
1. Finish Polynomials and Secrets.
2. Finite Fields: Abstract Algebra
3. Erasure Coding

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: There is exactly 1 polynomial of degree \(\leq d \) with arithmetic modulo prime \(p \) that contains \(d + 1 \) pts.

Note: The points have to have different \(x \) values!

Shamir's \(k \) out of \(n \) Scheme:

\[\text{Secret } s \in \{0, \ldots, p-1\} \]

1. Choose \(a_0 = s \), and random \(a_1, \ldots, a_{n-1} \).
2. Let \(P(x) = a_0 x^{d-1} + a_1 x^{d-2} + \cdots + a_d \) with \(a_0 = s \).
3. Share \(f/i \) for \(i \geq 1 \) is point \((i, P(i) \mod p)\).

Robustness: Any \(k \) shares gives secret.

Knowing \(k \) pts, find unique \(P(x) \), evaluate \(P(0) \).

Secrecy: Any \(k-1 \) shares give nothing.

Knowing \(\leq k-1 \) pts, any \(P(0) \) is possible.

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Proof of at least one polynomial:

Given points: \((x_1,y_1);(x_2,y_2); \ldots (x_{d+1},y_{d+1})\).

\[\Delta_i(x) = \prod_{j \neq i} (x-x_j) \]

Numerator is \(0 \) at \(x_j \neq x_i \).

Denominator makes it \(1 \) at \(x_i \).

And...

\[P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x) \]

hits points \((x_1,y_1);(x_2,y_2); \ldots (x_{d+1},y_{d+1})\). Degree \(d \) polynomial!

Construction proves the existence of a polynomial!

Reiterating Examples.

\[\Delta(x) = \prod_{j \neq k} \frac{x-x_j}{x-x_k} \]

Degree 1 polynomial, \(P(x) \), that contains \((1,3)\) and \((2,4)\)?

Work modulo 5.

\[\Delta_1(x) \text{ contains } (1,1) \text{ and } (3,0). \]

\[\Delta_1(x) = \frac{x-2}{x-1} - \frac{x-3}{x-1} = \frac{2x-3}{x-1} = 2x - 6 - 2x + 4 \mod 5 \]

For a quadratic, \(a_2 x^2 + a_1 x + a_0 \) hits \((1,3);(2,4);(3,0)\).

Work modulo 5.

Find \(\Delta_1(x) \) polynomial contains \((1,1);(2,0);(3,0)\).

\[\Delta_1(x) = \frac{1-2(x-2)}{x-3} = \frac{1-2x+4}{x-3} = 3(x-2)(x-3) = 3x^2 + 1 \mod 5 \]

Put the delta functions together.

Simultaneous Equations Method.

For a line, \(a_1 x + a_0 = mx + b \) contains points \((1,3)\) and \((2,4)\).

\[P(1) = m(1) + b = m+b = 3 \mod 5 \]

\[P(2) = m(2) + b = 2m+b = 4 \mod 5 \]

Subtract first from second.

\[m+b = 3 \mod 5 \]

\[m = 1 \mod 5 \]

Backsolve: \(b = 2 \mod 5 \). Secret is 2.

And the line is...

\[x + 2 \mod 5 \]

Quadratic

For a quadratic polynomial, \(a_2 x^2 + a_1 x + a_0 \) hits \((1,2);(2,4);(3,0)\).

Plug in points to find equations.

\[P(1) = a_2 + a_1 + a_0 = 2 \mod 5 \]

\[P(2) = 4a_2 + 2a_1 + a_0 = 4 \mod 5 \]

\[P(3) = 4a_2 + 3a_1 + a_0 = 0 \mod 5 \]

\[a_0 + a_1 + a_2 = 2 \mod 5 \]

\[3a_0 + 2a_1 = 1 \mod 5 \]

\[4a_0 + 2a_1 = 2 \mod 5 \]

Subtracting 2nd from 3rd yields: \(a_1 = 1 \).

\[a_0 = (2-4a_1)2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 = 4 \mod 5 \]

\[a_2 = 2 - 4 = 2 \mod 5 \]

So polynomial is \(2x^2 + 1x + 4 \mod 5 \)
In general.

Given points: \((x_1, y_1); (x_2, y_2) \cdot \cdot \cdot (x_n, y_n)\).
Solve...

\[
\begin{align*}
 a_{n-1}x^{n-1} + \cdots + a_0 &= y_1 \pmod p \\
 a_{n-1}x^n + \cdots + a_0 &= y_2 \pmod p \\
 \vdots & \vdots \\
 a_{n-1}x^{k-1} + \cdots + a_0 &= y_k \pmod p
\end{align*}
\]

Will this always work?
As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 polynomial of degree \(\leq d\) with arithmetic modulo prime \(p\) contains \(d + 1\) pts.

Summary.

Modular Arithmetic Fact: Exactly 1 polynomial of degree \(\leq d\) with arithmetic modulo prime \(p\) contains \(d + 1\) pts.

Existence:
- Lagrange Interpolation.

Uniqueness: (proved last time)
- At most \(d\) roots for degree \(d\) polynomial.

Efficiency.

Need \(p > n\) to hand out \(n\) shares: \(P(1) \ldots P(n)\).
For \(b\)-bit secret, must choose a prime \(p > 2^b\).
Theorem: There is always a prime between \(n\) and \(2n\).
Working over numbers within 1 bit of secret size. Minimal!
With \(k\) shares, reconstruct polynomial, \(P(x)\).
With \(k – 1\) shares, any of \(p\) values possible for \(P(0)\)?
(Within 1 bit of) any \(b\)-bit string possible!
(Within 1 bit of) \(b\)-bits are missing: one \(P(i)\).
Within 1 of optimal number of bits.

Finite Fields

Proof works for reals, rationals, and complex numbers.
...but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime \(p\) has multiplicative inverses..
...and has only a finite number of elements.
Good for computer science.
Arithmetic modulo a prime \(p\) is a finite field denoted by \(F_p\) or \(GF(p)\). Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.

Runtime.

Runtime: polynomial in \(k\), \(n\), and \(\log p\).
1. Evaluate degree \(n\) polynomial \(n + k\) times using \(\log p\)-bit numbers. \(O(k\log^2 p)\).
2. Reconstruct secret by solving system of \(n\) equations using \(\log p\)-bit arithmetic. \(O(n\log^2 p)\).
3. Matrix has special form so \(O(n\log n\log^2 p)\) reconstruction.
Faster versions in practice are almost as efficient.

Secret Sharing Revisited

Modular Arithmetic Fact: Exactly one polynomial degree \(\leq d\) over \(GF(p)\), \(P(x)\), that hits \(d + 1\) points.

Shamir's \(k\) out of \(n\) Scheme:
- Secret \(s \in \{0, \ldots , p - 1\}\)
 1. Choose \(a_0 = s\), and random \(a_1, \ldots , a_{n-1}\).
 2. Let \(P(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1}\) with \(a_0 = s\).
 3. Share \(i\) is point \((i, P(i)) \pmod p\).

Robustness: Any \(k\) knows secret.
Knowing \(k\) pts, only one \(P(x)\). evaluate \(P(0)\).
Secrecy: Any \(k\) – 1 knows nothing.
Knowing \(\leq k-1\) pts, any \(P(0)\) is possible.
Efficiency: ???
A bit of counting.

What is the number of degree d polynomials over $GF(m)$?
- m^{d+1}: $d + 1$ coefficients from $\{0, \ldots, m - 1\}$.
- m^{d+1}: $d + 1$ points with y-values from $\{0, \ldots, m - 1\}$

Infinite number for reals, rationals, complex numbers!

Solution Idea.

- n packet message, channel that loses k packets.
- Must send $n + k$ packets!
- Any n packets should allow reconstruction of n packet message.
- Any n point values allow reconstruction of degree $n - 1$ polynomial which has n coefficients!
- Alright!!!
- Use polynomials.

Erasure Codes.

Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n + k$ packets and recover message?

Solution Idea: Use Polynomials!!!

- Use polynomials

Solution Idea.

n packet message, channel that loses k packets.
Must send $n + k$ packets!
Any n packets should allow reconstruction of n packet message.
Any n point values allow reconstruction of degree $n - 1$ polynomial which has n coefficients!
Alright!!!
Use polynomials.

Erasure Codes.

Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n + k$ packets and recover message?

A degree $n - 1$ polynomial determined by any n points!

Erasure Coding Scheme: message = $m_0, m_1, m_2, \ldots, m_{n-1}$. Each m_i is a packet.

1. Choose prime $p > 2^b$ for packet size b (size = number of bits).
2. $P(x) = m_0 + x^{n-1} + \cdots + m_0 \pmod{p}$.
3. Send $P(1), \ldots, P(n + k)$.

Any n of the $n + k$ packets gives polynomial ...and message!

Solution Idea.

n packet message. So send $n + k$!

Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n + k$ packets and recover message?

Any n packets is enough!

n packet message.
Optimal.
Comparison with Secret Sharing.

Comparing information content:
Secret Sharing: each share is size of whole secret.
Coding: Each packet has size \(\frac{1}{n} \) of the whole message.

Erasure Code: Example.
Send message of 1, 4, and 4 up to 3 erasures. \(n = 3, k = 3 \)
Make polynomial with \(P(1) = 1, P(2) = 4, P(3) = 4 \).
How?
Lagrange Interpolation.
Linear System.
Work modulo 5.
\[
P(x) = x^2 \quad (\text{mod } 5)
\]
\[
P(1) = 1, P(2) = 4, P(3) = 9 - 4 \quad (\text{mod } 5)
\]
Send \((0, P(0))\) ... \((5, P(5))\).
6 points. Better work modulo 7 at least!
Why?
\[
(0, P(0)) = (5, P(5)) \quad (\text{mod } 5)
\]

Summary: Polynomials are useful!

▶ give Secret Sharing.
▶ give Erasure Codes.

Next time: correct broader class of errors!