Stable Marriage Problem

- Small town with n boys and n girls.
- Each girl has a ranked preference list of boys.
- Each boy has a ranked preference list of girls.

How should they be matched?
Count the ways.

- Maximize total satisfaction.
- Maximize number of first choices.
- Maximize worse off.
- Minimize difference between preference ranks.
The best laid plans..

Consider the couples..

- Jennifer and Brad
- Angelina and Billy-Bob

Brad prefers Angelina to Jennifer.
Angelina prefers Brad to Billy-Bob.
Uh..oh.
So..

Produce a pairing where there is no running off!

Definition: A **pairing** is disjoint set of n boy-girl pairs.

Example: A pairing $S = \{(Brad, Jen); (BillyBob, Angelina)\}$.

Definition: A **rogue couple** b, g^* for a pairing S: b and g^* prefer each other to their partners in S

Example: Brad and Angelina are a rogue couple in S.
A stable pairing??

Given a set of preferences.

Is there a stable pairing?

How does one find it?

Consider a single gender version: stable roommates.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

A graph representation of the stable roommates problem:
The Traditional Marriage Algorithm.

Each Day:

1. Each boy **proposes** to his favorite woman on his list.
2. Each girl rejects all but her favorite proposer (whom she puts on a **string**.)
3. Rejected boy **crosses** rejecting girl off his list.

Stop when each woman gets exactly one proposal. Does this terminate?

...produce a pairing?

....a stable pairing?

Do boys or girls do “better”?
Example.

<table>
<thead>
<tr>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A, B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>A, C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Every non-terminated day a boy crossed an item off the list.
Total size of lists? n boys, n length list. n^2
Terminates in at most $n^2 + 1$ steps!
It gets better every day for girls..

Improvement Lemma:
On any day, if girl has a boy b on a string, any future boy, b', on string is at least as good as b.

Proof:

$P(k)$ - “every day before k girl had better boy.”

$P(0)$ – always true as there is no day before.

Assume $P(k)$. Let b be boy on string on day k.

On day $k+1$, boy b comes back.

Girl can choose b just as well, or do better.

$\implies P(k+1)$.
Lemma: Every boy is matched at end.

Proof:
If not, a boy b must have been rejected n times.

Every girl has been proposed to by b, and Improvement lemma

\implies each girl has a boy on a string.
and each boy on at most one string.

n girls and n boys. Same number of each.

\implies b must be on some girl’s string!
Contradiction.
Pairing is Stable.

Lemma: There is no rogue couple for the pairing formed by traditional marriage algorithm.

Proof:
Assume there is a rogue couple; \((b, g^*)\)

\[
\begin{align*}
&\begin{array}{c}
b \\
b^*
\end{array}
\quad \begin{array}{c}
g \\
g^*
\end{array}
\quad \begin{array}{c}
b \text{ likes } g^* \text{ more than } g. \\
g^* \text{ likes } b \text{ more than } b^*.
\end{array}
\]

Boy \(b\) proposes to \(g^*\) before proposing to \(g\).
So \(g^*\) rejected \(b\) (since he moved on)
By improvement lemma, \(g^*\) likes \(b^*\) better than \(b\).
Contradiction.
Good for boys? girls?

Definition: A pairing is x-optimal if x’s partner is its best partner in any stable pairing.

Definition: A pairing is x-pessimal if x’s partner is its worst partner in any stable pairing.

Definition: A pairing is boy optimal if it is optimal for boys x.

..and so on for boy pessimal, girl optimal, girl pessimal.
TMA is...

Good for boys??

Theorem: TMA produces a boy-optimal pairing.

There are boys who do not get their optimal girl.

Let \(t \) be first day a boy \(b \) gets rejected by his optimal girl \(g \) from a stable pairing \(S \).

\(b^* \) - knocks off \(b \) on day \(t \) \(\implies \) \(g \) prefers \(b^* \) to \(b \)

By choice of \(t \), \(b^* \) prefers \(g \) to optimal girl.

\(\implies \) \(b^* \) prefers \(g \) to his partner \(g^* \) in \(S \).

Rogue couple for \(S \).

\(S \) is not a stable pairing. Contradiction.

Used Well-Ordering principle...again.
How about for girls?

Theorem: TMA produces girl-pessimal pairing.

T – pairing produced by TMA.

S – worse stable pairing for girl *g*.

In *T*, *(g, b)* is pair.

In *S*, *(g, b*) is pair.

g likes *b* less than she likes *b*.

T is boy optimal, so *b* likes *g* more than his partner in *S*.

Rogue couple for S

S is not stable.

Contradiction.
Residency Matching..

The method was used to match residents to hospitals.
In dating software.
For matching jobs to servers....