Nonlinear Regression

1. Review: joint distribution, LLSE
2. Quadratic Regression
3. Definition of Conditional expectation
4. Properties of CE
5. Applications: Diluting, Mixing, Rumors
6. CE = MMSE
Definitions Let X and Y be RVs on Ω.

- **Joint Distribution:** $Pr[X = x, Y = y]$
- **Marginal Distribution:** $Pr[X = x] = \sum_y Pr[X = x, Y = y]$
- **Conditional Distribution:** $Pr[Y = y | X = x] = \frac{Pr[X=x, Y=y]}{Pr[X=x]}$
- **LLSE:** $L[Y|X] = a + bX$ where a, b minimize $E[(Y - a - bX)^2]$.

We saw that

$$L[Y|X] = E[Y] + \frac{cov(X, Y)}{var[X]}(X - E[X]).$$

Recall the non-Bayesian and Bayesian viewpoints.
There are many situations where a good guess about Y given X is not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level, cancer risk).

Our goal: explore estimates $\hat{Y} = g(X)$ for nonlinear functions $g(\cdot)$.
Quadratic Regression

Let X, Y be two random variables defined on the same probability space.

Definition: The quadratic regression of Y over X is the random variable

$$Q[Y|X] = a + bX + cX^2$$

where a, b, c are chosen to minimize $E[(Y - a - bX - cX^2)^2]$.

Derivation: We set to zero the derivatives w.r.t. a, b, c. We get

$$0 = E[Y - a - bX - cX^2]$$
$$0 = E[(Y - a - bX - cX^2)X]$$
$$0 = E[(Y - a - bX - cX^2)X^2]$$

We solve these three equations in the three unknowns (a, b, c).

Note: These equations imply that $E[(Y - Q[Y|X])h(X)] = 0$ for any $h(X) = d + eX + fX^2$. That is, the estimation error is orthogonal to all the quadratic functions of X. Hence, $Q[Y|X]$ is the projection of Y onto the space of quadratic functions of X.
Definition Let X and Y be RVs on Ω. The **conditional expectation** of Y given X is defined as

$$E[Y|X] = g(X)$$

where

$$g(x) := E[Y|X = x] := \sum_y yPr[Y = y|X = x].$$

Fact

$$E[Y|X = x] = \sum_\omega Y(\omega)Pr[\omega|X = x].$$

Proof: $E[Y|X = x] = E[Y|A]$ with $A = \{\omega : X(\omega) = x\}$. \qed
Deja vu, all over again?

Have we seen this before? Yes.
Is anything new? Yes.

The idea of defining $g(x) = E[Y|X = x]$ and then $E[Y|X] = g(X)$.

Big deal? Quite! Simple but most convenient.

Recall that $L[Y|X] = a + bX$ is a function of X.

This is similar: $E[Y|X] = g(X)$ for some function $g(\cdot)$.

In general, $g(X)$ is not linear, i.e., not $a + bX$. It could be that $g(X) = a + bX + cX^2$. Or that $g(X) = 2\sin(4X) + \exp\{-3X\}$. Or something else.
Properties of CE

\[E[Y|X = x] = \sum_y yPr[Y = y|X = x] \]

Theorem

(a) \(X, Y \) independent \(\Rightarrow E[Y|X] = E[Y] \);

(b) \(E[aY + bZ|X] = aE[Y|X] + bE[Z|X] \);

(c) \(E[Yh(X)|X] = h(X)E[Y|X], \forall h(\cdot) \);

(d) \(E[h(X)E[Y|X]] = E[h(X)Y], \forall h(\cdot) \);

(e) \(E[E[Y|X]] = E[Y] \).

Proof:

(a), (b) Obvious

(c) \(E[Yh(X)|X = x] = \sum_\omega Y(\omega)h(X(\omega)Pr[\omega|X = x] \]

\[= \sum_\omega Y(\omega)h(x)Pr[\omega|X = x] = h(x)E[Y|X = x] \]
Properties of CE

\[E[Y|X = x] = \sum_y yPr[Y = y|X = x] \]

Theorem
(a) \(X, Y \) independent \(\Rightarrow E[Y|X] = E[Y] \);
(b) \(E[aY + bZ|X] = aE[Y|X] + bE[Z|X] \);
(c) \(E[Yh(X)|X] = h(X)E[Y|X], \forall h(\cdot) \);
(d) \(E[h(X)E[Y|X]] = E[h(X)Y], \forall h(\cdot) \);
(e) \(E[E[Y|X]] = E[Y] \).

Proof: (continued)
(d) \(E[h(X)E[Y|X]] = \sum_x h(x)E[Y|X = x]Pr[X = x] \)

\[= \sum_x h(x)\sum_y yPr[Y = y|X = x]Pr[X = x] \]
\[= \sum_x h(x)\sum_y yPr[X = x, y = y] \]
\[= \sum_{x,y} h(x)yPr[X = x, y = y] = E[h(X)Y]. \]
Properties of CE

\[E[Y|X = x] = \sum_y y \Pr[Y = y|X = x] \]

Theorem
(a) \(X, Y \) independent \(\Rightarrow \) \(E[Y|X] = E[Y] \);
(b) \(E[aY + bZ|X] = aE[Y|X] + bE[Z|X] \);
(c) \(E[Yh(X)|X] = h(X)E[Y|X], \forall h(\cdot) \);
(d) \(E[h(X)E[Y|X]] = E[h(X)Y], \forall h(\cdot) \);
(e) \(E[E[Y|X]] = E[Y] \).

Proof: (continued)
(e) Let \(h(X) = 1 \) in (d).
Properties of CE

Theorem
(a) X, Y independent $\Rightarrow E[Y|X] = E[Y]$;
(b) $E[aY + bZ|X] = aE[Y|X] + bE[Z|X]$;
(c) $E[Yh(X)|X] = h(X)E[Y|X], \forall h(\cdot)$;
(d) $E[h(X)E[Y|X]] = E[h(X)Y], \forall h(\cdot)$;
(e) $E[E[Y|X]] = E[Y]$.

Note that (d) says that

$$E[(Y - E[Y|X])h(X)] = 0.$$

We say that the estimation error $Y - E[Y|X]$ is orthogonal to every function $h(X)$ of X.

We call this the projection property. More about this later.
Application: Calculating $E[Y|X]$

Let X, Y, Z be i.i.d. with mean 0 and variance 1. We want to calculate

$$E[2 + 5X + 7XY + 11X^2 + 13X^3Z^2|X].$$

We find

$$E[2 + 5X + 7XY + 11X^2 + 13X^3Z^2|X]$$
$$= 2 + 5X + 7XE[Y|X] + 11X^2 + 13X^3E[Z^2|X]$$
$$= 2 + 5X + 7XE[Y] + 11X^2 + 13X^3E[Z^2]$$
$$= 2 + 5X + 11X^2 + 13X^3(var[Z] + E[Z]^2)$$
$$= 2 + 5X + 11X^2 + 13X^3.$$
Application: Diluting

At each step, pick a ball from a well-mixed urn. Replace it with a blue ball. Let X_n be the number of red balls in the urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m - 1$ w.p. m/N (if you pick a red ball) and $X_{n+1} = m$ otherwise. Hence,

$$E[X_{n+1} | X_n = m] = m - (m/N) = m(N - 1)/N = X_n \rho,$$

with $\rho := (N - 1)/N$. Consequently,

$$E[X_{n+1}] = E[E[X_{n+1} | X_n]] = \rho E[X_n], n \geq 1.$$

$$\implies E[X_n] = \rho^{n-1} E[X_1] = N \left(\frac{N - 1}{N} \right)^{n-1}, n \geq 1.$$
Diluting

Here is a plot:
Diluting

By analyzing $E[X_{n+1}|X_n]$, we found that $E[X_n] = N\left(\frac{N-1}{N}\right)^{n-1}, n \geq 1$.

Here is another argument for that result.

Consider one particular red ball, say ball k. At each step, it remains red w.p. $(N-1)/N$, when another ball is picked. Thus, the probability that it is still red at step n is $[(N-1)/N]^{n-1}$. Let

$$Y_n(k) = 1\{\text{ball } k \text{ is red at step } n\}.$$

Then, $X_n = Y_n(1) + \cdots + Y_n(N)$. Hence,

$$E[X_n] = E[Y_n(1) + \cdots + Y_n(N)] = NE[Y_n(1)]$$

$$= NPr[Y_n(1) = 1] = N[(N-1)/N]^{n-1}.$$
Application: Mixing

At each step, pick a ball from each well-mixed urn. We transfer them to the other urn. Let X_n be the number of red balls in the bottom urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m + 1$ w.p. p and $X_{n+1} = m - 1$ w.p. q where $p = (1 - m/N)^2$ (B goes up, R down) and $q = (m/N)^2$ (R goes up, B down).

Thus,

$$E[X_{n+1}|X_n] = X_n + p - q = X_n + 1 - 2X_n/N = 1 + \rho X_n, \quad \rho := (1 - 2/N).$$
Mixing

We saw that \(E[X_{n+1}|X_n] = 1 + \rho X_n \), \(\rho := (1 - 2/N) \). Hence,

\[
E[X_{n+1}] = 1 + \rho E[X_n]
\]

\[
E[X_2] = 1 + \rho N; \quad E[X_3] = 1 + \rho (1 + \rho N) = 1 + \rho + \rho^2 N
\]

\[
E[X_4] = 1 + \rho (1 + \rho + \rho^2 N) = 1 + \rho + \rho^2 + \rho^3 N
\]

\[
E[X_n] = 1 + \rho + \cdots + \rho^{n-2} + \rho^{n-1} N.
\]

Hence,

\[
E[X_n] = \frac{1 - \rho^{n-1}}{1 - \rho} + \rho^{n-1} N, \quad n \geq 1.
\]
Application: Mixing

Here is the plot.
Application: Going Viral

Consider a social network (e.g., Twitter).
You start a rumor (e.g., Walrand is really weird).
You have \(d \) friends. Each of your friend retweets w.p. \(p \).
Each of your friends has \(d \) friends, etc.
Does the rumor spread? Does it die out (mercifully)?

In this example, \(d = 4 \).
Application: Going Viral

Fact: Let \(X = \sum_{n=1}^{\infty} X_n \). Then, \(E[X] < \infty \) iff \(pd < 1 \).

Proof:
Given \(X_n = k, X_{n+1} = B(kd, p) \). Hence, \(E[X_{n+1}|X_n = k] = kpd \).
Thus, \(E[X_{n+1}|X_n] = pdX_n \). Consequently, \(E[X_n] = (pd)^{n-1}, n \geq 1 \).
If \(pd < 1 \), then \(E[X_1 + \cdots + X_n] \leq (1 - pd)^{-1} \implies E[X] \leq (1 - pd)^{-1} \).
If \(pd \geq 1 \), then for all \(C \) one can find \(n \) s.t.
\(E[X] \geq E[X_1 + \cdots + X_n] \geq C \).
In fact, one can show that \(pd \geq 1 \implies Pr[X = \infty] > 0 \).
Application: Going Viral

An easy extension: Assume that everyone has an independent number D_i of friends with $E[D_i] = d$. Then, the same fact holds.

To see this, note that given $X_n = k$, and given the numbers of friends $D_1 = d_1, \ldots, D_k = d_k$ of these X_n people, one has $X_{n+1} = B(d_1 + \cdots + d_k, p)$. Hence,

$$E[X_{n+1}|X_n = k, D_1 = d_1, \ldots, D_k = d_k] = p(d_1 + \cdots + d_k).$$

Thus, $E[X_{n+1}|X_n = k, D_1, \ldots, D_k] = p(D_1 + \cdots + D_k)$.

Consequently, $E[X_{n+1}|X_n = k] = E[p(D_1 + \cdots + D_k)] = pdk$.

Finally, $E[X_{n+1}|X_n] = pdX_n$, and $E[X_{n+1}] = pdE[X_n]$.

We conclude as before.
Application: Wald’s Identity

Here is an extension of an identity we used in the last slide.

Theorem Wald’s Identity

Assume that X_1, X_2, \ldots and Z are independent, where Z takes values in $\{0, 1, 2, \ldots\}$ and $E[X_n] = \mu$ for all $n \geq 1$.

Then,

$$E[X_1 + \cdots + X_Z] = \mu E[Z].$$

Proof:

$$E[X_1 + \cdots + X_Z | Z = k] = \mu k.$$

Thus, $E[X_1 + \cdots + X_Z | Z] = \mu Z$.

Hence, $E[X_1 + \cdots + X_Z] = E[\mu Z] = \mu E[Z]$.

CE = MMSE

Theorem

$E[Y|X]$ is the ‘best’ guess about Y based on X.

Specifically, it is the function $g(X)$ of X that minimizes $E[(Y - g(X))^2]$.
Theorem CE = MMSE

$g(X) := E[Y|X]$ is the function of X that minimizes $E[(Y - g(X))^2]$.

Proof:
Let $h(X)$ be any function of X. Then

$$E[(Y - h(X))^2] = E[(Y - g(X) + g(X) - h(X))^2]$$
$$= E[(Y - g(X))^2] + E[(g(X) - h(X))^2]$$
$$+ 2E[(Y - g(X))(g(X) - h(X))].$$

But,

$$E[(Y - g(X))(g(X) - h(X))] = 0$$ by the projection property.

Thus, $E[(Y - h(X))^2] \geq E[(Y - g(X))^2]$. □
$E[Y|X]$ and $L[Y|X]$ as projections

$L[Y|X]$ is the projection of Y on $\{a + bX, a, b \in \mathbb{R}\}$: LLSE

$E[Y|X]$ is the projection of Y on $\{g(X), g(\cdot) : \mathbb{R} \to \mathbb{R}\}$: MMSE.
Conditional Expectation

Definition: $E[Y|X] := \sum_y y Pr[Y = y|X = x]$

Properties: Linearity,
$Y - E[Y|X] \perp h(X)$; $E[E[Y|X]] = E[Y]$

Some Applications:
- Calculating $E[Y|X]$
- Diluting
- Mixing
- Rumors
- Wald

MMSE: $E[Y|X]$ minimizes $E[(Y - g(X))^2]$ over all $g(\cdot)$