Confidence Intervals

1. Confidence?
2. Example
3. Review of Chebyshev
4. Confidence Interval with Chebyshev
5. More examples
Confidence?

- You flip a coin once and get H.
 Do you think that $Pr[H] = 1$?
- You flip a coin 10 times and get 5 Hs.
 Are you sure that $Pr[H] = 0.5$?
- You flip a coin 10^6 times and get 35% of Hs.
 How much are you willing to bet that $Pr[H]$ is exactly 0.35?
 How much are you willing to bet that $Pr[H] \in [0.3, 0.4]$?

More generally, you estimate an unknown quantity θ.
Your estimate is $\hat{\theta}$.
How much confidence do you have in your estimate?
Confidence?

Confidence is essential in many applications:

- How effective is a medication?
- Are we sure of the milage of a car?
- Can we guarantee the lifespan of a device?
- We simulated a system. Do we trust the simulation results?
- Is an algorithm guaranteed to be fast?
- Do we know that a program has no bug?

As scientists and engineers, you should become convinced of this fact:

An estimate without confidence level is useless!
Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval \([a, b]\) is a 95\%-confidence interval for an unknown quantity \(\theta\) if

\[
Pr[\theta \in [a, b]] \geq 95\%.
\]

The interval \([a, b]\) is calculated on the basis of observations.

Here is a typical framework. Assume that \(X_1, X_2, \ldots, X_n\) are i.i.d. and have a distribution that depends on some parameter \(\theta\).

For instance, \(X_n = B(\theta)\).

Thus, more precisely, given \(\theta\), the random variables \(X_n\) are i.i.d. with a known distribution (that depends on \(\theta\)).

- We observe \(X_1, \ldots, X_n\)
- We calculate \(a = a(X_1, \ldots, X_n)\) and \(b = b(X_1, \ldots, X_n)\)
- If we can guarantee that \(Pr[\theta \in [a, b]] \geq 95\%\), then \([a, b]\) is a 95\%-CI for \(\theta\).
Confidence Interval: Applications

▶ We poll 1000 people.
 ▶ Among those, 48% declare they will vote for Trump.
 ▶ We do some calculations
 ▶ We conclude that \([0.43, 0.53]\) is a 95%-CI for the fraction of all the voters who will vote for Trump. (Arghhh.)

▶ We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 ▶ Among those, 35 patients died during surgery. (Sad example!)
 ▶ We do some calculations ...
 ▶ We conclude that \([1\%, 5\%]\) is a 95%-CI for the probability of dying during that surgery by Dr. Bill.
 ▶ We do a similar calculation for Dr. Fred.
 ▶ We find that \([8\%, 12\%]\) is a 95%-CI for Dr. Fred’s surgery.
 ▶ What surgeon do you choose?
Coin Flips: Intuition

Say that you flip a coin \(n = 100 \) times and observe 20 Hs.

If \(p := Pr[H] = 0.5 \), this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say \(A_n \), differs a lot from \(p := Pr[H] \).

Thus, it is unlikely that \(p \) differs a lot from \(A_n \). Hence, one should be able to build a confidence interval \([A_n - \delta, A_n + \delta]\) for \(p \).

The key idea is that \(|A_n - p| \leq \delta \iff p \in [A_n - \delta, A_n + \delta]\).

Thus, \(Pr[|A_n - p| > \delta] \leq 5\% \iff Pr[p \in [A_n - \delta, A_n + \delta]] \geq 95\% \).

It remains to find \(\delta \) such that \(Pr[|A_n - p| > \delta] \leq 5\% \).

One approach: Chebyshev.
Confidence Interval with Chebyshev

- Flip a coin \(n \) times. Let \(A_n \) be the fraction of \(Hs \).
- Can we find \(\delta \) such that \(\Pr[|A_n - p| > \delta] \le 5\% \)?

Using Chebyshev, we will see that \(\delta = 2.25 \frac{1}{\sqrt{n}} \) works. Thus

\[
[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]
\]

is a 95%-CI for \(p \).

Example: If \(n = 1500 \), then \(\Pr[p \in [A_n - 0.05, A_n + 0.05]] \ge 95\% \).

In fact, we will see later that \(a = \frac{1}{\sqrt{n}} \) works, so that with \(n = 1,500 \) one has
\(\Pr[p \in [A_n - 0.02, A_n + 0.02]] \ge 95\% \).
Confidence Intervals: Result

Theorem:
Let X_n be i.i.d. with mean μ and variance σ^2.
Define $A_n = \frac{X_1 + \cdots + X_n}{n}$. Then,

$$\Pr[\mu \in [A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]] \geq 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]$ is a 95%-CI for μ.

Example: Let $X_n = 1\{\text{coin } n \text{ yields } H\}$. Then

$$\mu = E[X_n] = p := Pr[H]. \text{ Also, } \sigma^2 = var(X_n) = p(1 - p) \leq \frac{1}{4}.$$

Hence, $[A_n - 4.5 \frac{1/2}{\sqrt{n}}, A_n + 4.5 \frac{1/2}{\sqrt{n}}]$ is a 95%-CI for p.
Confidence Interval: Analysis

We prove the theorem, i.e., that \(A_n \pm 4.5 \sigma / \sqrt{n} \) is a 95\%-CI for \(\mu \).

From Chebyshev:

\[
Pr[|A_n - \mu| \geq 4.5 \sigma / \sqrt{n}] \leq \frac{\text{var}(A_n)}{[4.5 \sigma / \sqrt{n}]^2} = \frac{n}{20 \sigma^2 \text{var}(A_n)}.
\]

Now,

\[
\text{var}(A_n) = \text{var} \left(\frac{X_1 + \cdots + X_n}{n} \right) = \frac{1}{n^2} \text{var}(X_1 + \cdots + X_n)
\]

\[
= \frac{1}{n^2} \times n \cdot \text{var}(X_1) = \frac{1}{n} \sigma^2.
\]

Hence,

\[
Pr[|A_n - \mu| \geq 4.5 \sigma / \sqrt{n}] \leq \frac{n}{20 \sigma^2 \times \frac{1}{n} \sigma^2} = 5\%.
\]

Thus,

\[
Pr[|A_n - \mu| \leq 4.5 \sigma / \sqrt{n}] \geq 95\%.
\]

Hence,

\[
Pr[\mu \in [A_n - 4.5 \sigma / \sqrt{n}, A_n + 4.5 \sigma / \sqrt{n}]] \geq 95\%.
\]
Confidence interval for p in $B(p)$

Let X_n be i.i.d. $B(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$ is a 95%-CI for p.

Proof:

We have just seen that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \geq 95\%.$$

Here, $\mu = p$ and $\sigma^2 = p(1-p)$. Thus, $\sigma^2 \leq \frac{1}{4}$ and $\sigma \leq \frac{1}{2}$.

Thus,

$$Pr[\mu \in [A_n - 4.5 \times 0.5/\sqrt{n}, A_n + 4.5 \times 0.5/\sqrt{n}]] \geq 95\%.$$
Confidence interval for p in $B(p)$

An illustration:

Good practice: You run your simulation, or experiment. You get an estimate. You indicate your confidence interval.
Confidence interval for p in $B(p)$

Improved CI: Later we will see that we can replace 2.25 by 1.

Quite a bit of work to get there: continuous random variables; Gaussian; Central Limit Theorem.
Confidence Interval for $1/p$ in $G(p)$

Let X_n be i.i.d. $G(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[\frac{A_n}{1 + 4.5/\sqrt{n}} , \frac{A_n}{1 - 4.5/\sqrt{n}}]$$ is a 95%-CI for $\frac{1}{p}$.

Proof: We know that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \geq 95%.$$

Here, $\mu = \frac{1}{p}$ and $\sigma = \frac{\sqrt{1-p}}{p} \leq \frac{1}{p}$. Hence,

$$Pr[\frac{1}{p} \in [A_n - 4.5 \frac{1}{p\sqrt{n}}, A_n + 4.5 \frac{1}{p\sqrt{n}}]] \geq 95%.$$

Now, $A_n - 4.5 \frac{1}{p\sqrt{n}} \leq \frac{1}{p} \leq \frac{1}{p} \leq A_n + 4.5 \frac{1}{p\sqrt{n}}$ is equivalent to

$$\frac{A_n}{1 + 4.5/\sqrt{n}} \leq \frac{1}{p} \leq \frac{A_n}{1 - 4.5/\sqrt{n}}.$$

Examples: $[0.7A_{100}, 1.8A_{100}]$ and $[0.96A_{10000}, 1.05A_{10000}]$.

Which Coin is Better?

You are given coin A and coin B. You want to find out which one has a larger $Pr[H]$. Let p_A and p_B be the values of $Pr[H]$ for the two coins.

Approach:

- Flip each coin n times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$.

Confidence?

Analysis: Note that

$$E[A_n - B_n] = p_A - p_B$$
$$\text{var}(A_n - B_n) = \frac{1}{n}(p_A(1 - p_A) + p_B(1 - p_B)) \leq \frac{1}{2n}.$$

Thus, $Pr[|A_n - B_n - (p_A - p_B)| > \delta] \leq \frac{1}{2n\delta^2}$, so

$$\Pr[p_A - p_B \in [A_n - B_n - \delta, A_n - B_n + \delta]] \geq 1 - \frac{1}{2n\delta^2}, \text{ and}$$

$$\Pr[p_A - p_B \geq 0] \geq 1 - \frac{1}{2n(A_n - B_n)^2}.$$

Example: With $n = 100$ and $A_n - B_n = 0.2$, $\Pr[p_A > p_B] \geq 1 - \frac{1}{8} = 0.875$.
Unknown σ

For $B(p)$, we wanted to estimate p. The CI requires $\sigma = \sqrt{p(1-p)}$. We replaced σ by an upper bound: $1/2$.

In some applications, it may be OK to replace σ^2 by the following sample variance:

$$s_n^2 := \frac{1}{n} \sum_{m=1}^{n} (X_m - A_n)^2.$$

However, in some cases, this is dangerous! The theory says it is OK if the distribution of X_n is nice (Gaussian). This is used regularly in practice. However, be aware of the risk.
1. Estimates without confidence level are useless!

2. \([a, b]\) is a 95\%-CI for \(\theta\) if \(Pr[\theta \in [a, b]] \geq 95\%\).

3. Using Chebyshev: \([A_n - 4.5\sigma / \sqrt{n}, A_n + 4.5\sigma / \sqrt{n}]\) is a 95\%-CI for \(\mu\).

4. Using CLT, we will replace 4.5 by 2.

5. When \(\sigma\) is not known, one can replace it by an upper bound.

6. Examples: \(B(p), G(p)\), which coin is better?

7. In some cases, one can replace \(\sigma\) by the empirical standard deviation.