Today.

Types of graphs.

Complete Graphs.
Trees.
Hypercubes.
Complete Graph.

K_n, complete graph on n vertices.
All edges are present.
Everyone is my neighbor.
Each vertex is adjacent to every other vertex.

How many edges?
Each vertex is incident to $n-1$ edges.
Sum of degrees is $n(n-1)$.
⇒ Number of edges is $n(n-1)/2$.
Remember sum of degree is $2|E|$.

K_4 and K_5

K_5 is not planar.

Cannot be drawn in the plane without an edge crossing!

Prove it! Alas. Different course.
A Tree, a tree.

Graph $G = (V, E)$. Binary Tree!

More generally.
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.
$|V| - 1$ edges and connected? Yes.
removing any edge disconnects it. Harder to check. but yes.
Adding any edge creates cycle. Harder to check. but yes.

To tree or not to tree!
Equivalence of Definitions.

Theorem:
“G connected and has $|V| - 1$ edges” \equiv
“G is connected and has no cycles.”

Lemma: If v is a degree 1 in connected graph G, $G - v$ is connected.

Proof:
For $x \neq v, y \neq v \in V$,
there is path between x and y in G since connected.
and does not use v (degree 1)
$\implies G - v$ is connected.
Proof of only if.

Thm:
“G connected and has $|V| - 1$ edges” \equiv
“G is connected and has no cycles.”

Proof of \Rightarrow: By induction on $|V|$.

Base Case: $|V| = 1$. 0 = $|V| - 1$ edges and has no cycles.

Induction Step:

Claim: There is a degree 1 node.

Proof: First, connected \Rightarrow every vertex degree ≥ 1.

Sum of degrees is $2|V| - 2$
Average degree $2 - 2/|V|$

Not everyone is bigger than average!

By degree 1 removal lemma, $G - v$ is connected.

$G - v$ has $|V| - 1$ vertices and $|V| - 2$ edges so by induction
\Rightarrow no cycle in $G - v$.

And no cycle in G since degree 1 cannot participate in cycle.
Proof of if

Thm:
“G is connected and has no cycles” \(\implies\) “G connected and has \(|V| – 1\) edges”

Proof:
Walk from a vertex using untraversed edges.
Until get stuck.

Claim: Degree 1 vertex.

Proof of Claim:
Can’t visit more than once since no cycle.
Entered. Didn’t leave. Only one incident edge.
Removing node doesn’t create cycle.
New graph is connected.
Removing degree 1 node doesn’t disconnect from Degree 1 lemma.
By induction \(G – v\) has \(|V| – 2\) edges.
\(G\) has one more or \(|V| – 1\) edges.
Tree’s fall apart.

Thm: Removing a single disconnects $|V|/2$ nodes from each other.

Idea of proof.
Point edge toward bigger side.
Remove center node.
Hypercubes.

Complete graphs, really connected! But lots of edges.

$|V|(|V| - 1)/2$

Trees, But few edges. $(|V| - 1)$

just falls apart!

Hypercubes. Really connected. $|V| \log |V|$ edges!

Also represents bit-strings nicely.

$G = (V, E)$

$|V| = \{0, 1\}^n$,

$|E| = \{(x, y) | x \text{ and } y \text{ differ in one bit position.}\}$

2^n vertices. number of n-bit strings!

$n2^{n-1}$ edges.

2^n vertices each of degree n

total degree is $n2^n$ and half as many edges!
A 0-dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a $n-1$-dimensional hypercube with nodes labelled $0x$ ($1x$) with the additional edges $(0x, 1x)$.
Thm: Any subset S of the hypercube where $|S| \leq |V|/2$ has $\geq |S|$ edges connecting it to $V - S$; $|E \cap S \times (V - S)| \geq |S|$

Terminology:
$(S, V - S)$ is cut.
$(E \cap S \times (V - S))$ - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges is at least the size of the small side.
Proof of Large Cuts.

Thm: For any cut \((S, V - S)\) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:
Base Case: \(n = 1\) \(V = \{0, 1\}\).
- \(S = \{0\}\) has one edge leaving. \(|S| = \phi\) has 0.
Thm: For any cut \((S, V - S)\) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.

Case 2: Count inside and across.
Thm: For any cut \((S, V - S)\) in the hypercube, the number of cut edges is at least the size of the small side, \(|S|\).

Proof: Induction Step.

Recursive definition:

- \(H_0 = (V_0, E_0)\), \(H_1 = (V_1, E_1)\), edges \(E_x\) that connect them.
- \(H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)\)
- \(S = S_0 \cup S_1\) where \(S_0\) in first, and \(S_1\) in other.

Case 1: \(|S_0| \leq |V_0|/2, |S_1| \leq |V_1|/2\)

Both \(S_0\) and \(S_1\) are small sides. So by induction.

- Edges cut in \(H_0 \geq |S_0|\).
- Edges cut in \(H_1 \geq |S_1|\).

Total cut edges \(\geq |S_0| + |S_1| = |S|\).
Induction Step. Case 2.

Thm: For any cut \((S, V - S)\) in the hypercube, the number of cut edges is at least the size of the small side, \(|S|\).

Proof: Induction Step. Case 2. \(|S_0| \geq |V_0|/2\).

Recall Case 1: \(|S_0|, |S_1| \leq |V|/2\)

\(|S_1| \leq |V_1|/2\) since \(|S| \leq |V|/2\).

\[\Rightarrow \geq |S_1| \text{ edges cut in } E_1.\]

\(|S_0| \geq |V_0|/2 \Rightarrow |V_0 - S| \leq |V_0|/2\)

\[\Rightarrow \geq |V_0| - |S_0| \text{ edges cut in } E_0.\]

Edges in \(E_x\) connect corresponding nodes.

\[\Rightarrow = |S_0| - |S_1| \text{ edges cut in } E_x.\]

Total edges cut:

\[\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|\]

\[|V_0| = |V|/2 \geq |S|.\]

Also, case 3 where \(|S_1| \geq |V|/2\) is symmetric.
The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0, 1\}^n$.

Central area of study in computer science!

Yes/No Computer Programs \equiv Boolean function on $\{0, 1\}^n$

Central object of study.
Have a nice weekend!