Stable Marriage Problem

- Small town with \(n \) boys and \(n \) girls.
- Each girl has a ranked preference list of boys.
- Each boy has a ranked preference list of girls.

How should they be matched?

Count the ways..

- Maximize total satisfaction.
- Maximize number of first choices.
- Maximize worse off.
- Minimize difference between preference ranks.

The best laid plans..

Consider the couples:
- Jennifer and Brad
- Angelina and Billy-Bob

Brad prefers Angelina to Jennifer.
Angelina prefers Brad to Billy-Bob.

Uh..oh.

So..

Produce a pairing where there is no running off!

Definition: A *pairing* is disjoint set of \(n \) boy-girl pairs.

Example: A pairing \(S = \{\{\text{Brad, Jen}\}, \{\text{BillyBob, Angelina}\}\} \).

Definition: A *rogue couple* \(b, g^* \) for a pairing \(S \):
- \(b \) and \(g^* \) prefer each other to their partners in \(S \)

Example: Brad and Angelina are a rogue couple in \(S \).

A stable pairing??

Given a set of preferences.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>A</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

Is there a stable pairing?

How does one find it?

Consider a single gender version: stable roommates.

Example: Brad and Angelina are a rogue couple in \(S \).

The Traditional Marriage Algorithm.

Each Day:
1. Each boy proposes to his favorite woman on his list.
2. Each girl rejects all but her favorite proposer (whom she puts on a string.)
3. Rejected boy crosses rejecting girl off his list.

Stop when each woman gets exactly one proposal.

Does this terminate?

...produce a pairing?

....a stable pairing?

Do boys or girls do “better”?
Example.

<table>
<thead>
<tr>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
</tr>
</tbody>
</table>

Day 1 Day 2 Day 3 Day 4 Day 5

1	A, B	X	A
2	C	B	A, B
3	B	A	

Termination.

Every non-terminated day a boy crossed an item off the list.
Total size of lists? \(n \) boys, \(n \) length list. \(n^2 \)
Terminates in at most \(n^2 + 1 \) steps!

Improvement Lemma:
On any day, if a boy \(b \) on a string, any future boy, \(b' \), on string is at least as good as \(b \).

Proof:
\(P(k) \)- “every day before \(k \) girl had better boy:”
\(P(0) \)– always true as there is no day before.
Assume \(P(k) \). Let \(b \) be boy on string on day \(k \).
On day \(k + 1 \), boy \(b \) comes back.
Girl can choose \(b \) just as well, or do better.
\(\implies P(k + 1) \).

Pairing when done.

Lemma: Every boy is matched at end.
Proof:
If not, a boy \(b \) must have been rejected \(n \) times.
Every girl has been proposed to by \(b \), and Improvement lemma
\(\implies \) each girl has a boy on a string.
and each boy on at most one string.
\(n \) girls and \(n \) boys. Same number of each.
\(\implies b \) must be on some girl’s string!
Contradiction.

Pairing is Stable.

Lemma: There is no rogue couple for the pairing formed by traditional marriage algorithm.

Proof:
Assume there is a rogue couple; \((b, g^*) \)

\[b \quad g \quad b \text{ likes } g^* \text{ more than } g. \]
\[b' \quad g' \quad g' \text{ likes } b \text{ more than } b'. \]

Boy \(b \) proposes to \(g' \) before proposing to \(g \).
So \(g^* \) rejected \(b \) (since he moved on)
By improvement lemma, \(g^* \) likes \(b^* \) better than \(b \).
Contradiction.

Good for boys? girls?

Definition: A pairing is \(x \)-optimal if \(x \)'s partner is its best partner in any stable pairing.
Definition: A pairing is \(x \)-pessimal if \(x \)'s partner is its worst partner in any stable pairing.
Definition: A pairing is boy optimal if it is optimal for boys \(x \).

...and so on for boy pessimal, girl optimal, girl pessimal.
TMA is...

Good for boys??

Theorem: TMA produces a boy-optimal pairing.

There are boys who do not get their optimal girl.

Let \(t \) be the first day a boy \(b \) gets rejected by his optimal girl \(g \) from a stable pairing \(S \).

\(b' \) - knocks off \(b \) on day \(t \) \(\Rightarrow g \) prefers \(b' \) to \(b \)

By choice of \(t \), \(b' \) prefers \(g \) to optimal girl.

\(\Rightarrow b' \) prefers \(g \) to his partner \(g' \) in \(S \).

Rogue couple for \(S \).

\(o S \) is not a stable pairing. Contradiction.

Used Well-Ordering principle...again.

How about for girls?

Theorem: TMA produces girl-pessimal pairing.

\(T \) – pairing produced by TMA.

\(S \) – worse stable pairing for girl \(g \).

In \(T \), \((g, b)\) is pair.

In \(S \), \((g, b')\) is pair.

\(g \) likes \(b' \) less than she likes \(b \).

\(T \) is boy optimal, so \(b \) likes \(g \) more than his partner in \(S \).

Rogue couple for \(S \).

\(S \) is not stable.

Contradiction.

Residency Matching..

The method was used to match residents to hospitals.

In dating software.

For matching jobs to servers....

.....