70: Discrete Math and Probability Theory

Superpower!

What are your super powerful programs/processors doing?

Logic and Proofs!

Induction ≡ Recursion.

What can computers do?

Work with discrete objects.

Discrete Math = ⇒ immense application.

Computers learn and interact with the world?

E.g. machine learning, data analysis, robotics, ...

Probability!

See note 1, for more discussion.
70: Discrete Math and Probability Theory

Programming + Microprocessors
Programming + Microprocessors ≡ Superpower!
Programming + Microprocessors \equiv Superpower!

What are your super powerful programs/processors doing?
Programming + Microprocessors ≡ Superpower!

What are your super powerful programs/processors doing?
Logic and Proofs!
Programming + Microprocessors ≡ Superpower!

What are your super powerful programs/processors doing?
Logic and Proofs!
Induction ≡ Recursion.
Programming + Microprocessors ≡ Superpower!

What are your super powerful programs/processors doing?
 Logic and Proofs!
 Induction ≡ Recursion.

What can computers do?
Programming + Microprocessors \equiv Superpower!

What are your super powerful programs/processors doing?
 Logic and Proofs!
 Induction \equiv Recursion.

What can computers do?
 Work with discrete objects.
Programming + Microprocessors \equiv Superpower!

What are your super powerful programs/processors doing?
 Logic and Proofs!
 Induction \equiv Recursion.

What can computers do?
 Work with discrete objects.
Discrete Math
Programming + Microprocessors ≡ Superpower!

What are your super powerful programs/processors doing?
 Logic and Proofs!
 Induction ≡ Recursion.

What can computers do?
 Work with discrete objects.
 Discrete Math ⇒ immense application.
Programming + Microprocessors ≡ Superpower!

What are your super powerful programs/processors doing?
 Logic and Proofs!
 Induction ≡ Recursion.

What can computers do?
 Work with discrete objects.
 Discrete Math ⇒ immense application.

Computers learn and interact with the world?
Programming + Microprocessors \equiv Superpower!

What are your super powerful programs/processors doing?
 Logic and Proofs!
 Induction \equiv Recursion.

What can computers do?
 Work with discrete objects.
 Discrete Math \implies immense application.

Computers learn and interact with the world?
 E.g. machine learning, data analysis, robotics, ...
Programming + Microprocessors ≡ Superpower!

What are your super powerful programs/processors doing?
 Logic and Proofs!
 Induction ≡ Recursion.

What can computers do?
 Work with discrete objects.
 Discrete Math ✶ly immense application.

Computers learn and interact with the world?
 E.g. machine learning, data analysis, robotics, ...
 Probability!
Programming + Microprocessors \(\equiv\) Superpower!

What are your super powerful programs/processors doing?
 Logic and Proofs!
 Induction \(\equiv\) Recursion.

What can computers do?
 Work with discrete objects.
 Discrete Math \(\implies\) immense application.

Computers learn and interact with the world?
 E.g. machine learning, data analysis, robotics, ...
 Probability!

See note 1, for more discussion.
Instructor: Sanjit Seshia.
Instructors

Instructor: Sanjit Seshia.
Professor of EECS (office: 566 Cory)
Instructor: Sanjit Seshia.
Professor of EECS (office: 566 Cory)
Starting 12th year at Berkeley.
Instructor: Sanjit Seshia.
Professor of EECS (office: 566 Cory)
Starting 12th year at Berkeley.
PhD: in Computer Science, from Carnegie Mellon University.
Instructor: Sanjit Seshia.
Professor of EECS (office: 566 Cory)
Starting 12th year at Berkeley.
PhD: in Computer Science, from Carnegie Mellon University.
Research: Formal Methods
Instructor: Sanjit Seshia.
Professor of EECS (office: 566 Cory)
Starting 12th year at Berkeley.
PhD: in Computer Science, from Carnegie Mellon University.
Research: Formal Methods (a.k.a. Computational Proof Methods)
Instructors

Instructor: Sanjit Seshia.
Professor of EECS (office: 566 Cory)
Starting 12th year at Berkeley.
PhD: in Computer Science, from Carnegie Mellon University.
Research: Formal Methods (a.k.a. Computational Proof Methods)
 applied to cyber-physical systems (e.g. “self-driving” cars), computer security, ...
Instructor: Sanjit Seshia.
Professor of EECS (office: 566 Cory)
Starting 12th year at Berkeley.
PhD: in Computer Science, from Carnegie Mellon University.
Research: Formal Methods (a.k.a. Computational Proof Methods)
 applied to cyber-physical systems (e.g. “self-driving” cars), computer security, ...
Taught: 149, 172, 144/244, 219C, EECS149.1x on edX, ...
I was born in Belgium(1) and came to Berkeley for my PhD. I have been teaching at UCB since 1982.

My wife and I live in Berkeley. We have two daughters (UC alumni – Go Bears!). We like to ski and play tennis (both poorly). We enjoy classical music and jazz.

My research interests include stochastic systems, networks and game theory.

(1)
Course Webpage: http://www.eecs70.org/
Course Webpage: http://www.eecs70.org/

Explains policies, has office hours, homework, midterm dates, etc.
Course Webpage: http://www.eecs70.org/

Explains policies, has office hours, homework, midterm dates, etc.

Two midterms, final.
Course Webpage: http://www.eecs70.org/

Explains policies, has office hours, homework, midterm dates, etc.

Two midterms, final.
midterm 1 before drop date.
Course Webpage: http://www.eecs70.org/

Explains policies, has office hours, homework, midterm dates, etc.

Two midterms, final.
 midterm 1 before drop date.
 midterm 2 before grade option change.
Course Webpage: http://www.eecs70.org/

Explains policies, has office hours, homework, midterm dates, etc.

Two midterms, final.
 midterm 1 before drop date.
 midterm 2 before grade option change.

Questions/Announcements
Course Webpage: http://www.eecs70.org/

Explains policies, has office hours, homework, midterm dates, etc.

Two midterms, final.
 - midterm 1 before drop date.
 - midterm 2 before grade option change.

Questions/Announcements ➞ piazza:
Course Webpage: http://www.eecs70.org/

Explains policies, has office hours, homework, midterm dates, etc.

Two midterms, final.
midterm 1 before drop date.
midterm 2 before grade option change.

Questions/Announcements ⇒ piazza: piazza.com/berkeley/fall2016/cs70
CS70: Lecture 1. Outline.

Today: Note 1.
CS70: Lecture 1. Outline.

Today: Note 1. (Note 0 is background. Do read/skim it.)
Today: Note 1. (Note 0 is background. Do read/skim it.)
The language of proofs!
Today: Note 1. (Note 0 is background. Do read/skim it.)

The language of proofs!

1. Propositions.
2. Propositional Forms.
3. Implication.
4. Truth Tables
5. Quantifiers
6. More De Morgan’s Laws
Propositions: Statements that are true or false.

\[\sqrt{2} \text{ is irrational} \]
\[2+2 = 4 \]
\[2+2 = 3 \]
\[826\text{th digit of pi is 4} \]
Jon Stewart is a good comedian
All evens \(> 2 \) are unique sums of 2 primes
\[4 + 5 \]
\[x + x \]
Propositions: Statements that are true or false.

\[\sqrt{2} \text{ is irrational} \]
\[2+2 = 4 \]
\[2+2 = 3 \]
\[826\text{th digit of pi is 4} \]
Jon Stewart is a good comedian
All evens > 2 are unique sums of 2 primes
\[4 + 5 \]
\[x + x \]
Propositions: Statements that are true or false.

\[\sqrt{2} \text{ is irrational} \]
\[2 + 2 = 4 \quad \text{Proposition True} \]
\[2 + 2 = 3 \]
\[826\text{th digit of pi is 4} \]
\[\text{Jon Stewart is a good comedian} \]
\[\text{All evens} > 2 \text{ are unique sums of 2 primes} \]
\[4 + 5 \]
\[x + x \]
Propositions: Statements that are true or false.

\(\sqrt{2} \) is irrational
2 + 2 = 4
2 + 2 = 3
826th digit of pi is 4
Jon Stewart is a good comedian
All evens \(> 2 \) are unique sums of 2 primes
4 + 5
x + x
Propositions: Statements that are true or false.

√2 is irrational
2+2 = 4
Proposition True
2+2 = 3
826th digit of pi is 4
Jon Stewart is a good comedian
Not a Proposition
All evens > 2 are unique sums of 2 primes
Proposition False
4 + 5
x + x
Not a Proposition.
Propositions: Statements that are true or false.

\[\sqrt{2} \text{ is irrational} \]
\[2 + 2 = 4 \]
\[2 + 2 = 3 \]
\[\text{826th digit of pi is 4} \]
\[\text{Jon Stewart is a good comedian} \]
\[\text{All evens} > 2 \text{ are unique sums of 2 primes} \]
\[4 + 5 \]
\[x + x \]
Propositions: Statements that are true or false.

\[\sqrt{2} \text{ is irrational} \]
Proposition: True

2 + 2 = 4
Proposition: True

2 + 2 = 3
Proposition: False

826th digit of pi is 4
Proposition: False

Jon Stewart is a good comedian
Not a Proposition

All evens \(> 2 \) are unique sums of 2 primes
Proposition: False

4 + 5
Not a Proposition

x + x
Not a Proposition
Propositions: Statements that are true or false.

\[
\begin{align*}
\sqrt{2} & \text{ is irrational} & \text{Proposition} & \text{True} \\
2 + 2 & = 4 & \text{Proposition} & \text{True} \\
2 + 2 & = 3 & \text{Proposition} & \text{False} \\
826\text{th digit of pi} & \text{ is 4} & \text{Proposition} & \text{False} \\
\text{Jon Stewart} & \text{ is a good comedian} & \text{Proposition} & \text{} \\
\text{All evens} > 2 & \text{ are unique sums of 2 primes} & \text{Proposition} & \text{} \\
4 + 5 & \text{} & \text{Proposition} & \text{} \\
x + x & \text{} & \text{Proposition} & \text{False} \\
\end{align*}
\]
Propositions: Statements that are true or false.

- $\sqrt{2}$ is irrational
- $2+2 = 4$
- $2+2 = 3$
- 826th digit of pi is 4
- Jon Stewart is a good comedian
- All evens > 2 are unique sums of 2 primes
- $4 + 5$
- $x + x$

True, True, False, False, False

Again: "value" of a proposition is...

True or False
Propositions: Statements that are true or false.

$\sqrt{2}$ is irrational
2+2 = 4
2+2 = 3
826th digit of pi is 4
Jon Stewart is a good comedian
All evens > 2 are unique sums of 2 primes
4 + 5
$x + x$
Propositions: Statements that are true or false.

\[\sqrt{2} \text{ is irrational} \]
Proposition True

\[2+2 = 4 \]
Proposition True

\[2+2 = 3 \]
Proposition False

826th digit of pi is 4
Proposition False

Jon Stewart is a good comedian
Not a Proposition

All evens \(> 2 \) are unique sums of 2 primes
Proposition

\[4 + 5 \]

\[x + x \]
Propositions: Statements that are true or false.

\[\sqrt{2} \text{ is irrational} \quad \text{Proposition} \quad \text{True} \]
\[2 + 2 = 4 \quad \text{Proposition} \quad \text{True} \]
\[2 + 2 = 3 \quad \text{Proposition} \quad \text{False} \]
\[\text{826th digit of pi is 4} \quad \text{Proposition} \quad \text{False} \]
\[\text{Jon Stewart is a good comedian} \quad \text{Not a Proposition} \]
\[\text{All evens } > 2 \text{ are unique sums of 2 primes} \quad \text{Proposition} \quad \text{False} \]
\[4 + 5 \quad \text{Proposition} \quad \text{False} \]
\[x + x \quad \text{Not a Proposition} \]
Propositions: Statements that are true or false.

\[\sqrt{2} \text{ is irrational} \]
\[2 + 2 = 4 \]
\[2 + 2 = 3 \]
\[826\text{th digit of pi is 4} \]
\[\text{Jon Stewart is a good comedian} \]
\[\text{All evens} > 2 \text{ are unique sums of 2 primes} \]
\[4 + 5 \]
\[x + x \]
Propositions: Statements that are true or false.

\[
\begin{align*}
\sqrt{2} & \text{ is irrational} & \text{Proposition} & \text{True} \\
2+2 &= 4 & \text{Proposition} & \text{True} \\
2+2 &= 3 & \text{Proposition} & \text{False} \\
826\text{th digit of pi} & \text{ is 4} & \text{Proposition} & \text{False} \\
\text{Jon Stewart is a good comedian} & & \text{Not a Proposition} & \\
\text{All evens} > 2 & \text{ are unique sums of 2 primes} & \text{Proposition} & \text{False} \\
4+5 & & \text{Not a Proposition} & \\
x + x & & \text{Not a Proposition} & \\
\end{align*}
\]
Propositions: Statements that are true or false.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Proposition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{2}$ is irrational</td>
<td>Proposition</td>
<td>True</td>
</tr>
<tr>
<td>$2+2 = 4$</td>
<td>Proposition</td>
<td>True</td>
</tr>
<tr>
<td>$2+2 = 3$</td>
<td>Proposition</td>
<td>False</td>
</tr>
<tr>
<td>826th digit of pi is 4</td>
<td>Proposition</td>
<td>False</td>
</tr>
<tr>
<td>Jon Stewart is a good comedian</td>
<td>Not a Proposition</td>
<td></td>
</tr>
<tr>
<td>All evens > 2 are unique sums of 2 primes</td>
<td>Proposition</td>
<td>False</td>
</tr>
<tr>
<td>$4 + 5$</td>
<td>Not a Proposition</td>
<td></td>
</tr>
<tr>
<td>$x + x$</td>
<td>Not a Proposition</td>
<td></td>
</tr>
</tbody>
</table>

Again: “value” of a proposition is ...
Propositions: Statements that are true or false.

\[\sqrt{2} \text{ is irrational} \]
\[2+2 = 4 \]
\[2+2 = 3 \]
\[826\text{th digit of pi is 4} \]
Jon Stewart is a good comedian
All evens \(> 2 \) are unique sums of 2 primes
\[4 + 5 \]
\[x + x \]

Again: “value” of a proposition is ... True or False
Propositional Forms.

Put propositions together to make another...
Propositional Forms.

Put propositions together to make another...

Conjunction (“and”): \(P \land Q \)
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): $P \land Q$

"$P \land Q$" is **True** when both P and Q are **True**.
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): \(P \land Q \)

\(P \land Q \) is \textbf{True} when both \(P \) and \(Q \) are \textbf{True}. Else \textbf{False}.
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): $P \land Q$

"$P \land Q$" is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

"$2 + 2 = 3$" – a proposition that is False.
Propositional Forms.

Put propositions together to make another...

Conjunction (“and”): $P \land Q$

“$P \land Q$” is True when both P and Q are True. Else False.

Disjunction (“or”): $P \lor Q$

“$P \lor Q$” is True when at least one P or Q is True.
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): $P \land Q$

"$P \land Q$" is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

"$P \lor Q$" is True when at least one P or Q is True. Else False.
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): $P \land Q$

“$P \land Q$” is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

“$P \lor Q$” is True when at least one P or Q is True. Else False.

Negation ("not"): $\neg P$
Propositional Forms.

Put propositions together to make another...

Conjunction (“and”): \(P \land Q \)

“\(P \land Q \)” is True when both \(P \) and \(Q \) are True. Else False.

Disjunction (“or”): \(P \lor Q \)

“\(P \lor Q \)” is True when at least one \(P \) or \(Q \) is True. Else False.

Negation (“not”): \(\neg P \)

“\(\neg P \)” is True when \(P \) is False.
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): \(P \land Q \)

"\(P \land Q \)" is True when both \(P \) and \(Q \) are True. Else False.

Disjunction ("or"): \(P \lor Q \)

"\(P \lor Q \)" is True when at least one \(P \) or \(Q \) is True. Else False.

Negation ("not"): \(\neg P \)

"\(\neg P \)" is True when \(P \) is False. Else False.
Propositional Forms.

Put propositions together to make another...

Conjunction (“and”): $P \land Q$

“$P \land Q$” is True when both P and Q are True. Else False.

Disjunction (“or”): $P \lor Q$

“$P \lor Q$” is True when at least one P or Q is True. Else False.

Negation (“not”): $\neg P$

“$\neg P$” is True when P is False. Else False.

Examples:
Propositional Forms.

Put propositions together to make another...

Conjunction (“and”): \(P \land Q \)

“\(P \land Q \)” is True when both \(P \) and \(Q \) are True. Else False.

Disjunction (“or”): \(P \lor Q \)

“\(P \lor Q \)” is True when at least one \(P \) or \(Q \) is True. Else False.

Negation (“not”): \(\neg P \)

“\(\neg P \)” is True when \(P \) is False. Else False.

Examples:

\(\neg \ “(2 + 2 = 4)” \) – a proposition that is ...
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): \(P \land Q \)

"\(P \land Q \)" is True when both \(P \) and \(Q \) are True. Else False.

Disjunction ("or"): \(P \lor Q \)

"\(P \lor Q \)" is True when at least one \(P \) or \(Q \) is True. Else False.

Negation ("not"): \(\neg P \)

"\(\neg P \)" is True when \(P \) is False. Else False.

Examples:

\(\neg \ \"(2 + 2 = 4)\" \) – a proposition that is ... False
Propositional Forms.

Put propositions together to make another...

Conjunction (“and”): \(P \land Q \)

“\(P \land Q \)” is True when both \(P \) and \(Q \) are True . Else False .

Disjunction (“or”): \(P \lor Q \)

“\(P \lor Q \)” is True when at least one \(P \) or \(Q \) is True . Else False .

Negation (“not”): \(\neg P \)

“\(\neg P \)” is True when \(P \) is False . Else False .

Examples:

\(\neg \) “\(2 + 2 = 4 \)” – a proposition that is ... False

“\(2 + 2 = 3 \)” \(\land \) “\(2 + 2 = 4 \)” – a proposition that is ...
Propositional Forms.

Put propositions together to make another...

Conjunction (“and”): $P \land Q$

“$P \land Q$” is True when both P and Q are True. Else False.

Disjunction (“or”): $P \lor Q$

“$P \lor Q$” is True when at least one P or Q is True. Else False.

Negation (“not”): $\neg P$

“$\neg P$” is True when P is False. Else False.

Examples:

$\neg \text{“(2 + 2 = 4)”}$ – a proposition that is ... False

“$2 + 2 = 3$” \land “$2 + 2 = 4$” – a proposition that is ... False
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): $P \land Q$

"$P \land Q$" is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

"$P \lor Q$" is True when at least one P or Q is True. Else False.

Negation ("not"): $\neg P$

"$\neg P$" is True when P is False. Else False.

Examples:

$\neg "(2 + 2 = 4)"$ – a proposition that is ... False

"$2 + 2 = 3$" \land "$2 + 2 = 4$" – a proposition that is ... False

"$2 + 2 = 3$" \lor "$2 + 2 = 4$" – a proposition that is ...
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): $P \land Q$

"$P \land Q$" is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

"$P \lor Q$" is True when at least one P or Q is True. Else False.

Negation ("not"): $\neg P$

"$\neg P$" is True when P is False. Else False.

Examples:

$\neg "(2 + 2 = 4)"$ – a proposition that is ... False

"2 + 2 = 3" \land "2 + 2 = 4" – a proposition that is ... False

"2 + 2 = 3" \lor "2 + 2 = 4" – a proposition that is ... True
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): $P \land Q$

"$P \land Q$" is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

"$P \lor Q$" is True when at least one P or Q is True. Else False.

Negation ("not"): $\neg P$

"$\neg P$" is True when P is False. Else False.

Examples:

$\neg "(2 + 2 = 4)"$ – a proposition that is ... False

"2 + 2 = 3" \land "2 + 2 = 4" – a proposition that is ... False

"2 + 2 = 3" \lor "2 + 2 = 4" – a proposition that is ... True
Propositional Forms: quick check!

\[P = \text{“} \sqrt{2} \text{ is rational”} \]
Propositional Forms: quick check!

\[P = "\sqrt{2} \text{ is rational}" \]
\[Q = "826th digit of pi is 2" \]
Propositional Forms: quick check!

\[P = \text{"} \sqrt{2} \text{ is rational} \]
\[Q = \text{"} 826\text{th digit of pi is 2} \]
Propositional Forms: quick check!

$P = \text{“} \sqrt{2} \text{ is rational”}$

$Q = \text{“} 826\text{th digit of pi is 2”}$

P is ...

$P \land Q$...

$P \lor Q$...

$\neg P$...

Propositional Forms: quick check!

\[P = \text{“} \sqrt{2} \text{ is rational”} \]
\[Q = \text{“} 826\text{th digit of pi is 2} \text{”} \]

\[P \text{ is ...False} . \]
Propositional Forms: quick check!

$P = \text{"} \sqrt{2} \text{ is rational}\text{"}$
$Q = \text{"} 826\text{th digit of pi is 2}\text{"}$

P is ... False.
Q is ...
Propositional Forms: quick check!

\[P = \text{“\(\sqrt{2}\) is rational”} \]
\[Q = \text{“826th digit of pi is 2”} \]

\[P \text{ is } \text{False} . \]
\[Q \text{ is } \text{True} . \]
Propositional Forms: quick check!

\[P = \text{"} \sqrt{2} \text{ is rational}\]
\[Q = \text{"} 826\text{th digit of pi is 2}\]

\[P \text{ is ...} \text{False} \ . \]
\[Q \text{ is ...} \text{True} \ . \]

\[P \land Q \ldots \]
Propositional Forms: quick check!

\(P = \text{“} \sqrt{2} \text{ is rational”} \)
\(Q = \text{“} 826 \text{th digit of pi is 2”} \)

\(P \) is ... False.
\(Q \) is ... True.

\(P \land Q \) ... False
Propositional Forms: quick check!

$P = "\sqrt{2} \text{ is rational}"$
$Q = "826th digit of pi is 2"

P is ... False.
Q is ... True.

$P \land Q$... False
$P \lor Q$...
Propositional Forms: quick check!

\[P = "\sqrt{2} \text{ is rational}" \]
\[Q = "826th digit of pi is 2" \]

\[P \] is \textbf{False}.
\[Q \] is \textbf{True}.

\[P \land Q \] \textbf{False}

\[P \lor Q \] \textbf{True}

Propositional Forms: quick check!

\[P = \text{“} \sqrt{2} \text{ is rational} \text{”} \]
\[Q = \text{“} 826 \text{th digit of pi is 2} \text{”} \]

\[P \text{ is ...False .} \]
\[Q \text{ is ...True .} \]

\[P \land Q \ ... \text{ False} \]
\[P \lor Q \ ... \text{ True} \]
\[\neg P \ ... \]
Propositional Forms: quick check!

\[P = \text{“}\sqrt{2} \text{ is rational”} \]
\[Q = \text{“}826\text{th digit of pi is 2”} \]

\[P \text{ is ...} \text{False} \]
\[Q \text{ is ...} \text{True} \]

\[P \land Q \text{ ... False} \]
\[P \lor Q \text{ ... True} \]
\[\neg P \text{ ... True} \]
Propositional Forms: quick check!

\(P = "\sqrt{2} \) is rational"
\(Q = "826th digit of pi is 2" \)

\(P \) is ... \text{False} .
\(Q \) is ... \text{True} .

\(P \land Q \) ... \text{False}
\(P \lor Q \) ... \text{True}
\(\neg P \) ... \text{True}
Put them together..

Propositions:

P_1 - Person 1 rides the bus.
Put them together..

Propositions:

\[P_1 \] - Person 1 rides the bus.
\[P_2 \] - Person 2 rides the bus.
Put them together..

Propositions:

\[P_1 \] - Person 1 rides the bus.
\[P_2 \] - Person 2 rides the bus.

....
Put them together..

Propositions:

\[P_1 \] - Person 1 rides the bus.
\[P_2 \] - Person 2 rides the bus.

....

Suppose we can’t have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.
Put them together..

Propositions:
 \(P_1 \) - Person 1 rides the bus.
 \(P_2 \) - Person 2 rides the bus.

Suppose we can’t have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.

Propositional Form:
\[
\neg (((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor (((P_2 \lor P_3) \land (P_4 \lor \neg P_5))))
\]
Put them together..

Propositions:
P_1 - Person 1 rides the bus.
P_2 - Person 2 rides the bus.

Suppose we can’t have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.

Propositional Form:
\neg(((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5)))

Who can ride the bus?
Propositions:
P_1 - Person 1 rides the bus.
P_2 - Person 2 rides the bus.
....

Suppose we can't have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.

Propositional Form:
$$\neg((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5))$$

Who can ride the bus?
What combinations of people can ride the bus?
Put them together..

Propositions:
P_1 - Person 1 rides the bus.
P_2 - Person 2 rides the bus.

Suppose we can’t have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.

Propositional Form:
\[\neg(((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5))) \]

Who can ride the bus?
What combinations of people can ride the bus?
Propositions:

P_1 - Person 1 rides the bus.

P_2 - Person 2 rides the bus.

....

Suppose we can’t have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.

Propositional Form:

$\neg(((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5)))$

Who can ride the bus?
What combinations of people can ride the bus?
This seems ...
Put them together..

Propositions:
\(P_1 \) - Person 1 rides the bus.
\(P_2 \) - Person 2 rides the bus.

Suppose we can’t have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.

Propositional Form:
\[
\neg (((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5)))
\]

Who can ride the bus?
What combinations of people can ride the bus?

This seems ...complicated.
Put them together..

Propositions:
P_1 - Person 1 rides the bus.
P_2 - Person 2 rides the bus.

Suppose we can’t have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.

Propositional Form:
$$\neg((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5))$$

Who can ride the bus?
What combinations of people can ride the bus?

This seems ... *complicated*.

We need a way to keep track!
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms!

Example:

\[\neg (P \land Q) \] logically equivalent to \[\neg P \lor \neg Q \]

...because the two propositional forms have the same...

...Truth Table!

DeMorgan's Law for Negation: distribute and flip!

\[\neg (P \land Q) \equiv \neg P \lor \neg Q \]

\[\neg (P \lor Q) \equiv \neg P \land \neg Q \]
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms!

Example:

\[\neg (P \land Q) \text{ logically equivalent to } \neg P \lor \neg Q \]

...because the two propositional forms have the same...

...Truth Table!

DeMorgan’s Law’s for Negation: distribute and flip!

\[\neg (P \land Q) \equiv \neg P \lor \neg Q \]

\[\neg (P \lor Q) \equiv \neg P \land \neg Q \]
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms!

Example:

$\neg (P \land Q)$ logically equivalent to $\neg P \lor \neg Q$...because the two propositional forms have the same...

DeMorgan's Law's for Negation: distribute and flip!

$\neg (P \land Q) \equiv \neg P \lor \neg Q$

$\neg (P \lor Q) \equiv \neg P \land \neg Q$
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

DeMorgan's Law's for Negation: distribute and flip!

$\neg (P \land Q) \equiv \neg P \lor \neg Q$
$\neg (P \lor Q) \equiv \neg P \land \neg Q$
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \land Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Example:

\[\neg (P \land Q) \]\hspace{1cm} logically equivalent to \[\neg P \lor \neg Q \]

...because the two propositional forms have the same...

DeMorgan's Law's for Negation: distribute and flip!

\[\neg (P \land Q) \equiv \neg P \lor \neg Q \]
\[\neg (P \lor Q) \equiv \neg P \land \neg Q \]
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms!
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∧ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms!
Example: \(\neg(P \land Q) \) logically equivalent to \(\neg P \lor \neg Q \)
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms!
Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$
...because the two propositional forms have the same...
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms! Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$...because the two propositional forms have the same...Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg(P \land Q)$</th>
<th>$\neg P \lor \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms!
Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$
...because the two propositional forms have the same...
....Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg(P \land Q)$</th>
<th>$\neg P \lor \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms! Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$...because the two propositional forms have the same...Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg(P \land Q)$</th>
<th>$\neg P \lor \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

DeMorgan's Law’s for Negation: distribute and flip!

$\neg(P \land Q) \equiv \neg P \lor \neg Q$

$\neg(P \lor Q) \equiv \neg P \land \neg Q$
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms!
Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$
...because the two propositional forms have the same...
....Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg(P \land Q)$</th>
<th>$\neg P \lor \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg (P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

...Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg (P \land Q)$</th>
<th>$\neg P \lor \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms! Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

...Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg(P \land Q)$</th>
<th>$\neg P \lor \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms!
Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$
...because the two propositional forms have the same...
...Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg(P \land Q)$</th>
<th>$\neg P \lor \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

\[
\begin{array}{c|c|c|}
P & Q & P \land Q \\
\hline
T & T & T \\
T & F & F \\
F & T & F \\
F & F & F \\
\end{array}
\quad \quad \quad \quad \quad \quad
\begin{array}{c|c|c|}
P & Q & P \lor Q \\
\hline
T & T & T \\
T & F & T \\
F & T & T \\
F & F & F \\
\end{array}
\]

One use for truth tables: Logical Equivalence of propositional forms!

Example: \(\neg(P \land Q) \) logically equivalent to \(\neg P \lor \neg Q \)

...because the two propositional forms have the same...

...Truth Table!

\[
\begin{array}{c|c|c|c|}
P & Q & \neg(P \land Q) & \neg P \lor \neg Q \\
\hline
T & T & F & F \\
T & F & F & F \\
F & T & F & F \\
F & F & T & F \\
\end{array}
\]

DeMorgan's Law's for Negation: distribute and flip!
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms!
Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$
...because the two propositional forms have the same...
....Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg(P \land Q)$</th>
<th>$\neg P \lor \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms! Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

...Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg(P \land Q)$</th>
<th>$\neg P \lor \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

DeMorgan’s Law’s for Negation: distribute and flip!

$\neg(P \land Q)$
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg (P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

....Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg (P \land Q)$</th>
<th>$\neg P \lor \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

DeMorgan’s Law’s for Negation: distribute and flip!

$\neg (P \land Q) \equiv \neg P \lor \neg Q$
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms!
Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$
...because the two propositional forms have the same...
....Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg(P \land Q)$</th>
<th>$\neg P \lor \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

DeMorgan’s Law’s for Negation: distribute and flip!
$\neg(P \land Q) \equiv \neg P \lor \neg Q$ \quad \neg(P \lor Q)$
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms!
Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$
...because the two propositional forms have the same...
....Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg(P \land Q)$</th>
<th>$\neg P \lor \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

DeMorgan’s Law’s for Negation: distribute and flip!

$\neg(P \land Q) \equiv \neg P \lor \neg Q$
$\neg(P \lor Q) \equiv \neg P \land \neg Q$
Implication.

\[P \implies Q \] interpreted as

True Statements: \(P, P \implies Q \).

Conclude: \(Q \) is true.

Example:

Statement: If you stand in the rain, then you'll get wet.

\(P \) = "you stand in the rain"
\(Q \) = "you will get wet"

Statement: "Stand in the rain"

Can conclude: "you'll get wet."
Implication.

$P \implies Q$ interpreted as
If P, then Q.

True Statements: $P \implies P = \Rightarrow Q$.

Conclude: Q is true.

Example: Statement: If you stand in the rain, then you'll get wet.

$P = \text{"you stand in the rain"}$

$Q = \text{"you will get wet"}$

Statement: "Stand in the rain"
Can conclude: "you'll get wet."
Implication.

\[P \implies Q \text{ interpreted as } \]
\[\text{If } P, \text{ then } Q. \]
Implication.

\[P \implies Q \] interpreted as

If \(P \), then \(Q \).

True Statements: \(P, P \implies Q \).

Example:

Statement: If you stand in the rain, then you'll get wet.

\(P = \text{"you stand in the rain"}, Q = \text{"you will get wet"} \)

Can conclude: "you'll get wet."
Implication.

\[P \implies Q \] interpreted as

If \(P \), then \(Q \).

True Statements: \(P, P \implies Q \).
Conclude: \(Q \) is true.
Implication.

\[P \implies Q \text{ interpreted as } \]

If \(P \), then \(Q \).

True Statements: \(P, P \implies Q \).
Conclude: \(Q \) is true.

Example:
Implication.

\[P \implies Q \] interpreted as
If \(P \), then \(Q \).

True Statements: \(P, \ P \implies Q \).
Conclude: \(Q \) is true.

Example: Statement: If you stand in the rain, then you’ll get wet.
Implication.

\[P \implies Q \] interpreted as
If \(P \), then \(Q \).

True Statements: \(P, P \implies Q \).
Conclude: \(Q \) is true.

Example: Statement: If you stand in the rain, then you’ll get wet.
\[P = \text{“you stand in the rain”} \]
Implication.

$P \implies Q$ interpreted as

If P, then Q.

True Statements: $P, P \implies Q$.
Conclude: Q is true.

Example: Statement: If you stand in the rain, then you’ll get wet.

$P = “you stand in the rain”$
$Q = “you will get wet”$
Implication.

\[P \implies Q \] interpreted as

If \(P \), then \(Q \).

True Statements: \(P, P \implies Q \).
Conclude: \(Q \) is true.

Example: Statement: If you stand in the rain, then you’ll get wet.

\[P = \text{“you stand in the rain”} \]
\[Q = \text{“you will get wet”} \]
Statement: “Stand in the rain”
Implication.

\[P \implies Q \text{ interpreted as} \]
\[\text{If } P, \text{ then } Q. \]

True Statements: \(P, P \implies Q. \)
Conclude: \(Q \) is true.

Example: Statement: If you stand in the rain, then you’ll get wet.
\[P = \text{“you stand in the rain”} \]
\[Q = \text{“you will get wet”} \]
Statement: “Stand in the rain”
Can conclude: “you’ll get wet.”
Non-Consequences/consequences of Implication

The statement “$P \implies Q$”
Non-Consequences/consequences of Implication

The statement “\(P \implies Q \)” only is False if \(P \) is True and \(Q \) is False.
Non-Consequences/consequences of Implication

The statement “$P \implies Q$”

only is False if P is True and Q is False.

False implies nothing
Non-Consequences/consequences of Implication

The statement “$P \implies Q$”

only is **False** if P is **True** and Q is **False**.

False implies nothing

P False means
Non-Consequences/consequences of Implication

The statement “$P \implies Q$”

only is False if P is True and Q is False .

False implies nothing

P False means Q can be True or False
Non-Consequences/consequences of Implication

The statement “$P \implies Q$”

only is False if P is True and Q is False.

False implies nothing
P False means Q can be True or False
Anything implies true.

Be careful out there!

Some Fun: use propositional formulas to describe implication?

$((P \implies Q) \land P) \implies Q$.
Non-Consequences/consequences of Implication

The statement “$P \implies Q$”

only is False if P is True and Q is False.

False implies nothing

P False means Q can be True or False

Anything implies true.

P can be True or False when
Non-Consequences/consequences of Implication

The statement “$P \implies Q$”

only is \textbf{False} if P is \textbf{True} and Q is \textbf{False}.

False implies nothing
P False means Q can be \textbf{True} or \textbf{False}
Anything implies true.
P can be \textbf{True} or \textbf{False} when Q is \textbf{True}

Be careful out there!

Some Fun: use propositional formulas to describe implication?
\[(P \implies Q) \land P \implies Q\]
The statement “$P \implies Q$”
only is **False** if P is **True** and Q is **False**.

False implies nothing
P **False** means Q can be **True** or **False**
Anything implies true.
P can be **True** or **False** when Q is **True**

If chemical plant pollutes river, fish die.
The statement \(P \implies Q \)

only is \textbf{False} if \(P \) is \textbf{True} and \(Q \) is \textbf{False}.

False implies nothing
P \textbf{False} means \(Q \) can be \textbf{True} or \textbf{False}
Anything implies true.
P can be \textbf{True} or \textbf{False} when \(Q \) is \textbf{True}

If chemical plant pollutes river, fish die.
If fish die, did chemical plant polluted river?
The statement “$P \implies Q$” only is False if P is True and Q is False.

False implies nothing

P False means Q can be True or False

Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.
If fish die, did chemical plant polluted river?

Not necessarily.
Non-Consequences/consequences of Implication

The statement “\(P \implies Q \)” only is False if \(P \) is True and \(Q \) is False.

False implies nothing.
\(P \) False means \(Q \) can be True or False.
Anything implies true.
\(P \) can be True or False when \(Q \) is True.

If chemical plant pollutes river, fish die.
If fish die, did chemical plant polluted river?
Not necessarily.

\(P \implies Q \) and \(Q \) are True does not mean \(P \) is True.
Non-Consequences/consequences of Implication

The statement “$P \implies Q$”

only is **False** if P is **True** and Q is **False**.

False implies nothing

P False means Q can be **True** or **False**

Anything implies true.

P can be **True** or **False** when Q is **True**

If chemical plant pollutes river, fish die.
If fish die, did chemical plant polluted river?

Not necessarily.

$P \implies Q$ and Q are **True** does not mean P is **True**

Instead we have:
Non-Consequences/consequences of Implication

The statement “$P \Rightarrow Q$”
only is **False** if P is **True** and Q is **False**.

False implies nothing

P **False** means Q can be **True** or **False**

Anything implies true.

P can be **True** or **False** when Q is **True**

If chemical plant pollutes river, fish die.
If fish die, did chemical plant polluted river?

Not necessarily.

$P \Rightarrow Q$ and Q are **True** does not mean P is **True**

Instead we have:

$P \Rightarrow Q$ and P are **True** does **mean** Q is **True**.
Non-Consequences/consequences of Implication

The statement “$P \implies Q$” only is False if P is True and Q is False.

False implies nothing
P False means Q can be True or False
Anything implies true.
P can be True or False when Q is True

If chemical plant pollutes river, fish die.
If fish die, did chemical plant polluted river?
Not necessarily.

$P \implies Q$ and Q are True does not mean P is True

Instead we have:
$P \implies Q$ and P are True does mean Q is True.

Be careful out there!
The statement “$P \implies Q$”

only is False if P is True and Q is False.

False implies nothing
P False means Q can be True or False
Anything implies true.
P can be True or False when Q is True

If chemical plant pollutes river, fish die.
If fish die, did chemical plant polluted river?
Not necessarily.

$P \implies Q$ and Q are True does not mean P is True

Instead we have:
$P \implies Q$ and P are True does mean Q is True.

Be careful out there!

Some Fun: use propositional formulas to describe implication?
Non-Consequences/consequences of Implication

The statement “$P \implies Q$”

only is False if P is True and Q is False.

False implies nothing

P False means Q can be True or False

Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.
If fish die, did chemical plant polluted river?

Not necessarily.

$P \implies Q$ and Q are True does not mean P is True

Instead we have:

$P \implies Q$ and P are True does mean Q is True.

Be careful out there!

Some Fun: use propositional formulas to describe implication?

$((P \implies Q) \land P) \implies Q$.
Implication and English.

\[P \implies Q \]

- If \(P \), then \(Q \).
Implication and English.

$P \implies Q$

- If P, then Q.
- Q if P.
Implication and English.

\[P \implies Q \]

- If \(P \), then \(Q \).
- \(Q \) if \(P \).
Implication and English.

\[P \implies Q \]

- If \(P \), then \(Q \).
- \(Q \) if \(P \).
- \(P \) only if \(Q \).
Implication and English.

\[P \implies Q \]

- If \(P \), then \(Q \).
- \(Q \) if \(P \).
- \(P \) only if \(Q \).
- \(P \) is sufficient for \(Q \).
- \(Q \) is necessary for \(P \).
Implication and English.

\[P \implies Q \]

- If P, then Q.
- Q if P.
- P only if Q.
- P is sufficient for Q.
- Q is necessary for P.
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \Rightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

These two propositional forms are logically equivalent!
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

These two propositional forms are logically equivalent!
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

These two propositional forms are logically equivalent!
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

$\neg P \lor Q \equiv P \implies Q.$
Truth Table: implication.

\[
\begin{array}{ccc}
P & Q & P \implies Q \\
T & T & T \\
T & F & F \\
F & T & T \\
F & F & T \\
\end{array}
\]

\[
\begin{array}{ccc}
P & Q & \neg P \lor Q \\
T & T & T \\
T & F & F \\
F & T & T \\
F & F & T \\
\end{array}
\]

\[\neg P \lor Q \equiv P \implies Q.\]

These two propositional forms are logically equivalent!
Contrapositive, Converse

- Contrapositive of \(P \implies Q \) is \(\neg Q \implies \neg P \).
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.

- Converse of $P \implies Q$ is $Q \implies P$.
 - If fish die, the plant pollutes.

If you stand in the rain, you get wet.
- If you did not stand in the rain, you did not get wet.

- If you did not get wet, you did not stand in the rain.

If you stand in the rain, you get wet.
- If you did not stand in the rain, you did not get wet.

- If you did not get wet, you did not stand in the rain.

Definition:
If $P \implies Q$ and $Q \implies P$ is P if and only if Q or P.

(Logically Equivalent: \iff.)
Contraposition, Converse

- Contraposition of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
Contrapositive, Converse

Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.

- If the plant pollutes, fish die.
- If the fish don’t die, the plant does not pollute. (contrapositive)

- If you stand in the rain, you get wet.
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.

- Converse of $P \implies Q$ is $Q \implies P$.
 - If fish die the plant pollutes.
 - Not logically equivalent!

- Definition: If $P \implies Q$ and $Q \implies P$ is P if and only if Q.
 (Logically Equivalent: \iff.)
Contrapositive, Converse

- Contrapositive of \(P \implies Q \) is \(\neg Q \implies \neg P \).
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!)
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!)
 - If you did not get wet, you did not stand in the rain.

- Converse of $P \implies Q$ is $Q \implies P$.
 - If fish die the plant pollutes.
 - Not logically equivalent!

- Definition: If $P \implies Q$ and $Q \implies P$ is P if and only if Q or $P \iff Q$. (Logically Equivalent: \iff).
Contrapositive, Converse

- Contrapositive of \(P \implies Q \) is \(\neg Q \implies \neg P \).
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!)
 - If you did not get wet, you did not stand in the rain.
 (contrapositive.)
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!)
 - If you did not get wet, you did not stand in the rain.
 (contrapositive.)

Logically equivalent! Notation: \equiv.
Contrapositive, Converse

Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.

- If the plant pollutes, fish die.
- If the fish don’t die, the plant does not pollute. (contrapositive)

- If you stand in the rain, you get wet.
- If you did not stand in the rain, you did not get wet. (not contrapositive!)
- If you did not get wet, you did not stand in the rain. (contrapositive.)

Logically equivalent! Notation: \equiv. $P \implies Q$
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!)
 - If you did not get wet, you did not stand in the rain.
 (contrapositive.)

Logically equivalent! Notation: \equiv.

$P \iff Q \equiv \neg P \lor Q$
Contrapositive, Converse

- Contrapositive of \(P \implies Q \) is \(\neg Q \implies \neg P \).
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!)
 - If you did not get wet, you did not stand in the rain.
 (contrapositive.)

Logically equivalent! Notation: \(\equiv \).

\[
P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P
\]
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!)
 - If you did not get wet, you did not stand in the rain.
 (contrapositive.)

Logically equivalent! Notation: \equiv.

$P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \implies \neg P$.
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!)
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

Logically equivalent! Notation: \equiv.

\[
P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.
\]

- Converse of $P \implies Q$ is $Q \implies P$.
Contrapositive, Converse

- **Contrapositive of** $P \implies Q$ **is** $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!)
 - If you did not get wet, you did not stand in the rain.
 (contrapositive.)

Logically equivalent! Notation: \equiv.

$P \iff Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.$

- **Converse of** $P \implies Q$ **is** $Q \implies P$.
 If fish die the plant pollutes.
Contrapositive, Converse

- Contrapositive of \(P \implies Q \) is \(\neg Q \implies \neg P \).
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!) converse!
 - If you did not get wet, you did not stand in the rain.
 (contrapositive.)

Logically equivalent! Notation: \(\equiv \).

\[
P \implies Q \equiv \neg P \lor Q \equiv \neg(\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.
\]

- Converse of \(P \implies Q \) is \(Q \implies P \).
 If fish die the plant pollutes.
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)

- If you stand in the rain, you get wet.
- If you did not stand in the rain, you did not get wet.
 (not contrapositive!) converse!
- If you did not get wet, you did not stand in the rain.
 (contrapositive.)

Logically equivalent! Notation: \equiv.

\[
P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.
\]

- Converse of $P \implies Q$ is $Q \implies P$.
 - If fish die the plant pollutes.
 - Not logically equivalent!
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute. (contrapositive)

- If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!) converse!
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

Logically equivalent! Notation: \equiv.

\[
P \implies Q \equiv \neg P \lor Q \equiv \neg(\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.
\]

- Converse of $P \implies Q$ is $Q \implies P$.
 If fish die the plant pollutes.
 Not logically equivalent!

- **Definition:** If $P \implies Q$ and $Q \implies P$ is P if and only if Q or $P \iff Q$.
 (Logically Equivalent: \iff.)
Variables.

Propositions?

\[\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \].

No. They have a free variable. We call them predicates, e.g.,

\[Q(x) = "x \text{ is even}" \]

Same as boolean valued functions from 61A or 61AS!

\[P(n) = "\sum_{i=1}^{n} i = \frac{n(n+1)}{2}" \]

\[R(x) = "x > 2" \]

\[G(n) = "n \text{ is even and the sum of two primes}" \]

Next: Statements about boolean valued functions!!
Variables.

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $x > 2$
Variables.

Propositions?

- \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \).
- \(x > 2 \)
- \(n \) is even and the sum of two primes

No. They have a free variable. We call them predicates, e.g.,

\[Q(x) = "x \text{ is even}" \]

Same as boolean valued functions from 61A or 61AS!

\[P(n) = "\sum_{i=1}^{n} i = \frac{n(n+1)}{2}\) \].

\[R(x) = "x > 2" \]

\[G(n) = "n \text{ is even and the sum of two primes}\) \].

Next: Statements about boolean valued functions!!
Variables.

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $x > 2$
- n is even and the sum of two primes

No. They have a free variable.
Variables.

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $x > 2$
- n is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., $Q(x) = \text{“}x \text{ is even”}$
Variables.

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $x > 2$
- n is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., $Q(x) = \text{“}x \text{ is even}\text{”}$

Same as boolean valued functions from 61A or 61AS!
Variables.

Propositions?

- \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \).
- \(x > 2 \).
- \(n \) is even and the sum of two primes.

No. They have a free variable.

We call them predicates, e.g., \(Q(x) = "x \text{ is even}" \)

Same as boolean valued functions from 61A or 61AS!

- \(P(n) = \"\sum_{i=1}^{n} i = \frac{n(n+1)}{2}\."\)
Variables.

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $x > 2$
- n is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., $Q(x) = "x$ is even”

Same as boolean valued functions from 61A or 61AS!

- $P(n) = "\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$$
- $R(x) = "x > 2"$
Variables.

Propositions?

- \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \).
- \(x > 2 \)
- \(n \) is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., \(Q(x) = \text{“}x \text{ is even} \text{”} \)

Same as boolean valued functions from 61A or 61AS!

- \(P(n) = \text{“} \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \text{”} \).
- \(R(x) = \text{“} x > 2 \text{”} \)
- \(G(n) = \text{“} n \text{ is even and the sum of two primes} \text{”} \)

Next:
Variables.

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $x > 2$
- n is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., $Q(x) = \text{“}x \text{ is even} \text{”}$

Same as boolean valued functions from 61A or 61AS!

- $P(n) = \text{“}\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \text{”}$
- $R(x) = \text{“}x > 2 \text{”}$
- $G(n) = \text{“}n \text{ is even and the sum of two primes} \text{”}$

Next: Statements about boolean valued functions!!
There exists quantifier:

\(\exists x \in S \) \(P(x) \) means "\(P(x) \) is true for some \(x \) in \(S \)".

Wait!

What is \(S \)?

\(S \) is the universe: "the type of \(x \)".

Universe examples include:

- \(\mathbb{N} = \{0, 1, \ldots\} \) (natural numbers).
- \(\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\} \) (integers).
- \(\mathbb{Z}^+ \) (positive integers).

See note 0 for more!
Quantifiers..

There exists quantifier:

$(\exists x \in S)(P(x))$ means "$P(x)$ is true for some x in S"
Quantifiers.

There exists quantifier:

$$(\exists x \in S)(P(x))$$ means "$P(x)" is true for some x in S"

Wait!

S is the universe: "the type of x".

Universe examples include:

- $\mathbb{N} = \{0, 1, 2, ..., \}$ (natural numbers).
- $\mathbb{Z} = \{..., -1, 0, 1, 2, ..., \}$ (integers).
- $\mathbb{Z}^+ = \{1, 2, 3, ..., \}$ (positive integers).

See note 0 for more!
Quantifiers...

There exists quantifier:

$$(\exists x \in S)(P(x))$$ means "$P(x)$ is true for some x in S"

Wait! What is S?
There exists quantifier:

$$(\exists x \in S)(P(x))$$ means "$P(x)$ is true for some x in S"

Wait! What is S?

S is the **universe**:
There exists quantifier:

\[(\exists x \in S)(P(x)) \] means ”\(P(x)\) is true for some \(x\) in \(S\)”

Wait! What is \(S\)?

\(S\) is the **universe**: “the type of \(x\)”.
Quantifiers..

There exists quantifier:

$(\exists x \in S)(P(x))$ means "$P(x)$ is true for some x in S"

Wait! What is S?

S is the universe: “the type of x”.

Universe examples include..
Quantifiers..

There exists quantifier:

$(\exists x \in S)(P(x))$ means "$P(x)\) is true for some x in S"

Wait! What is S?

S is the **universe**: “the type of x”.

Universe examples include..

- $N = \{0,1,\ldots\}$ (natural numbers).
There exists quantifier:

\((\exists x \in S)(P(x)))\) means ",P(x), is true for some \(x\) in \(S\)"

Wait! What is \(S\)?

\(S\) is the universe: "the type of \(x\)".

Universe examples include..

- \(N = \{0, 1, \ldots\}\) (natural numbers).
- \(Z = \{\ldots, -1, 0, 1, \ldots\}\) (integers)
There exists quantifier:

$$(\exists x \in S)(P(x))$$ means "$P(x)$ is true for some x in S"

Wait! What is S?

S is the **universe**: “the type of x”.

Universe examples include..

- $N = \{0, 1, \ldots\}$ (natural numbers).
- $Z = \{\ldots, -1, 0, 1, \ldots\}$ (integers)
- Z^+ (positive integers)
Quantifiers..

There exists quantifier:

\((\exists x \in S)(P(x))\) means "\(P(x)\) is true for some \(x\) in \(S\)"

Wait! What is \(S\)?

\(S\) is the **universe**: “the type of \(x\)”.

Universe examples include..

- \(N = \{0, 1, \ldots\}\) (natural numbers).
- \(Z = \{\ldots, -1, 0, 1, \ldots\}\) (integers)
- \(Z^+\) (positive integers)
- See note 0 for more!
Quantifiers.

There exists quantifier:

$\exists x \in S (P(x))$ means "$P(x)$ is true for some x in S"

For example:

$\exists x \in \mathbb{N} (x = x^2)$

Equivalent to "$0 = 0 \lor 1 = 1 \lor 2 = 4 \lor \ldots$"

Much shorter to use a quantifier!

For all quantifier:

$\forall x \in S (P(x))$. means "For all x in S $P(x)$ is True."

Examples:

"Adding 1 makes a bigger number."

$\forall x \in \mathbb{N} (x + 1 > x)$

"the square of a number is always non-negative"

$\forall x \in \mathbb{N} (x^2 \geq 0)$
Quantifiers..

There exists quantifier:
\[(\exists x \in S)(P(x))\] means "\(P(x)\) is true for some \(x\) in \(S\)"

For example:
\[(\exists x \in N)(x = x^2)\]
Quantifiers..

There exists quantifier:
\((\exists x \in S)(P(x))\) means "\(P(x)\) is true for some \(x\) in \(S\)"

For example:
\((\exists x \in N)(x = x^2)\)

Equivalent to "(0 = 0)"
Quantifiers..

There exists quantifier:

\[(∃x ∈ S)(P(x))\] means "\(P(x)\) is true for some \(x\) in \(S\)"

For example:

\[(∃x ∈ N)(x = x^2)\]

Equivalent to “\(0 = 0\) ∨ (1 = 1)"
Quantifiers.

There exists quantifier:
\((\exists x \in S)(P(x))\) means "\(P(x)\) is true for some \(x\) in \(S\)"
For example:
\((\exists x \in \mathbb{N})(x = x^2)\)

Equivalent to “\((0 = 0) \lor (1 = 1) \lor (2 = 4)\)"
There exists quantifier:

$$(\exists x \in S)(P(x))$$ means "$P(x)$ is true for some x in S"

For example:

$$(\exists x \in N)(x = x^2)$$

Equivalent to “$(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots$”
Quantifiers.

There exists quantifier:
\[(\exists x \in S)(P(x))\] means "\(P(x)\) is true for some \(x\) in \(S\)"

For example:
\[(\exists x \in N)(x = x^2)\]

Equivalent to "\((0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots\)"

Much shorter to use a quantifier!
Quantifiers..

There exists quantifier:

\((\exists x \in S)(P(x))\) means "\(P(x)\) is true for some \(x\) in \(S\)"

For example:

\((\exists x \in N)(x = x^2)\)

Equivalent to "\((0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots\)"

Much shorter to use a quantifier!

For all quantifier;

\((\forall x \in S)(P(x))\). means "For all \(x\) in \(S\) \(P(x)\) is True ."
Quantifiers..

There exists quantifier:
\((\exists x \in S) (P(x))\) means "\(P(x)\) is true for some \(x\) in \(S\)"

For example:
\[(\exists x \in N) (x = x^2)\]

Equivalent to "\((0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots\)"

Much shorter to use a quantifier!

For all quantifier;
\((\forall x \in S) (P(x))\). means "For all \(x\) in \(S\) \(P(x)\) is True ."

Examples:
Quantifiers..

There exists quantifier:

\[(\exists x \in S)(P(x))\] means "P(x) is true for some x in S"

For example:

\[(\exists x \in \mathbb{N})(x = x^2)\]

Equivalent to "\((0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots\)"

Much shorter to use a quantifier!

For all quantifier;

\[(\forall x \in S) (P(x))\] means "For all x in S P(x) is True ."

Examples:

"Adding 1 makes a bigger number."
Quantifiers..

There exists quantifier:
\((\exists x \in S)(P(x))\) means "\(P(x)\) is true for some \(x\) in \(S\)"
For example:
\[(\exists x \in N)(x = x^2)\]
Equivalent to “\((0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots\)”

Much shorter to use a quantifier!

For all quantifier;
\((\forall x \in S) (P(x))\). means “For all \(x\) in \(S\) \(P(x)\) is True .”
Examples:
“Adding 1 makes a bigger number.”
\[(\forall x \in N) (x + 1 > x)\]
Quantifiers.

There exists quantifier:
\((\exists x \in S)(P(x))\) means "\(P(x)\) is true for some \(x\) in \(S\)"
For example:
\((\exists x \in N)(x = x^2)\)
Equivalent to "\((0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots\)"
Much shorter to use a quantifier!

For all quantifier;
\((\forall x \in S) (P(x))\). means “For all \(x\) in \(S\) \(P(x)\) is True .”
Examples:

“Adding 1 makes a bigger number.”
\((\forall x \in N) (x + 1 > x)\)
"the square of a number is always non-negative"
Quantifiers...

There exists quantifier:

\((\exists x \in S)(P(x))\) means "\(P(x)\) is true for some \(x\) in \(S\)"

For example:

\((\exists x \in N)(x = x^2)\)

Equivalent to "\((0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots\)"

Much shorter to use a quantifier!

For all quantifier;

\((\forall x \in S) (P(x))\). means "For all \(x\) in \(S\) \(P(x)\) is True."

Examples:

"Adding 1 makes a bigger number."

\((\forall x \in N) (x + 1 > x)\)

"the square of a number is always non-negative"

\((\forall x \in N)(x^2 \geq 0)\)
Quantifiers are not commutative.

- Consider this English statement: "there is a natural number that is the square of every natural number", i.e the square of every natural number is the same number!
Quantifiers are not commutative.

Consider this English statement: "there is a natural number that is the square of every natural number", i.e the square of every natural number is the same number!

\[(\exists y \in \mathbb{N})\]
Quantifiers are not commutative.

Consider this English statement: "there is a natural number that is the square of every natural number", i.e the square of every natural number is the same number!

\((\exists y \in \mathbb{N}) (\forall x \in \mathbb{N})\)
Quantifiers are not commutative.

Consider this English statement: ”there is a natural number that is the square of every natural number”, i.e the square of every natural number is the same number!

\[(\exists y \in \mathbb{N}) \ (\forall x \in \mathbb{N}) \ (y = x^2) \]
Quantifiers are not commutative.

Consider this English statement: "there is a natural number that is the square of every natural number", i.e the square of every natural number is the same number!

\[(\exists y \in \mathbb{N}) (\forall x \in \mathbb{N}) (y = x^2)\] False
Quantifiers are not commutative.

- Consider this English statement: "there is a natural number that is the square of every natural number", i.e. the square of every natural number is the same number!

\[(\exists y \in N) \ (\forall x \in N) \ (y = x^2) \quad \text{False} \]

- Consider this one: "the square of every natural number is a natural number"...
Quantifiers are not commutative.

Consider this English statement: "there is a natural number that is the square of every natural number", i.e the square of every natural number is the same number!

\[(\exists y \in \mathbb{N}) (\forall x \in \mathbb{N}) (y = x^2)\] False

Consider this one: "the square of every natural number is a natural number"...

\[(\forall x \in \mathbb{N})\]
Quantifiers are not commutative.

Consider this English statement: ”there is a natural number that is the square of every natural number”, i.e the square of every natural number is the same number!

$$\exists y \in \mathbb{N} \ (\forall x \in \mathbb{N}) \ (y = x^2) \quad \text{False}$$

Consider this one: ”the square of every natural number is a natural number”...

$$\forall x \in \mathbb{N} \ (\exists y \in \mathbb{N})$$
Quantifiers are not commutative.

Consider this English statement: ”there is a natural number that is the square of every natural number”, i.e the square of every natural number is the same number!

\[(\exists y \in N) (\forall x \in N) (y = x^2)\] False

Consider this one: ”the square of every natural number is a natural number”...

\[(\forall x \in N) (\exists y \in N) (y = x^2)\]
Quantifiers are not commutative.

- Consider this English statement: "there is a natural number that is the square of every natural number", i.e the square of every natural number is the same number!

\[(\exists y \in N) (\forall x \in N) (y = x^2)\] False

- Consider this one: "the square of every natural number is a natural number"...

\[(\forall x \in N)(\exists y \in N) (y = x^2)\] True
Quantifiers are not commutative.

Consider this English statement: ”there is a natural number that is the square of every natural number”, i.e the square of every natural number is the same number!

\[(\exists y \in N) (\forall x \in N) (y = x^2)\] False

Consider this one: ”the square of every natural number is a natural number”...

\[(\forall x \in N)(\exists y \in N) (y = x^2)\] True
Consider

$$\neg(\forall x \in S)(P(x)),$$

English: there is an \(x\) in \(S\) where \(P(x)\) does not hold.

What we do in this course! We consider claims.

Claim: \((\forall x) P(x)\)

"For all inputs \(x\) the program works."

For False, find \(x\), where \(\neg P(x)\).

Counterexample.

Bad input. Case that illustrates bug.

For True: prove claim.

Next lectures...
Quantifiers....negation...DeMorgan again.

Consider

\[\neg (\forall x \in S)(P(x)), \]

By DeMorgan’s law,
Quantifiers...negation...DeMorgan again.

Consider

\[\neg(\forall x \in S)(P(x)), \]

By DeMorgan’s law,

\[\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)). \]
Quantifiers....negation...DeMorgan again.

Consider

\[\neg (\forall x \in S) (P(x)),\]

By DeMorgan’s law,

\[\neg (\forall x \in S) (P(x)) \iff \exists (x \in S) (\neg P(x)).\]

English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.
Quantifiers....negation...DeMorgan again.

Consider

\[\neg (\forall x \in S)(P(x)), \]

By DeMorgan’s law,

\[\neg (\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)). \]

English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.

What we do in this course! We consider claims.
Consider
\[\neg (\forall x \in S)(P(x)), \]

By DeMorgan’s law,
\[\neg (\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)). \]

English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.

What we do in this course! We consider claims.

Claim: \((\forall x) P(x) \)
Quantifiers....negation...DeMorgan again.

Consider

\[\neg (\forall x \in S)(P(x)), \]

By DeMorgan’s law,

\[\neg (\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)). \]

English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.

What we do in this course! We consider claims.

Claim: \((\forall x) P(x) \) “For all inputs \(x \) the program works.”
Consider

\[\neg(\forall x \in S)(P(x)), \]

By DeMorgan’s law,

\[\neg(\forall x \in S)(P(x)) \iff \exists(x \in S)(\neg P(x)). \]

English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.

What we do in this course! We consider claims.

Claim: \((\forall x) P(x) \) “For all inputs \(x \) the program works.”

For False, find \(x \), where \(\neg P(x) \).
Consider
\[\neg(\forall x \in S)(P(x)), \]

By DeMorgan’s law,
\[\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)). \]

English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.

What we do in this course! We consider claims.

Claim: \((\forall x) P(x) \) “For all inputs \(x \) the program works.”

For False, find \(x \), where \(\neg P(x) \).

Counterexample.
Consider

$$\neg(\forall x \in S)(P(x)),$$

By DeMorgan’s law,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

English: there is an x in S where $P(x)$ does not hold.

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ “For all inputs x the program works.”

For False, find x, where $\neg P(x)$.

Counterexample.

Bad input.
Quantifiers....negation...DeMorgan again.

Consider

\[-(\forall x \in S)(P(x)),\]

By DeMorgan’s law,

\[-(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).\]

English: there is an \(x\) in \(S\) where \(P(x)\) does not hold.

What we do in this course! We consider claims.

Claim: \((\forall x) P(x)\) “For all inputs \(x\) the program works.”

For False, find \(x\), where \(\neg P(x)\).

Counterexample.

Bad input.

Case that illustrates bug.
Consider
\[\neg(\forall x \in S)(P(x)), \]

By DeMorgan’s law,
\[\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)). \]

English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.

What we do in this course! We consider claims.

Claim: \((\forall x) P(x) \) “For all inputs \(x \) the program works.”

For **False**, find \(x \), where \(\neg P(x) \).
 - Counterexample.
 - Bad input.
 - Case that illustrates bug.

For **True**: prove claim.
Consider
\[\neg (\forall x \in S)(P(x)), \]

By DeMorgan’s law,
\[\neg (\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)). \]

English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.

What we do in this course! We consider claims.

Claim: \((\forall x) P(x)\) “For all inputs \(x \) the program works.”

For **False**, find \(x \), where \(\neg P(x) \).
 - Counterexample.
 - Bad input.
 - Case that illustrates bug.
For **True**: prove claim. Next lectures...
Negation of exists.

Consider

$\neg (\exists x \in S) (P(x))$

Equivalent to:

$\neg (\exists x \in S) (P(x)) \iff \forall (x \in S) \neg P(x)$.

English: means that for all x in S, $P(x)$ does not hold.
Negation of exists.

Consider

\[\neg (\exists x \in S)(P(x)) \]

English: means that for all \(x \) in \(S \), \(P(x) \) does not hold.
Negation of exists.

Consider

$$\neg(\exists x \in S)(P(x))$$

Equivalent to:

$$\neg(\exists x \in S)(P(x)) \iff \forall (x \in S) \neg P(x).$$
Negation of exists.

Consider

$$\neg(\exists x \in S)(P(x))$$

Equivalent to:

$$\neg(\exists x \in S)(P(x)) \iff \forall (x \in S)\neg P(x).$$

English: means that for all x in S, P(x) does not hold.
Which Theorem?

Theorem: $\forall n \in N \ (n \geq 3 \implies \neg (\exists a, b, c \in N \ a^n + b^n = c^n))$
Which Theorem?

Theorem: $\forall n \in \mathbb{N} \ (n \geq 3 \implies \neg(\exists a, b, c \in \mathbb{N} \ a^n + b^n = c^n))$

Which Theorem?
Which Theorem?

Theorem: \(\forall n \in \mathbb{N} \ (n \geq 3 \implies \neg(\exists a, b, c \in \mathbb{N} \ a^n + b^n = c^n)) \)

Which Theorem?

Fermat’s Last Theorem!
Theorem: $\forall n \in N \ (n \geq 3 \implies \neg (\exists a, b, c \in N \ a^n + b^n = c^n))$

Which Theorem?

Fermat's Last Theorem!

Remember Right-Angled Triangles: for $n = 2$, we have 3,4,5 and 5,7, 12 and ...
Which Theorem?

Theorem: $\forall n \in \mathbb{N} \ (n \geq 3 \implies \neg(\exists a, b, c \in \mathbb{N} \ a^n + b^n = c^n))$

Which Theorem?

Fermat’s Last Theorem!

Remember Right-Angled Triangles: for $n = 2$, we have 3,4,5 and 5,7, 12 and ... (Pythagorean triples)
Which Theorem?

Theorem: \(\forall n \in \mathbb{N} \ (n \geq 3 \implies \neg(\exists a, b, c \in \mathbb{N} \ a^n + b^n = c^n)) \)

Which Theorem?

Fermat’s Last Theorem!

Remember Right-Angled Triangles: for \(n = 2 \), we have 3,4,5 and 5,7, 12 and ... (Pythagorean triples)

1637: Proof doesn’t fit in the margins.
Theorem: \(\forall n \in N \ (n \geq 3 \implies \neg(\exists a, b, c \in N \ a^n + b^n = c^n)) \)

Which Theorem?

Fermat's Last Theorem!

Remember Right-Angled Triangles: for \(n = 2 \), we have 3,4,5 and 5,7, 12 and ... (Pythagorean triples)

1637: Proof doesn’t fit in the margins.
1993: Wiles ...(based in part on Ribet’s Theorem)
Theorem: \(\forall n \in N \ (n \geq 3 \implies \neg (\exists a, b, c \in N \ a^n + b^n = c^n)) \)

Which Theorem?

Fermat’s Last Theorem!

Remember Right-Angled Triangles: for \(n = 2 \), we have 3,4,5 and 5,7, 12 and ... (Pythagorean triples)

1637: Proof doesn’t fit in the margins.

1993: Wiles ...(based in part on Ribet’s Theorem)

DeMorgan Restatement:
Theorem: $\forall n \in N \ (n \geq 3 \implies \neg(\exists a, b, c \in N \ a^n + b^n = c^n))$

Which Theorem?

Fermat’s Last Theorem!

Remember Right-Angled Triangles: for $n = 2$, we have 3, 4, 5 and 5, 7, 12 and ... (Pythagorean triples)

1637: Proof doesn’t fit in the margins.

1993: Wiles ...(based in part on Ribet’s Theorem)

DeMorgan Restatement:
Theorem: $\neg(\exists n \in N \exists a, b, c \in N \ (n \geq 3 \land a^n + b^n = c^n))$
Summary.

Propositions are statements that are true or false.
Summary.

Propositions are statements that are true or false.
Propositional forms use \(\land, \lor, \neg \).

DeMorgan's Laws: "Flip and Distribute negation"

\[\neg (P \lor Q) \iff \neg P \land \neg Q \]
\[\neg \forall x P(x) \iff \exists x \neg P(x) \]

Next Time: proofs!
Summary.

Propositions are statements that are true or false. Propositional forms use \(\land, \lor, \neg \).

The meaning of a propositional form is given by its truth table.
Summary.

Propositions are statements that are true or false.
Propositional forms use \land, \lor, \neg.
The meaning of a propositional form is given by its truth table.
Logical equivalence of forms means same truth tables.
Summary.

Propositions are statements that are true or false.
Propositional forms use \land, \lor, \neg.
The meaning of a propositional form is given by its truth table.
Logical equivalence of forms means same truth tables.
Implication: $P \implies Q$
Summary.

Propositions are statements that are true or false.
Propositional forms use \land, \lor, \neg.
The meaning of a propositional form is given by its truth table.
Logical equivalence of forms means same truth tables.
Implication: $P \implies Q \iff \neg P \lor Q$.

DeMorgans Laws: "Flip and Distribute negation"
$\neg(P \lor Q) \iff \neg P \land \neg Q$.
$\neg \forall x P(x) \iff \exists x \neg P(x)$.
Next Time: proofs!
Summary.

Propositions are statements that are true or false.
Propositional forms use \land, \lor, \neg.
The meaning of a propositional form is given by its truth table.
Logical equivalence of forms means same truth tables.
Implication: $P \implies Q \iff \neg P \lor Q$.
Contrapositive: $\neg Q \implies \neg P$.

DeMorgan's Laws: "Flip and Distribute negation"
$\neg (P \lor Q) \iff \neg P \land \neg Q$.
$\neg \forall x P(x) \iff \exists x \neg P(x)$.

Next Time: proofs!
Summary.

Propositions are statements that are true or false.
Propositional forms use \land, \lor, \neg.
The meaning of a propositional form is given by its truth table.
Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \neg P \lor Q$.
Contrapositive: $\neg Q \implies \neg P$
Converse: $Q \implies P$

DeMorgan's Laws: "Flip and Distribute negation"
$\neg (P \lor Q) \iff \neg P \land \neg Q$
$\neg \forall x P(x) \iff \exists x \neg P(x)$.

Next Time: proofs!
Summary.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \neg.

The meaning of a propositional form is given by its truth table.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \neg P \lor Q$.

Contrapositive: $\neg Q \implies \neg P$

Converse: $Q \implies P$

Predicates: Statements with “free” variables.

DeMorgans Laws: "Flip and Distribute negation"

$\neg(P \lor Q) \iff \neg P \land \neg Q$

$\neg\forall x P(x) \iff \exists x \neg P(x)$.

Next Time: proofs!
Summary.

Propositions are statements that are true or false.

Propositional forms use \wedge, \vee, \neg.

The meaning of a propositional form is given by its truth table.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \neg P \vee Q$.

Contrapositive: $\neg Q \implies \neg P$

Converse: $Q \implies P$

Predicates: Statements with “free” variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$
Summary.

Propositions are statements that are true or false.

Propositional forms use \wedge, \vee, \neg.

The meaning of a propositional form is given by its truth table.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \neg P \vee Q$.

Contrapositive: $\neg Q \implies \neg P$

Converse: $Q \implies P$

Predicates: Statements with “free” variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems!
Summary.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \neg.

The meaning of a propositional form is given by its truth table.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \neg P \lor Q$.

Contrapositive: $\neg Q \implies \neg P$
Converse: $Q \implies P$

Predicates: Statements with “free” variables.

Quantifiers: $\forall x \ P(x)$, $\exists y \ Q(y)$

Now can state theorems! And disprove false ones!
Summary.

Propositions are statements that are true or false.
Propositional forms use \land, \lor, \neg.
The meaning of a propositional form is given by its truth table.
Logical equivalence of forms means same truth tables.
Implication: $P \implies Q \iff \neg P \lor Q$.
Contrapositive: $\neg Q \implies \neg P$
Converse: $Q \implies P$
Predicates: Statements with “free” variables.
Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$
Now can state theorems! And disprove false ones!
DeMorgans Laws: “Flip and Distribute negation”
Summary.

Propositions are statements that are true or false.
Propositional forms use \land, \lor, \neg.
The meaning of a propositional form is given by its truth table.
Logical equivalence of forms means same truth tables.
Implication: $P \implies Q \iff \neg P \lor Q$.
Contrapositive: $\neg Q \implies \neg P$
Converse: $Q \implies P$
Predicates: Statements with “free” variables.
Quantifiers: $\forall x \ P(x)$, $\exists y \ Q(y)$
Now can state theorems! And disprove false ones!
DeMorgans Laws: “Flip and Distribute negation”
$\neg (P \lor Q) \iff$
Propositions are statements that are true or false.

Propositional forms use \land, \lor, \neg.

The meaning of a propositional form is given by its truth table.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \neg P \lor Q$.

Contrapositive: $\neg Q \implies \neg P$.

Converse: $Q \implies P$.

Predicates: Statements with “free” variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$.

Now can state theorems! And disprove false ones!

DeMorgans Laws: “Flip and Distribute negation”

$\neg (P \lor Q) \iff (\neg P \land \neg Q)$

$\neg \forall x \ P(x) \iff$
Summary.

Propositions are statements that are true or false.
Propositional forms use \land, \lor, \neg.
The meaning of a propositional form is given by its truth table.
Logical equivalence of forms means same truth tables.
Implication: $P \implies Q \iff \neg P \lor Q$.
Contrapositive: $\neg Q \implies \neg P$
Converse: $Q \implies P$
Predicates: Statements with “free” variables.
Quantifiers: $\forall x \ P(x), \ \exists y \ Q(y)$
Now can state theorems! And disprove false ones!
DeMorgans Laws: “Flip and Distribute negation”
$\neg (P \lor Q) \iff (\neg P \land \neg Q)$
$\neg \forall x \ P(x) \iff \exists x \ \neg P(x)$.
Summary.

Propositions are statements that are true or false.
Propositional forms use \land, \lor, \lnot.
The meaning of a propositional form is given by its truth table.
Logical equivalence of forms means same truth tables.
Implication: $P \implies Q \iff \lnot P \lor Q$.
Contrapositive: $\lnot Q \implies \lnot P$
Converse: $Q \implies P$
Predicates: Statements with “free” variables.
Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$
Now can state theorems! And disprove false ones!
DeMorgans Laws: “Flip and Distribute negation”
\[
\lnot (P \lor Q) \iff (\lnot P \land \lnot Q) \\
\lnot \forall x \ P(x) \iff \exists x \ \lnot P(x).
\]
Next Time: proofs!