLN
Match Items

1. \(\Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)
2. \(\Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)
3. \(\Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)
4. \(g(\cdot) \) convex \(\Rightarrow E[g(X)] \geq g(E[X]) \)
5. \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \)
6. \(\sum_y y \Pr[Y = y | X = x] \)
7. \(\Pr[|\frac{X_1 + \cdots + X_n}{n} - E[X_1]| \geq \epsilon] \to 0, \)
8. \(E[(Y - E[Y|X])h(X)] = 0. \)

- Chernoff (3)
- WLLN (7)
Match Items

1. $Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)}$.
2. $Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2}$.
3. $Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}}$.
4. $g(\cdot)$ convex $\Rightarrow E[g(X)] \geq g(E[X])$.
5. $E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X])$.
6. $\sum_{y} y Pr[Y = y | X = x]$.
7. $Pr[|\frac{X_1 + \cdots + X_n}{n} - E[X_1]| \geq \varepsilon] \rightarrow 0$.
8. $E[(Y - E[Y|X])h(X)] = 0$.

- Chernoff (3)
- WLLN (7)
- Jensen
Match Items

1. \(\Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)
2. \(\Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)
3. \(\Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)
4. \(g(\cdot) \) convex \(\Rightarrow E[g(X)] \geq g(E[X]) \)
5. \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \)
6. \(\sum_{y} y \Pr[Y = y | X = x] \)
7. \(\Pr[\left| \frac{X_1 + \cdots + X_n}{n} - E[X_1] \right| \geq \varepsilon] \to 0 \)
8. \(E[(Y - E[Y|X])h(X)] = 0 \)

- Chernoff (3)
- WLLN (7)
- Jensen (4)
Match Items

1. \(Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)
2. \(Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)
3. \(Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)
4. \(g(\cdot) \text{ convex} \Rightarrow E[g(X)] \geq g(E[X]) \)
5. \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)}(X - E[X]) \)
6. \(\sum_y yPr[Y = y|X = x] \)
7. \(Pr[\frac{X_1 + \cdots + X_n}{n} - E[X_1] \geq \varepsilon] \to 0, \)
8. \(E[(Y - E[Y|X])h(X)] = 0. \)

- Chernoff (3)
- WLLN (7)
- Jensen (4)
- MMSE
Match Items

1. \[Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \]
2. \[Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \]
3. \[Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \]
4. \[g(\cdot) \text{ convex} \Rightarrow E[g(X)] \geq g(E[X]) \]
5. \[E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \]
6. \[\sum_y y Pr[Y = y | X = x] \]
7. \[Pr[\left| \frac{X_1 + \cdots + X_n}{n} - E[X_1] \right| \geq \varepsilon] \rightarrow 0, \]
8. \[E[(Y - E[Y|X])h(X)] = 0. \]

- Chernoff (3)
- WLLN (7)
- Jensen (4)
- MMSE (6)
Match Items

1. \(\Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)
2. \(\Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)
3. \(\Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)
4. \(g(\cdot) \text{ convex} \Rightarrow E[g(X)] \geq g(E[X]) \)
5. \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \)
6. \(\sum_y y \Pr[Y = y | X = x] \)
7. \(\Pr[\left\| \frac{X_1 + \cdots + X_n}{n} - E[X_1] \right\| \geq \varepsilon] \to 0, \)
8. \(E[(Y - E[Y|X])h(X)] = 0. \)

- Chernoff (3)
- WLLN (7)
- Jensen (4)
- MMSE (6)
- Projection property
Match Items

1. \(Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)
2. \(Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)
3. \(Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)
4. If \(g(\cdot) \) convex, then \(E[g(X)] \geq g(E[X]) \)
5. \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]). \)
6. \(\sum_y y \Pr[Y = y | X = x] \)
7. \(\Pr[\frac{X_1 + \ldots + X_n}{n} - E[X_1] \geq \varepsilon] \to 0, \)
8. \(E[(Y - E[Y|X])h(X)] = 0. \)

- Chernoff (3)
- WLLN (7)
- Jensen (4)
- MMSE (6)
- Projection property (8)
Match Items

1. \(\Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)
2. \(\Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)
3. \(\Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)
4. \(g(\cdot) \text{ convex} \Rightarrow E[g(X)] \geq g(E[X]) \)
5. \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \)
6. \(\sum_y y \Pr[Y = y | X = x] \)
7. \(\Pr[\left| \frac{X_1 + \cdots + X_n}{n} - E[X_1] \right| \geq \varepsilon] \to 0 \)
8. \(E[(Y - E[Y|X])h(X)] = 0 \)

- Chernoff (3)
- WLLN (7)
- Jensen (4)
- MMSE (6)
- Projection property (8)
- Chebyshev
Match Items

1. \[\Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \]
2. \[\Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \]
3. \[\Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \]
4. \(g(\cdot) \) convex \(\Rightarrow E[g(X)] \geq g(E[X]) \)
5. \[E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]). \]
6. \[\sum_y y \Pr[Y = y|X = x] \]
7. \[\Pr[\frac{X_1 + \cdots + X_n}{n} - E[X_1] \geq \varepsilon] \to 0, \]
8. \[E[(Y - E[Y|X])h(X)] = 0. \]

- Chernoff (3)
- WLLN (7)
- Jensen (4)
- MMSE (6)
- Projection property (8)
- Chebyshev (2)
- LLSE
Match Items

\[Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \]

\[Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \]

\[Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \]

\[g(\cdot) \text{ convex } \Rightarrow E[g(X)] \geq g(E[X]) \]

\[E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \]

\[\sum_y yPr[Y = y|X = x] \]

\[Pr[\frac{X_1 + \cdots + X_n}{n} - E[X_1] \geq \varepsilon] \to 0, \]

\[E[(Y - E[Y|X])h(X)] = 0. \]

- Chernoff (3)
- WLLN (7)
- Jensen (4)
- MMSE (6)
- Projection property (8)
- Chebyshev (2)
- LLSE (5)
- Markov
Match Items

1. \(Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)
2. \(Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)
3. \(Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)
4. \(g(\cdot) \text{ convex} \Rightarrow E[g(X)] \geq g(E[X]) \)
5. \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \)
6. \(\sum_y y Pr[Y = y|X = x] \)
7. \(Pr[\left| \frac{X_1 + \cdots + X_n}{n} - E[X_1] \right| \geq \epsilon] \to 0 \)
8. \(E[(Y - E[Y|X])h(X)] = 0. \)

- Chernoff (3)
- WLLN (7)
- Jensen (4)
- MMSE (6)
- Projection property (8)
- Chebyshev (2)
- LLSE (5)
- Markov (1)
Conditional Expectation

Which is $E[Y|X]$? Blue, red or green?

![Diagram showing conditional expectation](image)
Conditional Expectation

Which is $E[Y|X]$? Blue, red or green?

Answer: Red.
Conditional Expectation

Which is $E[Y|X]$? Blue, red or green?

Answer: Red.
Given $X = x$, $Y = U[a(x), b(x)]$.
Which is $E[Y|X]$? Blue, red or green?

Answer: Red.

Given $X = x$, $Y = U[a(x), b(x)]$. Thus, $E[Y|X = x] = \frac{a(x) + b(x)}{2}$.
Linear Regression

Which is $L[Y|X]$? Blue, red or green?

Answer: Blue. Cannot be red (not a straight line). Cannot be green: X and Y are clearly positively correlated.
Linear Regression

Which is $L[Y|X]$? Blue, red or green?

Answer: Blue.
Linear Regression

Which is $L[Y|X]$? Blue, red or green?

Answer: Blue.
Cannot be red (not a straight line).
Linear Regression

Which is $L[Y|X]$? Blue, red or green?

Answer: Blue.
Cannot be red (not a straight line).
Cannot be green: X and Y are clearly positively correlated.
A bag has n red and n blue balls. You pick two balls (no replacement).
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise.
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Are X and Y positively, negatively, or uncorrelated?
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

Are X and Y positively, negatively, or un-correlated?

Clearly, negatively.
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Are X and Y positively, negatively, or uncorrelated? Clearly, negatively.

→ Calculate $\text{cov}(X, Y)$.

\[
\text{cov}(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y],
\]

by symmetry

\[
\mathbb{E}[X] = 0
\]

\[
\mathbb{E}[XY] = \Pr[X = Y] - \Pr[X \neq Y] = \frac{n-1}{2n-1}
\]

\[
\text{cov}(X, Y) = \frac{n-1}{2n-1} - 1 = \frac{-1}{2n-1}.
\]

→ What is $\mathbb{L}[Y | X]$?

Indeed, $\text{var}(X) = 1$, obviously!
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Are X and Y positively, negatively, or un-correlated? Clearly, negatively.

→ Calculate $\text{cov}(X, Y)$.

$$\text{cov}(X, Y) = E[XY] - E[X]E[Y]$$
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Are X and Y positively, negatively, or uncorrelated?
Clearly, negatively.

→ Calculate $\text{cov}(X, Y)$.

$$\text{cov}(X, Y) = E[XY] - E[X]E[Y]$$

$$E[X] = E[Y],$$
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

Are X and Y positively, negatively, or uncorrelated?

Clearly, negatively.

Calculate $\text{cov}(X, Y)$.

$$\text{cov}(X, Y) = E[XY] - E[X]E[Y]$$

$E[X] = E[Y]$, by symmetry
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Are X and Y positively, negatively, or uncorrelated?

Clearly, negatively.

→ Calculate $\text{cov}(X, Y)$.

$$\text{cov}(X, Y) = E[XY] - E[X]E[Y]$$

$E[X] = E[Y]$, by symmetry

$E[X] = 0$
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

\rightarrow Are X and Y positively, negatively, or un-correlated? Clearly, negatively.

\rightarrow Calculate $\text{cov}(X, Y)$.

$$
cov(X, Y) = E[XY] - E[X]E[Y]
$$

$E[X] = E[Y]$, by symmetry

$E[X] = 0$

$E[XY] = Pr[X = Y] - Pr[X \neq Y]$
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Are X and Y positively, negatively, or uncorrelated? Clearly, negatively.

→ Calculate $\text{cov}(X, Y)$.

$$\text{cov}(X, Y) = E[XY] - E[X]E[Y]$$

$$E[X] = E[Y], \text{ by symmetry}$$

$$E[X] = 0$$

$$E[XY] = \Pr[X = Y] - \Pr[X \neq Y] = 2\Pr[X = Y] - 1$$
A bag has \(n \) red and \(n \) blue balls. You pick two balls (no replacement). Let \(X = 1 \) if ball 1 is red and \(X = -1 \) otherwise. Define \(Y \) likewise for ball 2.

→ Are \(X \) and \(Y \) positively, negatively, or un-correlated?

Clearly, negatively.

→ Calculate \(\text{cov}(X, Y) \).

\[
\text{cov}(X, Y) = E[XY] - E[X]E[Y]
\]

\(E[X] = E[Y] \), by symmetry

\(E[X] = 0 \)

\(E[XY] = Pr[X = Y] - Pr[X \neq Y] = 2Pr[X = Y] - 1 \)

\(Pr[X = Y] = (n - 1)/(2n - 1) \)
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Are X and Y positively, negatively, or un- correlated?
Clearly, negatively.

→ Calculate $\text{cov}(X, Y)$.

$$\text{cov}(X, Y) = E[XY] - E[X]E[Y]$$

$E[X] = E[Y]$, by symmetry

$E[X] = 0$

$E[XY] = Pr[X = Y] - Pr[X \neq Y] = 2Pr[X = Y] - 1$

$Pr[X = Y] = (n - 1)/(2n - 1)$

E.g., if $X = +1 = \text{red}$, then Y is red w.p. $(n - 1)/(2n - 1)$
A bag has \(n \) red and \(n \) blue balls. You pick two balls (no replacement). Let \(X = 1 \) if ball 1 is red and \(X = -1 \) otherwise. Define \(Y \) likewise for ball 2.

→ Are \(X \) and \(Y \) positively, negatively, or un-correlated?

Clearly, negatively.

→ Calculate \(\text{cov}(X, Y) \).

\[
\text{cov}(X, Y) = E[XY] - E[X]E[Y]
\]

\[
E[X] = E[Y], \text{ by symmetry}
\]

\[
E[X] = 0
\]

\[
E[XY] = Pr[X = Y] - Pr[X \neq Y] = 2Pr[X = Y] - 1
\]

\[
Pr[X = Y] = (n-1)/(2n-1)
\]

E.g., if \(X = +1 = \text{red} \), then \(Y \) is red w.p. \((n-1)/(2n-1) \)

\[
E[XY] = 2(n-1)/(2n-1) - 1 = -1/(2n-1)
\]
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Are X and Y positively, negatively, or un-correlated?

Clearly, negatively.

→ Calculate $\text{cov}(X, Y)$.

$$\text{cov}(X, Y) = E[XY] - E[X]E[Y]$$

$E[X] = E[Y]$, by symmetry

$E[X] = 0$

$E[XY] = Pr[X = Y] - Pr[X \neq Y] = 2Pr[X = Y] - 1$

$Pr[X = Y] = (n - 1)/(2n - 1)$

E.g., if $X = +1 = \text{red}$, then Y is red w.p. $(n - 1)/(2n - 1)$

$E[XY] = 2(n - 1)/(2n - 1) - 1 = -1/(2n - 1) = \text{cov}(X, Y)$.
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Are X and Y positively, negatively, or uncorrelated?
Clearly, negatively.

→ Calculate $\text{cov}(X, Y)$.

\[
\text{cov}(X, Y) = E[XY] - E[X]E[Y]
\]

$E[X] = E[Y]$, by symmetry

$E[X] = 0$

$E[XY] = Pr[X = Y] - Pr[X \neq Y] = 2Pr[X = Y] - 1$

$Pr[X = Y] = (n - 1)/(2n - 1)$

E.g., if $X = +1 = \text{red}$, then Y is red w.p. $(n - 1)/(2n - 1)$

$E[XY] = 2(n - 1)/(2n - 1) - 1 = -1/(2n - 1) = \text{cov}(X, Y)$.

→ What is $L[Y|X]$?
A bag has \(n \) red and \(n \) blue balls. You pick two balls (no replacement). Let \(X = 1 \) if ball 1 is red and \(X = -1 \) otherwise. Define \(Y \) likewise for ball 2.

→ Are \(X \) and \(Y \) positively, negatively, or uncorrelated? Clearly, negatively.

→ Calculate \(\text{cov}(X, Y) \).

\[
\text{cov}(X, Y) = E[XY] - E[X]E[Y]
\]

\(E[X] = E[Y] \), by symmetry

\(E[X] = 0 \)

\(E[XY] = \Pr[X = Y] - \Pr[X \neq Y] = 2\Pr[X = Y] - 1 \)

\(\Pr[X = Y] = (n-1)/(2n-1) \)

E.g., if \(X = +1 = \text{red} \), then \(Y \) is red w.p. \((n-1)/(2n-1) \)

\(E[XY] = 2(n-1)/(2n-1) - 1 = -1/(2n-1) = \text{cov}(X, Y) \).

→ What is \(L[Y|X] \)? \(L[Y|X] = -\frac{1}{2n-1}X \).
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Are X and Y positively, negatively, or un-correlated?

Clearly, negatively.

→ Calculate $\text{cov}(X, Y)$.

$$\text{cov}(X, Y) = E[XY] - E[X]E[Y]$$

$E[X] = E[Y]$, by symmetry

$E[X] = 0$

$E[XY] = Pr[X = Y] - Pr[X ≠ Y] = 2Pr[X = Y] - 1$

$Pr[X = Y] = (n - 1)/(2n - 1)$

E.g., if $X = +1 = \text{red}$, then Y is red w.p. $(n - 1)/(2n - 1)$

$E[XY] = 2(n - 1)/(2n - 1) - 1 = -1/(2n - 1) = \text{cov}(X, Y)$.

→ What is $L[Y|X]$? $L[Y|X] = -\frac{1}{2n-1}X$. Indeed, $\text{var}(X) = 1$,

A bag has \(n \) red and \(n \) blue balls. You pick two balls (no replacement). Let \(X = 1 \) if ball 1 is red and \(X = -1 \) otherwise. Define \(Y \) likewise for ball 2.

→ Are \(X \) and \(Y \) positively, negatively, or uncorrelated? Clearly, negatively.

→ Calculate \(\text{cov}(X, Y) \).

\[
\text{cov}(X, Y) = E[XY] - E[X]E[Y]
\]
\[
E[X] = E[Y], \text{ by symmetry}
\]
\[
E[X] = 0
\]

\[
E[XY] = Pr[X = Y] - Pr[X \neq Y] = 2Pr[X = Y] - 1
\]
\[
Pr[X = Y] = (n-1)/(2n-1)
\]

E.g., if \(X = +1 = \text{red} \), then \(Y \) is red w.p. \((n-1)/(2n-1) \)

\[
E[XY] = 2(n-1)/(2n-1) - 1 = -1/(2n-1) = \text{cov}(X, Y).
\]

→ What is \(L[Y|X] \)? \(L[Y|X] = -\frac{1}{2n-1}X \). Indeed, \(\text{var}(X) = 1 \), obviously!
A bag has \(n \) red and \(n \) blue balls. You pick two balls (no replacement). Let \(X = 1 \) if ball 1 is red and \(X = -1 \) otherwise. Define \(Y \) likewise for ball 2.
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Calculate $E[Y|X]$.

A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

\rightarrow Calculate $E[Y|X]$.

Since X takes only two values, any $g(X)$ is linear in X.
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Calculate $E[Y|X]$.

Since X takes only two values, any $g(X)$ is linear in X. Hence, $E[Y|X] = L[Y|X]$.
A bag has \(n \) red and \(n \) blue balls. You pick two balls (no replacement). Let \(X = 1 \) if ball 1 is red and \(X = -1 \) otherwise. Define \(Y \) likewise for ball 2.

→ Calculate \(E[Y|X] \).
Since \(X \) takes only two values, any \(g(X) \) is linear in \(X \).
Hence, \(E[Y|X] = L[Y|X] \).

Alternatively, Let \(\alpha = Pr[X = Y] = (n-1)(2n-1) \).
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Calculate $E[Y|X]$.

Since X takes only two values, any $g(X)$ is linear in X. Hence, $E[Y|X] = L[Y|X]$.

Alternatively, Let $\alpha = Pr[X = Y] = (n - 1)(2n - 1)$. Then,

$$E[Y|X = 1] = \alpha - (1 - \alpha) = 2\alpha - 1,$$
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Calculate $E[Y|X]$.

Since X takes only two values, any $g(X)$ is linear in X. Hence, $E[Y|X] = L[Y|X]$.

Alternatively, Let $\alpha = Pr[X = Y] = (n - 1)(2n - 1)$. Then,

$$E[Y|X = 1] = \alpha - (1 - \alpha) = 2\alpha - 1,$$

$$E[Y|X = -1] = -\alpha + (1 - \alpha) = 1 - 2\alpha.$$
A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

\rightarrow Calculate $E[Y|X]$.

Since X takes only two values, any $g(X)$ is linear in X. Hence, $E[Y|X] = L[Y|X]$.

Alternatively, Let $\alpha = Pr[X = Y] = (n-1)(2n-1)$. Then,

$$E[Y|X = 1] = \alpha - (1-\alpha) = 2\alpha - 1,$$

$$E[Y|X = -1] = -\alpha + (1-\alpha) = 1 - 2\alpha.$$

Thus,

$$E[Y|X] = (2\alpha - 1)X = -\frac{1}{2n-1}X.$$
Let X, Y, Z be i.i.d.
Let X, Y, Z be i.i.d.
\rightarrow Compute $E[X|X + Y + Z]$.
Let X, Y, Z be i.i.d.
→ Compute $E[X|X+Y+Z]$.
Answer: $(X + Y + Z)/3$.
Let X, Y, Z be i.i.d.
→ Compute $E[X|X + Y + Z]$.
Answer: $(X + Y + Z)/3$.
Indeed,

Let X, Y, Z be i.i.d.
→ Compute $E[X|X + Y + Z]$.
Answer: $(X + Y + Z)/3$.
Indeed,

and these three quantities add up to

$$E[X + Y + Z|X + Y + Z] =$$
Let X, Y, Z be i.i.d.
→ Compute $E[X|X + Y + Z]$.
Answer: $(X + Y + Z)/3$.
Indeed,

and these three quantities add up to

$$E[X + Y + Z|X + Y + Z] = X + Y + Z.$$
Continuous RV

Let $X = Expo(1)$ and $Y = Expo(2)$ be independent.
Continuous RV

Let $X = Expo(1)$ and $Y = Expo(2)$ be independent.
Let $Z = \max\{X, Y\}$.

Continuous RV

Let $X = Expo(1)$ and $Y = Expo(2)$ be independent.
Let $Z = \max\{X, Y\}$. Calculate $E[Z]$.

Recall: $V = Expo(\lambda) \implies f_V(x) = \lambda e^{-\lambda x} 1_{\{x \geq 0\}}$.
Also, $\Pr[V \leq x] = 1 - e^{-\lambda x}$ for $x \geq 0$.
Moreover, $E[V] = \int_0^\infty x \lambda e^{-\lambda x} dx = \frac{1}{\lambda} - 1$, $\text{var}(V) = \lambda - 2$.

For $z > 0$, one has $\Pr[\max\{X, Y\} \leq z] = \Pr[X \leq z, Y \leq z] = \Pr[X \leq z] \Pr[Y \leq z] = (1 - e^{-z}) (1 - e^{-2z}) = 1 - e^{-z} - e^{-2z} + e^{-3z}$.

Thus, for $z > 0$, taking the derivative, $f_Z(z) = e^{-z} + 2e^{-2z} - 3e^{-3z}$.
Hence, $E[Z] = \int_0^\infty z f_Z(z) dz = 1 + \frac{1}{2} - \frac{1}{3} = \frac{7}{6}$.
Continuous RV

Let $X = \text{Expo}(1)$ and $Y = \text{Expo}(2)$ be independent. Let $Z = \max\{X, Y\}$. Calculate $E[Z]$.

Recall: $V = \text{Expo}(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\}1\{x \geq 0\}$.
Continuous RV

Let $X = Expo(1)$ and $Y = Expo(2)$ be independent.
Let $Z = \max\{X, Y\}$. Calculate $E[Z]$.

Recall: $V = Expo(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\}1\{x \geq 0\}$.
Also, $Pr[V \leq x] = 1 - \exp\{-\lambda x\}$ for $x \geq 0$.

Continuous RV

Let $X = Expo(1)$ and $Y = Expo(2)$ be independent.
Let $Z = \max\{X, Y\}$. Calculate $E[Z]$.

Recall: $V = Expo(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\} 1\{x \geq 0\}$.
Also, $Pr[V \leq x] = 1 - \exp\{-\lambda x\}$ for $x \geq 0$.
Moreover, $E[V] = \int_0^\infty x \lambda \exp\{-\lambda x\} dx = \lambda^{-1}$,
Continuous RV

Let $X = Expo(1)$ and $Y = Expo(2)$ be independent.
Let $Z = \max\{X, Y\}$. Calculate $E[Z]$.

Recall: $V = Expo(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\} 1\{x \geq 0\}$.

Also, $Pr[V \leq x] = 1 - \exp\{-\lambda x\}$ for $x \geq 0$.
Moreover, $E[V] = \int_{0}^{\infty} x \lambda \exp\{-\lambda x\} \, dx = \lambda^{-1}$, $\text{var}(V) = \lambda^{-2}$.
Continuous RV

Let $X = \text{Expo}(1)$ and $Y = \text{Expo}(2)$ be independent.
Let $Z = \max\{X, Y\}$. Calculate $E[Z]$.

Recall: $V = \text{Expo}(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\}1\{x \geq 0\}$.
Also, $Pr[V \leq x] = 1 - \exp\{-\lambda x\}$ for $x \geq 0$.
Moreover, $E[V] = \int_0^\infty x\lambda \exp\{-\lambda x\} dx = \lambda^{-1}$, $\text{var}(V) = \lambda^{-2}$.

For $z > 0$, one has

$$Pr[\max\{X, Y\} \leq z] =$$
Continuous RV

Let $X = \text{Expo}(1)$ and $Y = \text{Expo}(2)$ be independent. Let $Z = \max\{X, Y\}$. Calculate $E[Z]$.

Recall: $V = \text{Expo}(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\}1\{x \geq 0\}$.

Also, $Pr[V \leq x] = 1 - \exp\{-\lambda x\}$ for $x \geq 0$.

Moreover, $E[V] = \int_{0}^{\infty} x \lambda \exp\{-\lambda x\} dx = \lambda^{-1}$, $\text{var}(V) = \lambda^{-2}$.

For $z > 0$, one has

$$Pr[\max\{X, Y\} \leq z] = Pr[X \leq z, Y \leq z] =$$
Continuous RV

Let \(X = \text{Expo}(1) \) and \(Y = \text{Expo}(2) \) be independent. Let \(Z = \max\{X, Y\} \). Calculate \(E[Z] \).

Recall: \(V = \text{Expo}(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\}1\{x \geq 0\} \).

Also, \(\Pr[V \leq x] = 1 - \exp\{-\lambda x\} \) for \(x \geq 0 \).

Moreover, \(E[V] = \int_0^\infty x \lambda \exp\{-\lambda x\} \, dx = \lambda^{-1}, \text{var}(V) = \lambda^{-2} \).

For \(z > 0 \), one has

\[
\Pr[\max\{X, Y\} \leq z] = \Pr[X \leq z, Y \leq z] = \Pr[X \leq z] \Pr[Y \leq z].
\]
Continuous RV

Let $X = Expo(1)$ and $Y = Expo(2)$ be independent.
Let $Z = \max\{X, Y\}$. Calculate $E[Z]$.

Recall: $V = Expo(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\} 1\{x \geq 0\}$.
Also, $Pr[V \leq x] = 1 - \exp\{-\lambda x\}$ for $x \geq 0$.
Moreover, $E[V] = \int_0^\infty x\lambda \exp\{-\lambda x\} dx = \lambda^{-1}$, $\text{var}(V) = \lambda^{-2}$.

For $z > 0$, one has

$$Pr[\max\{X, Y\} \leq z] = Pr[X \leq z, Y \leq z] = Pr[X \leq z]Pr[Y \leq z].$$

$$= (1 - \exp\{-z\})(1 - \exp\{-2z\})$$
Continuous RV

Let $X = \text{Expo}(1)$ and $Y = \text{Expo}(2)$ be independent.
Let $Z = \max\{X, Y\}$. Calculate $E[Z]$.
Recall: $V = \text{Expo}(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\}1\{x \geq 0\}$.
Also, $Pr[V \leq x] = 1 - \exp\{-\lambda x\}$ for $x \geq 0$.
Moreover, $E[V] = \int_0^\infty x \lambda \exp\{-\lambda x\} dx = \lambda^{-1}, \text{var}(V) = \lambda^{-2}$.

For $z > 0$, one has

\[
Pr[\max\{X, Y\} \leq z] = Pr[X \leq z, Y \leq z] = Pr[X \leq z]Pr[Y \leq z].
\]
\[
= (1 - \exp\{-z\})(1 - \exp\{-2z\})
\]
\[
= 1 - \exp\{-z\} - \exp\{-2z\} + \exp\{-3z\}.
\]
Continuous RV

Let $X = \text{Expo}(1)$ and $Y = \text{Expo}(2)$ be independent.
Let $Z = \max\{X, Y\}$. Calculate $E[Z]$.
Recall: $V = \text{Expo}(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\}1\{x \geq 0\}$.
Also, $Pr[V \leq x] = 1 - \exp\{-\lambda x\}$ for $x \geq 0$.
Moreover, $E[V] = \int_0^\infty x\lambda \exp\{-\lambda x\} \, dx = \lambda^{-1}$, $\text{var}(V) = \lambda^{-2}$.

For $z > 0$, one has

$$Pr[\max\{X, Y\} \leq z] = Pr[X \leq z, Y \leq z] = Pr[X \leq z]Pr[Y \leq z].$$

$$= (1 - \exp\{-z\})(1 - \exp\{-2z\})$$

$$= 1 - \exp\{-z\} - \exp\{-2z\} + \exp\{-3z\}.$$

Thus, for $z > 0$, taking the derivative,
Continuous RV

Let $X = \text{Expo}(1)$ and $Y = \text{Expo}(2)$ be independent.
Let $Z = \max\{X, Y\}$. Calculate $E[Z]$.
Recall: $V = \text{Expo}(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\}1\{x \geq 0\}$.
Also, $Pr[V \leq x] = 1 - \exp\{-\lambda x\}$ for $x \geq 0$.
Moreover, $E[V] = \int_0^\infty x \lambda \exp\{-\lambda x\} dx = \lambda^{-1}, \text{var}(V) = \lambda^{-2}$.

For $z > 0$, one has

\[
Pr[\max\{X, Y\} \leq z] = Pr[X \leq z, Y \leq z] = Pr[X \leq z] Pr[Y \leq z].
\]
\[
= (1 - \exp\{-z\})(1 - \exp\{-2z\})
\]
\[
= 1 - \exp\{-z\} - \exp\{-2z\} + \exp\{-3z\}.
\]

Thus, for $z > 0$, taking the derivative,

\[
f_Z(z) = \exp\{-z\} + 2 \exp\{-2z\} - 3 \exp\{-3z\}.
\]
Continuous RV

Let $X = \text{Expo}(1)$ and $Y = \text{Expo}(2)$ be independent.
Let $Z = \max\{X, Y\}$. Calculate $E[Z]$.

Recall: $V = \text{Expo}(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\} 1\{x \geq 0\}$.
Also, $Pr[V \leq x] = 1 - \exp\{-\lambda x\}$ for $x \geq 0$.
Moreover, $E[V] = \int_0^\infty x\lambda \exp\{-\lambda x\} \, dx = \lambda^{-1}, \text{var}(V) = \lambda^{-2}$.

For $z > 0$, one has

$Pr[\max\{X, Y\} \leq z] = Pr[X \leq z, Y \leq z] = Pr[X \leq z] Pr[Y \leq z]$.
$= (1 - \exp\{-z\})(1 - \exp\{-2z\})$
$= 1 - \exp\{-z\} - \exp\{-2z\} + \exp\{-3z\}$.

Thus, for $z > 0$, taking the derivative,

$f_Z(z) = \exp\{-z\} + 2\exp\{-2z\} - 3\exp\{-3z\}$.

Hence,

$E[Z] = \int_0^\infty zf_Z(z) \, dz = 1 + \frac{1}{2} - \frac{1}{3} = \frac{7}{6}$.
Let \(X = Expo(1) \) and \(Y = Expo(2) \) be independent.
Let $X = Expo(1)$ and $Y = Expo(2)$ be independent.
Let $W = \min\{X, Y\}$.
Let $X = Expo(1)$ and $Y = Expo(2)$ be independent. Let $W = \min\{X, Y\}$. Calculate $E[W]$.
Let \(X = \text{Expo}(1) \) and \(Y = \text{Expo}(2) \) be independent. Let \(W = \min\{X, Y\} \). Calculate \(E[W] \).

Recall: \(V = \text{Expo}(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\}1\{x \geq 0\} \).
Also, \(\Pr[V \leq x] = 1 - \exp\{-\lambda x\} \) for \(x \geq 0 \).
Moreover, \(E[V] = \int_0^\infty x \lambda \exp\{-\lambda x\} dx = \lambda^{-1}, \text{var}(V) = \lambda^{-2} \).

For \(z > 0 \), one has

\[
\Pr[\min\{X, Y\} \geq z] = \exp\{-3z\}.
\]
Continuous RV

Let $X = Expo(1)$ and $Y = Expo(2)$ be independent. Let $W = \min\{X, Y\}$. Calculate $E[W]$.

Recall: $V = Expo(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\}1\{x \geq 0\}$.

Also, $Pr[V \leq x] = 1 - \exp\{-\lambda x\}$ for $x \geq 0$.

Moreover, $E[V] = \int_0^\infty x\lambda \exp\{-\lambda x\}dx = \lambda^{-1}$, $\text{var}(V) = \lambda^{-2}$.

For $z > 0$, one has

$$Pr[\min\{X, Y\} \geq z] = Pr[X \geq z, Y \geq z] =$$
Continuous RV

Let $X = Expo(1)$ and $Y = Expo(2)$ be independent. Let $W = \min\{X, Y\}$. Calculate $E[W]$.

Recall: $V = Expo(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\} 1\{x \geq 0\}$. Also, $Pr[V \leq x] = 1 - \exp\{-\lambda x\}$ for $x \geq 0$.

Moreover, $E[V] = \int_0^\infty x \lambda \exp\{-\lambda x\} dx = \lambda^{-1}$, $var(V) = \lambda^{-2}$.

For $z > 0$, one has

$$Pr[\min\{X, Y\} \geq z] = Pr[X \geq z, Y \geq z] = Pr[X \geq z]Pr[Y \geq z].$$
Continuous RV

Let $X = Expo(1)$ and $Y = Expo(2)$ be independent. Let $W = \min\{X, Y\}$. Calculate $E[W]$.

Recall: $V = Expo(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\}1\{x \geq 0\}$. Also, $Pr[V \leq x] = 1 - \exp\{-\lambda x\}$ for $x \geq 0$.

Moreover, $E[V] = \int_0^\infty x\lambda \exp\{-\lambda x\} dx = \lambda^{-1}$, $var(V) = \lambda^{-2}$.

For $z > 0$, one has

$$Pr[\min\{X, Y\} \geq z] = Pr[X \geq z, Y \geq z] = Pr[X \geq z]Pr[Y \geq z].$$

$$= \exp\{-z\} \exp\{-2z\}$$
Let $X = Expo(1)$ and $Y = Expo(2)$ be independent. Let $W = \min\{X, Y\}$. Calculate $E[W]$.

Recall: $V = Expo(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\}1\{x \geq 0\}$. Also, $Pr[V \leq x] = 1 - \exp\{-\lambda x\}$ for $x \geq 0$.

Moreover, $E[V] = \int_0^\infty x\lambda \exp\{-\lambda x\} dx = \lambda^{-1}$, $\text{var}(V) = \lambda^{-2}$.

For $z > 0$, one has

$$Pr[\min\{X, Y\} \geq z] = Pr[X \geq z, Y \geq z] = Pr[X \geq z]Pr[Y \geq z].$$

$$= \exp\{-z\}\exp\{-2z\} = \exp\{-3z\}.$$
Continuous RV

Let $X = \text{Expo}(1)$ and $Y = \text{Expo}(2)$ be independent.
Let $W = \min\{X, Y\}$. Calculate $E[W]$.
Recall: $V = \text{Expo}(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\}1\{x \geq 0\}$.
Also, $\Pr[V \leq x] = 1 - \exp\{-\lambda x\}$ for $x \geq 0$.
Moreover, $E[V] = \int_0^\infty x\lambda \exp\{-\lambda x\} dx = \lambda^{-1}, \text{var}(V) = \lambda^{-2}$.

For $z > 0$, one has

$$\Pr[\min\{X, Y\} \geq z] = \Pr[X \geq z, Y \geq z] = \Pr[X \geq z]\Pr[Y \geq z].$$
$$= \exp\{-z\} \exp\{-2z\} = \exp\{-3z\}.$$

Thus, $W = \text{Expo}(3)$.
Let $X = \text{Expo}(1)$ and $Y = \text{Expo}(2)$ be independent.
Let $W = \min\{X, Y\}$. Calculate $E[W]$.
Recall: $V = \text{Expo}(\lambda) \implies f_V(x) = \lambda \exp\{-\lambda x\}1\{x \geq 0\}$.
Also, $\Pr[V \leq x] = 1 - \exp\{-\lambda x\}$ for $x \geq 0$.
Moreover, $E[V] = \int_{0}^{\infty} x \lambda \exp\{-\lambda x\} dx = \lambda^{-1}$, $\text{var}(V) = \lambda^{-2}$.

For $z > 0$, one has

$$
\Pr[\min\{X, Y\} \geq z] = \Pr[X \geq z, Y \geq z] = \Pr[X \geq z] \Pr[Y \geq z].
$$

$$
= \exp\{-z\} \exp\{-2z\} = \exp\{-3z\}.
$$

Thus, $W = \text{Expo}(3)$. Hence, $E[W] = \frac{1}{3}$.

Continuous RV and Bayes’ Rule

W.p. 1/2, X, Y are i.i.d. $Exp(1)$ and w.p. 1/2, they are i.i.d. $Exp(3)$.

Let B be the event that $X \in [x, x + \delta]$ where $0 < \delta \ll 1$.

Let A be the event that X, Y are $Exp(1)$.

Then, $\Pr[A|B] = \frac{1}{2} \Pr[B|A] + \frac{1}{2} \Pr[B|\overline{A}]$

$$= \exp\left(-x\right) \delta \exp\left(-x\right) \delta + 3 \exp\left(-3x\right) \delta$$

$$= \exp\left(-2x\right) \delta + \exp\left(-2x\right) \delta + 3 \exp\left(-3x\right) \delta = e^2x^3 + e^2x.$$

Now, $E[Y|X=x] = E[Y|A] \Pr[A|X=x] + E[Y|\overline{A}] \Pr[\overline{A}|X=x]$.

We used $\Pr[Z \in [x, x + \delta]] \approx f_Z(x) \delta$ and given A one has $f_X(x) = \exp\left(-x\right)$ whereas given \overline{A} one has $f_X(x) = 3 \exp\left(-3x\right)$.

Continuous RV and Bayes’ Rule
W.p. 1/2, X, Y are i.i.d. Expo(1) and w.p. 1/2, they are i.i.d. Expo(3).

Calculate $E[Y|X = x]$.

Let B be the event that $X \in [x, x + \delta]$ where $0 < \delta \ll 1$.

Let A be the event that X, Y are Expo(1).

Then, $\Pr[A|B] = \left(\frac{1}{2}\right) \Pr[B|A] \left(\frac{1}{2}\right) \Pr[B|\bar{A}] + \left(\frac{1}{2}\right) \Pr[B|\bar{A}]$.

We used $\Pr[Z \in [x, x + \delta]] \approx f_Z(x) \delta$ and given A one has $f_X(x) = \exp\{-x\}$ whereas given \bar{A} one has $f_X(x) = 3\exp\{-3x\}$.

Continuous RV and Bayes’ Rule

W.p. 1/2, X, Y are i.i.d. $Expo(1)$ and w.p. 1/2, they are i.i.d. $Expo(3)$.

Calculate $E[Y|X = x]$.

Let B be the event that $X \in [x, x + \delta]$ where $0 < \delta \ll 1$.

We used $\Pr[Z \in [x, x + \delta]] \approx f_Z(x) \delta$ and given A one has $f_X(x) = \exp\{-x\}$ whereas given \bar{A} one has $f_X(x) = 3 \exp\{-3x\}$.

Continuous RV and Bayes’ Rule

W.p. 1/2, \(X, Y\) are i.i.d. \(\text{Expo}(1)\) and w.p. 1/2, they are i.i.d. \(\text{Expo}(3)\).

Calculate \(E[Y \mid X = x]\).

Let \(B\) be the event that \(X \in [x, x + \delta]\) where \(0 < \delta \ll 1\).

Let \(A\) be the event that \(X, Y\) are \(\text{Expo}(1)\).
Continuous RV and Bayes’ Rule

W.p. 1/2, X, Y are i.i.d. $\text{Expo}(1)$ and w.p. 1/2, they are i.i.d. $\text{Expo}(3)$.

Calculate $E[Y|X = x]$.

Let B be the event that $X \in [x, x + \delta]$ where $0 < \delta \ll 1$.

Let A be the event that X, Y are $\text{Expo}(1)$.

Then,

$$Pr[A|B] = \frac{(1/2)Pr[B|A]}{(1/2)Pr[B|A] + (1/2)Pr[B|\bar{A}]}$$
Continuous RV and Bayes’ Rule

W.p. 1/2, X, Y are i.i.d. $\text{Expo}(1)$ and w.p. 1/2, they are i.i.d. $\text{Expo}(3)$.

Calculate $E[Y|X = x]$.

Let B be the event that $X \in [x, x + \delta]$ where $0 < \delta \ll 1$.

Let A be the event that X, Y are $\text{Expo}(1)$.

Then,

\[
Pr[A|B] = \frac{(1/2)Pr[B|A]}{(1/2)Pr[B|A] + (1/2)Pr[B|\bar{A}]} = \frac{\exp\{-x\} \delta}{\exp\{-x\} \delta + 3 \exp\{-3x\} \delta}
\]
Continuous RV and Bayes’ Rule

W.p. 1/2, \(X, Y \) are i.i.d. Expo(1) and w.p. 1/2, they are i.i.d. Expo(3).

Calculate \(E[Y|X = x] \).

Let \(B \) be the event that \(X \in [x, x + \delta] \) where \(0 < \delta \ll 1 \).

Let \(A \) be the event that \(X, Y \) are Expo(1).

Then,

\[
Pr[A|B] = \frac{(1/2)Pr[B|A]}{(1/2)Pr[B|A] + (1/2)Pr[B|\bar{A}]} = \frac{\exp\{-x\}\delta}{\exp\{-x\}\delta + 3\exp\{-3x\}\delta}
\]

\[
= \frac{\exp\{-x\}}{\exp\{-x\} + 3\exp\{-3x\}}
\]
Continuous RV and Bayes’ Rule

W.p. 1/2, X, Y are i.i.d. $Expo(1)$ and w.p. 1/2, they are i.i.d. $Expo(3)$.

Calculate $E[Y|X = x]$.

Let B be the event that $X \in [x, x + \delta]$ where $0 < \delta \ll 1$.

Let A be the event that X, Y are $Expo(1)$.

Then,

$$Pr[A|B] = \frac{(1/2)Pr[B|A]}{(1/2)Pr[B|A] + (1/2)Pr[B|\bar{A}]} = \frac{\exp\{-x\}\delta}{\exp\{-x\}\delta + 3\exp\{-3x\}\delta}$$

$$= \frac{\exp\{-x\}}{\exp\{-x\} + 3\exp\{-3x\}} = \frac{e^{2x}}{3 + e^{2x}}.$$
Continuous RV and Bayes’ Rule

W.p. 1/2, \(X, Y \) are i.i.d. \(\text{Expo}(1) \) and w.p. 1/2, they are i.i.d. \(\text{Expo}(3) \).

Calculate \(E[Y|X = x] \).

Let \(B \) be the event that \(X \in [x, x + \delta] \) where \(0 < \delta \ll 1 \).

Let \(A \) be the event that \(X, Y \) are \(\text{Expo}(1) \).

Then,

\[
Pr[A|B] = \frac{(1/2)Pr[B|A]}{(1/2)Pr[B|A] + (1/2)Pr[B|\bar{A}]} = \frac{\exp\{-x\} \delta}{\exp\{-x\} \delta + 3 \exp\{-3x\} \delta} = \frac{\exp\{-x\}}{\exp\{-x\} + 3 \exp\{-3x\}} = \frac{\exp2x}{3 + \exp2x}.
\]

Now,

\[
E[Y|X = x] = E[Y|A]Pr[A|X = x] + E[Y|\bar{A}]Pr[\bar{A}|X = x]
\]
Continuous RV and Bayes’ Rule

W.p. 1/2, \(X, Y \) are i.i.d. \(\text{Expo}(1) \) and w.p. 1/2, they are i.i.d. \(\text{Expo}(3) \).

Calculate \(E[Y|X = x] \).

Let \(B \) be the event that \(X \in [x, x + \delta] \) where \(0 < \delta \ll 1 \).

Let \(A \) be the event that \(X, Y \) are \(\text{Expo}(1) \).

Then,
\[
Pr[A|B] = \frac{(1/2)Pr[B|A]}{(1/2)Pr[B|A] + (1/2)Pr[B|\bar{A}]} = \frac{\exp\{-x\}\delta}{\exp\{-x\}\delta + 3\exp\{-3x\}\delta} = \frac{\exp\{-x\}}{\exp\{-x\} + 3\exp\{-3x\}} = \frac{e^{2x}}{3 + e^{2x}}.
\]

Now,
\[
E[Y|X = x] = E[Y|A]Pr[A|X = x] + E[Y|\bar{A}]Pr[\bar{A}|X = x]
= 1 \times Pr[A|X = x] + (1/3)Pr[\bar{A}|X = x]
\]
Continuous RV and Bayes’ Rule

W.p. 1/2, X, Y are i.i.d. $\text{Expo}(1)$ and w.p. 1/2, they are i.i.d. $\text{Expo}(3)$.

Calculate $E[Y|X = x]$.

Let B be the event that $X \in [x, x + \delta]$ where $0 < \delta \ll 1$.

Let A be the event that X, Y are $\text{Expo}(1)$.

Then,

$$Pr[A|B] = \frac{(1/2)Pr[B|A]}{(1/2)Pr[B|A] + (1/2)Pr[B|\bar{A}]} = \frac{\exp\{-x\}\delta}{\exp\{-x\}\delta + 3\exp\{-3x\}\delta} = \frac{\exp\{-x\}}{\exp\{-x\} + 3\exp\{-3x\}} = \frac{e^{2x}}{3 + e^{2x}}.$$

Now,

$$E[Y|X = x] = E[Y|A]Pr[A|X = x] + E[Y|\bar{A}]Pr[\bar{A}|X = x]$$

$$= 1 \times Pr[A|X = x] + (1/3)Pr[\bar{A}|X = x]... = \frac{1 + e^{2x}}{3 + e^{2x}}.$$

We used $Pr[Z \in [x, x + \delta]] \approx f_Z(x)\delta$ and given A one has $f_X(x) = \exp\{-x\}$ whereas given \bar{A} one has $f_X(x) = 3\exp\{-3x\}$.
Rolling Dice

You roll a balanced die.
Rolling Dice

You roll a balanced die.

You start with $1.00.
Rolling Dice

You roll a balanced die.

You start with $1.00.

Every time you get a 6, your fortune is multiplied by 10.
Rolling Dice

You roll a balanced die.

You start with $1.00.

Every time you get a 6, your fortune is multiplied by 10.
Every time you do not get a 6, your fortune is divided by 2.
Rolling Dice

You roll a balanced die.

You start with $1.00.

Every time you get a 6, your fortune is multiplied by 10.
Every time you do not get a 6, your fortune is divided by 2.

Let X_n be your fortune at the start of step n,

$$E[X_{n+1}] = 10 \cdot P(6) + \frac{1}{2} \cdot P(\text{not 6})$$

$$E[X_{n+1}] = 10 \cdot \frac{1}{6} + \frac{1}{2} \cdot \frac{5}{6}$$

$$E[X_{n+1}] = \frac{11}{6} \approx 1.83$$

Hence,

$$E[X_{n+1}] = \rho \cdot E[X_n]$$

for $n \geq 1$.

Thus,

$$E[X_n] = \rho^{n-1} E[X_1]$$

$$E[X_n] = \frac{11}{6}^{n-1}$$

$$E[X_n] \approx \left(\frac{11}{6}\right)^{n-1}$$
Rolling Dice

You roll a balanced die.
You start with $1.00.
Every time you get a 6, your fortune is multiplied by 10.
Every time you do not get a 6, your fortune is divided by 2.
Let X_n be your fortune at the start of step n,
Calculate $E[X_n]$.
Rolling Dice

You roll a balanced die.

You start with $1.00.

Every time you get a 6, your fortune is multiplied by 10.
Every time you do not get a 6, your fortune is divided by 2.
Let X_n be your fortune at the start of step n,

Calculate $E[X_n]$.

We have $X_1 = 1$.
Rolling Dice

You roll a balanced die.
You start with $1.00.
Every time you get a 6, your fortune is multiplied by 10.
Every time you do not get a 6, your fortune is divided by 2.
Let X_n be your fortune at the start of step n.
Calculate $E[X_n]$.

We have $X_1 = 1$. Also,

$$E[X_{n+1}|X_n] = X_n \times \left[10 \cdot \frac{1}{6} + 0.5 \times \frac{5}{6}\right]$$
Rolling Dice

You roll a balanced die.
You start with $1.00.
Every time you get a 6, your fortune is multiplied by 10.
Every time you do not get a 6, your fortune is divided by 2.
Let X_n be your fortune at the start of step n,
Calculate $E[X_n]$.

We have $X_1 = 1$. Also,

$$E[X_{n+1}|X_n] = X_n \times \left[10 \frac{1}{6} + 0.5 \times \frac{5}{6} \right]$$

$$= \rho X_n, \rho = 10 \frac{1}{6} + 0.5 \times \frac{5}{6}$$
Rolling Dice

You roll a balanced die.

You start with $1.00.

Every time you get a 6, your fortune is multiplied by 10.
Every time you do not get a 6, your fortune is divided by 2.

Let X_n be your fortune at the start of step n.

Calculate $E[X_n]$.

We have $X_1 = 1$. Also,

$$E[X_{n+1}|X_n] = X_n \times [10 \frac{1}{6} + 0.5 \times \frac{5}{6}]$$

$$= \rho X_n, \rho = 10 \frac{1}{6} + 0.5 \times \frac{5}{6} \approx 2.1.$$
Rolling Dice

You roll a balanced die.

You start with $1.00.

Every time you get a 6, your fortune is multiplied by 10.
Every time you do not get a 6, your fortune is divided by 2.

Let X_n be your fortune at the start of step n.

Calculate $E[X_n]$.

We have $X_1 = 1$. Also,

$$E[X_{n+1} | X_n] = X_n \times \left[10 \frac{1}{6} + 0.5 \times \frac{5}{6}\right]$$

$$= \rho X_n, \quad \rho = 10 \frac{1}{6} + 0.5 \times \frac{5}{6} \approx 2.1.$$

Hence,

$$E[X_{n+1}] = \rho E[X_n], \quad n \geq 1.$$
Rolling Dice

You roll a balanced die.

You start with $1.00.

Every time you get a 6, your fortune is multiplied by 10.
Every time you do not get a 6, your fortune is divided by 2.
Let X_n be your fortune at the start of step n,
Calculate $E[X_n]$.

We have $X_1 = 1$. Also,

$$E[X_{n+1}|X_n] = X_n \times \left[10 \frac{1}{6} + 0.5 \times \frac{5}{6}\right]$$

$$= \rho X_n, \quad \rho = 10 \frac{1}{6} + 0.5 \times \frac{5}{6} \approx 2.1.$$

Hence,

$$E[X_{n+1}] = \rho E[X_n], \quad n \geq 1.$$

Thus,

$$E[X_n] = \rho^{n-1}, \quad n \geq 1.$$
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$.

$\sum_{n=0}^{\infty} a_n = \frac{1}{a}$.

CS70 is difficult.

I will do poorly on the final.

Walrand is really weird. Probably!
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. **No**: They are independent.

 Let

 $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.
 - Let $X = 0, Y = 1$. **No**: They are independent.
 - Let $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.
- $3 \times 3.5 = 12.5$.
Common Mistakes

- ▶ $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. **No:** They are independent.

 Let

 $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- ▶ $3 \times 3.5 = 12.5$. **No.**
Common Mistakes

- $\Omega = \{1,2,3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.
 - Let $X = 0, Y = 1$. No: They are independent.
 - Let $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.
- $3 \times 3.5 = 12.5$. No.
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.

 Let

 $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. No.

Common Mistakes

- Ω = \{1, 2, 3\}. Define X, Y with \(\text{cov}(X, Y) = 0\) and X, Y not independent.

 Let X = 0, Y = 1. No: They are independent.

 Let
 \[X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0. \]

- \(3 \times 3.5 = 12.5\). No.

- \(E[X^2] = E[X]^2\). No.

- \(X = B(n, p) \implies \text{var}(X) = n^2 p(1 - p)\).
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. **No:** They are independent.

 Let $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. **No.**

- $E[X^2] = E[X]^2$. **No.**

- $X = B(n, p) \implies \text{var}(X) = n^2 p(1 - p)$. **No.**
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.

- Let

 $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. No.

- $X = B(n, p) \implies \text{var}(X) = n^2 p(1 - p)$. No.

- $E[X] = E[X|A] + E[X|\tilde{A}]$. No.
Common Mistakes

- \(\Omega = \{1,2,3\} \). Define \(X, Y \) with \(\text{cov}(X, Y) = 0 \) and \(X, Y \) not independent.

 Let \(X = 0, Y = 1 \). **No**: They are independent.

 Let
 \[
 X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0.
 \]

- \(3 \times 3.5 = 12.5 \). **No**.
- \(E[X^2] = E[X]^2 \). **No**.
- \(X = B(n, p) \implies \text{var}(X) = np(1-p) \). **No**.
- \(E[X] = E[X|A] + E[X|\bar{A}] \). **No**.
Common Mistakes

- \(\Omega = \{1, 2, 3\} \). Define \(X, Y \) with \(\text{cov}(X, Y) = 0 \) and \(X, Y \) not independent.

 Let \(X = 0, Y = 1 \). No: They are independent.

 Let

 \[
 X(1) = -1, X(2) = 0, X(1) = 1, \]

 \[
 Y(1) = 0, Y(2) = 1, Y(3) = 0. \]

- \(3 \times 3.5 = 12.5 \). No.

- \(E[X^2] = E[X]^2 \). No.

- \(X = B(n, p) \implies \text{var}(X) = n^2 p(1 - p) \). No.

- \(E[X] = E[X|A] + E[X|\bar{A}] \). No.

- \(\sum_{n=0}^{\infty} a^n = 1/a \).
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. **No**: They are independent.

 Let $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. **No**.
- $E[X^2] = E[X]^2$. **No**.
- $X = B(n, p) \implies \text{var}(X) = np(1-p)$. **No**.
- $E[X] = E[X|A] + E[X|\bar{A}]$. **No**.
- $\sum_{n=0}^{\infty} a^n = 1/a$. **No**.
Common Mistakes

- \(\Omega = \{1, 2, 3\} \). Define \(X, Y \) with \(\text{cov}(X, Y) = 0 \) and \(X, Y \) not independent.

 Let \(X = 0, Y = 1 \). No: They are independent.

 Let
 \[
 X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0.
 \]

- \(3 \times 3.5 = 12.5 \). No.

- \(E[X^2] = E[X]^2 \). No.

- \(X = B(n, p) \implies \text{var}(X) = np(1-p) \). No.

- \(E[X] = E[X|A] + E[X|\bar{A}] \). No.

- \(\sum_{n=0}^{\infty} a^n = 1/a \). No.

- CS70 is difficult.
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.

 Let $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. No.

- $X = B(n, p) \implies \text{var}(X) = n^2 p(1 - p)$. No.

- $E[X] = E[X|A] + E[X|\bar{A}]$. No.

- $\sum_{n=0}^{\infty} a^n = 1/a$. No.

- CS70 is difficult. No.
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.

 Let $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. No.

- $X = B(n, p) \implies \text{var}(X) = n^2p(1-p)$. No.

- $E[X] = E[X|A] + E[X|\overline{A}]$. No.

- $\sum_{n=0}^{\infty} a^n = 1/a$. No.

- CS70 is difficult. No.

- I will do poorly on the final.
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. **No**: They are independent.

 Let $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. **No**.

- $E[X^2] = E[X]^2$. **No**.

- $X = B(n, p) \implies \text{var}(X) = np(1-p)$. **No**.

- $E[X] = E[X|A] + E[X|\bar{A}]$. **No**.

- $\sum_{n=0}^{\infty} a^n = 1/a$. **No**.

- CS70 is difficult. **No**.

- I will do poorly on the final. **No**.
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. **No**: They are independent.

 Let

 $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. **No**.

- $E[X^2] = E[X]^2$. **No**.

- $X = B(n, p) \implies \text{var}(X) = np(1 - p)$. **No**.

- $E[X] = E[X|A] + E[X|\bar{A}]$. **No**.

- $\sum_{n=0}^{\infty} a^n = 1/a$. **No**.

- CS70 is difficult. **No**.

- I will do poorly on the final. **No**.

- Walrand is really weird.
Common Mistakes

- $\Omega = \{1,2,3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.

 Let

 $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. No.

- $X = B(n,p) \iff \text{var}(X) = np(1-p)$. No.

- $E[X] = E[X|A] + E[X|\bar{A}]$. No.

- $\sum_{n=0}^{\infty} a^n = 1/a$. No.

- CS70 is difficult. No.

- I will do poorly on the final. No.

- Walrand is really weird. Probably!.
Thanks and Best Wishes!
Thanks and Best Wishes!