Outline for next 2 lectures.

1. Cryptography \Rightarrow relation to Bijective functions
2. Public Key Cryptography
3. RSA system
 3.1 Efficiency: Repeated Squaring.
 3.2 Correctness: Fermat’s Little Theorem.
 3.3 Construction.
Cryptography ...

What is the relation between D and E (for the same secret s)?

$m = D(E(m, s), s)$

Secret s

Alice $\leftrightarrow E(m, s)$ Eve $E(m, s)$ Bob

Message m
Excursion: Bijects.

\[f : S \rightarrow T \] is **one-to-one mapping**.

One-to-one: \(f(x) \neq f(x') \) for \(x, x' \in S \) and \(x \neq x' \). Not 2 to 1!

\(f(\cdot) \) is **onto**

if for every \(y \in T \) there is \(x \in S \) where \(y = f(x) \).

Bijection is one-to-one and onto function.

Two sets have the same size

if and only if there is a bijection between them!

Same size?

\(\{ \text{red, yellow, blue} \} \) and \(\{1, 2, 3\} \)?

\[f(\text{red}) = 1, \ f(\text{yellow}) = 2, \ f(\text{blue}) = 3. \]

\(\{ \text{red, yellow, blue} \} \) and \(\{1, 2\} \)?

\[f(\text{red}) = 1, \ f(\text{yellow}) = 2, \ f(\text{blue}) = 2. \]

two to one! not one to one.

\(\{ \text{red, yellow} \} \) and \(\{1, 2, 3\} \)?

\[f(\text{red}) = 1, \ f(\text{yellow}) = 2. \]

Misses 3. not onto.
Modular arithmetic examples.

\(f : S \to T \) is **one-to-one mapping**.

- one-to-one: \(f(x) \neq f(x') \) for \(x, x' \in S \) and \(x \neq y \).

\(f(\cdot) \) is **onto**

- if for every \(y \in T \) there is \(x \in S \) where \(y = f(x) \).

Recall: \(f(red) = 1, f(yellow) = 2, f(blue) = 3 \)

One-to-one if inverse: \(g(1) = red, g(2) = yellow, g(3) = blue \).

Is \(f(x) = x + 1 \pmod{m} \) one-to-one? \(g(x) = x - 1 \pmod{m} \).

Onto: range is subset of domain.

Is \(f(x) = ax \pmod{m} \) one-to-one?

- If \(\gcd(a, m) = 1, ax \neq ax' \pmod{m} \).

Injective? Surjective?

- We tend to use one-to-one and onto.

Bijection is one-to-one and onto function.

- Two sets have the same size
 - if and only if there is a bijection between them!
Claim: \(a^{-1} \pmod{m} \) exists when \(\gcd(a, m) = 1 \).

Fact: \(ax \neq ay \pmod{m} \) for \(x \neq y \in \{0, \ldots, m-1\} \)

Consider \(T = \{0a \pmod{m}, 1a \pmod{m}, \ldots, (m-1)a \pmod{m}\} \)

Consider \(S = \{0, 1, \ldots, (m-1)\} \)

\(S = T \). Why?

- \(T \subseteq S \) since \(ax \pmod{m} \in \{0, \ldots, m-1\} \)
- One-to-one mapping from \(S \) to \(T \)!

\[\Rightarrow |T| \geq |S| \]

Same set.

Why does \(a \) have inverse? \(T \) is \(S \) and therefore contains 1!

What does this mean? There is an \(x \) where \(ax = 1 \).

There is an inverse of \(a \)!
Back to Cryptography ...

What is the relation between D and E (for the same secret s)?
D is the inverse function of E!

Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ – bitwise $m \oplus s$.
$D(x, s)$ – bitwise $x \oplus s$.

Works because $m \oplus s \oplus s = m$
...and totally secure!
...given $E(m, s)$ any message m is equally likely.

Disadvantages:
Shared secret!

Uses up one time pad..or less and less secure.
Public key cryptography.

\[m = D(E(m, K), k) \]

Everyone knows key \(K \)!
Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key \(k \) for public key \(K \).
(Only?) Alice can decode with \(k \).
Is public key crypto unbreakable?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes \(p \) and \(q \). Let \(N = pq \).
Choose \(e \) relatively prime to \((p - 1)(q - 1)\).\(^1\)
Compute \(d = e^{-1} \mod (p - 1)(q - 1) \). \(d \) is the private key!
Announce \(N(=p \cdot q) \) and \(e \): \(K = (N, e) \) is my public key!

Encoding: \(\mod (x^e, N) \).

Decoding: \(\mod (y^d, N) \).

Does \(D(E(m)) = m^{ed} = m \mod N \)?
Yes!

\(^1\)Typically small, say \(e = 3 \).
Example: \(p = 7, \ q = 11. \)

\(N = 77. \)

\((p - 1)(q - 1) = 60\)

Choose \(e = 7, \) since \(\gcd(7, 60) = 1. \)

How to compute \(d? \) \(\text{egcd}(7, 60). \)

\(7(-17) + 60(2) = 1 \)

Confirm: \(-119 + 120 = 1\)

\(d = e^{-1} = -17 = 43 = \ (\text{mod} \ 60)\)
Important Considerations

Q1: Why does RSA work correctly? Fermat’s Little Theorem!

Q2: Can RSA be implemented efficiently? Yes, repeated squaring!
RSA on an Example.

Public Key: (77, 7)
Message Choices: {0, ..., 76}.

Message: 2

\[E(2) = 2^e = 2^7 \equiv 128 \pmod{77} = 51 \pmod{77} \]
\[D(51) = 51^{43} \pmod{77} \]

uh oh!

Obvious way: 43 multiplications. Ouch.

In general, \(O(N) \) multiplications in the \textit{value} of the exponent \(N \)!
That’s not great.
Repeated Squaring to the rescue.

$$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1} \pmod{77}.$$ 4 multiplications sort of...

Need to compute $51^{32} \ldots 51^{1}$?

$51^{1} \equiv 51 \pmod{77}$

$51^{2} = (51) \cdot (51) = 2601 \equiv 60 \pmod{77}$

$51^{4} = (51^{2}) \cdot (51^{2}) = 60 \cdot 60 = 3600 \equiv 58 \pmod{77}$

$51^{8} = (51^{4}) \cdot (51^{4}) = 58 \cdot 58 = 3364 \equiv 53 \pmod{77}$

$51^{16} = (51^{8}) \cdot (51^{8}) = 53 \cdot 53 = 2809 \equiv 37 \pmod{77}$

$51^{32} = (51^{16}) \cdot (51^{16}) = 37 \cdot 37 = 1369 \equiv 60 \pmod{77}$

5 more multiplications.

$$51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1} = (60) \cdot (53) \cdot (60) \cdot (51) \equiv 2 \pmod{77}.$$

Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}}$.

2. Multiply together x^i where the $(\log(i))$th bit of y is 1.
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p-1)\}$.

All different modulo p since a has an inverse modulo p. That is, S contains representative of each of $1, \ldots, p-1$ modulo p.

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},$$

Since multiplication is commutative.

$$a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}.$$

Each of $2, \ldots (p-1)$ has an inverse modulo p, solve to get...

$$a^{(p-1)} \equiv 1 \pmod{p}.$$