1. **Countability Basics**

 (a) Is \(f : \mathbb{N} \to \mathbb{N} \), defined by \(f(n) = n^2 \) an injection (one-to-one)? Briefly justify.

 (b) Is \(f : \mathbb{R} \to \mathbb{R} \), defined by \(f(x) = x^3 + 1 \) a surjection (onto)? Briefly justify.

2. **Count it!**

 For each of the following collections, determine and briefly explain whether it is finite, countably infinite (like the natural numbers), or uncountably infinite (like the reals):

 (a) The integers which divide 8.

 (b) The integers which 8 divides.

 (c) The functions from \(\mathbb{N} \to \mathbb{N} \).

 (d) Computer programs that halt.

 (e) Computer programs that always correctly tell if a program halts or not.

 (f) Numbers that are the roots of nonzero polynomials with integer coefficients.

 (g) The number of points in the unit square \([0, 1] \times [0, 1]\)

 (h) Computer programs that correctly return the product of their two integer arguments

3. **Countable and Uncountable.**

 (a) Give a bijection from the real number interval \((1, \infty)\) to the real number interval \((0, 1)\). (Notice the intervals are open.)

 (b) Given an \(n \times n \) matrix \(A \) where the diagonal consist of alternating 1’s and 0’s starting from 1, \(A[0, 0] = 1 \), describe a \(n \) length vector from \(\{0, 1\}^n \) that is not equal to a row in the matrix. (Hint: the all ones vector or the all zeros vector of length \(n \) could each be rows in the matrix.)

4. **Computability.**

 (a) The problem of determining whether a program halts in time \(2^{n^2} \) on an input of size \(n \) is undecidable. (True or False.)

 (b) There is no computer program DEAD which takes a program \(P \), an input, \(x \), and a line number, \(n \), and determines whether the \(n \)th line of code is executed when the program \(P \) is run on the input \(x \). (True or False.)