Probability Review
Probability Review
1. True or False

Probability Review
Probability Review

1. True or False
2. Some Key Results
CS70: Jean Walrand: Review of Probability.

1. True or False
2. Some Key Results
3. Quiz 1: G
Probability Review

1. True or False
2. Some Key Results
3. Quiz 1: G (≈ 40%)
Probability Review

1. True or False
2. Some Key Results
3. Quiz 1: G ($\approx 40\%$)
4. Quiz 2: PG
1. True or False
2. Some Key Results
3. Quiz 1: G (≈ 40%)
4. Quiz 2: PG (≈ 40%)
Probability Review

1. True or False
2. Some Key Results
3. Quiz 1: G (≈ 40%)
4. Quiz 2: PG (≈ 40%)
5. Quiz 3: R
Probability Review

1. True or False
2. Some Key Results
3. Quiz 1: G (≈ 40%)
4. Quiz 2: PG (≈ 40%)
5. Quiz 3: R (≈ 20%)
 Probability Review

1. True or False
2. Some Key Results
3. Quiz 1: G (≈ 40%)
4. Quiz 2: PG (≈ 40%)
5. Quiz 3: R (≈ 20%)
6. Common Mistakes
1. True or False
2. Some Key Results
3. Quiz 1: G (≈ 40%)
4. Quiz 2: PG (≈ 40%)
5. Quiz 3: R (≈ 20%)
6. Common Mistakes
True or False

- Ω and A are independent.
True or False

- Ω and A are independent. True
True or False

- Ω and A are independent. True
- $Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]$. True
True or False

- Ω and A are independent. True
- $Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]$. True
True or False

- Ω and A are independent. True
- \(Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B] \). True
- \(Pr[A \setminus B] \geq Pr[A] - Pr[B] \). True
True or False

- Ω and A are independent. True
- $Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]$. True
- $Pr[A \setminus B] \geq Pr[A] - Pr[B]$. True
True or False

- Ω and A are independent. True
- $Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]$. True
- $Pr[A \setminus B] \geq Pr[A] - Pr[B]$. True
- X_1, \ldots, X_n i.i.d. $\implies var\left(\frac{X_1 + \cdots + X_n}{n}\right) = var(X_1)$. False:
True or False

- Ω and A are independent. True
- $Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]$. True
- $Pr[A \setminus B] \geq Pr[A] - Pr[B]$. True
- X_1, \ldots, X_n i.i.d. $\implies \text{var}(\frac{X_1+\cdots+X_n}{n}) = \text{var}(X_1)$. False: $\times \frac{1}{n}$
True or False

- Ω and A are independent. True
- $Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]$. True
- $Pr[A \setminus B] \geq Pr[A] - Pr[B]$. True
- X_1, \ldots, X_n i.i.d. $\implies \text{var}(\frac{X_1 + \ldots + X_n}{n}) = \text{var}(X_1)$. False: $\times \frac{1}{n}$
- $Pr[|X - a| \geq b] \leq \frac{E[(X-a)^2]}{b^2}$.
True or False

- \(\Omega \) and \(A \) are independent. True
- \(Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B] \). True
- \(Pr[A \setminus B] \geq Pr[A] - Pr[B] \). True
- \(X_1, \ldots, X_n \) i.i.d. \(\implies \text{var}(\frac{X_1 + \cdots + X_n}{n}) = \text{var}(X_1) \). False: \(\times \frac{1}{n} \)
- \(Pr[|X - a| \geq b] \leq \frac{E[(X-a)^2]}{b^2} \). True
True or False

- \(\Omega \) and \(A \) are independent. **True**
- \(\Pr[A \cap B] = \Pr[A] + \Pr[B] - \Pr[A \cup B] \). **True**
- \(\Pr[A \setminus B] \geq \Pr[A] - \Pr[B] \). **True**
- \(X_1, \ldots, X_n \) i.i.d. \(\Rightarrow \) \(\text{var}\left(\frac{X_1 + \cdots + X_n}{n} \right) = \text{var}(X_1) \). **False:** \(\times \frac{1}{n} \)
- \(\Pr[|X - a| \geq b] \leq \frac{E[(X-a)^2]}{b^2} \). **True**
- \(X_1, \ldots, X_n \) i.i.d. \(\Rightarrow \) \(\frac{X_1 + \cdots + X_n - nE[X_1]}{n\sigma(X_1)} \rightarrow \mathcal{N}(0,1) \).
True or False

- Ω and A are independent. True
- $\Pr[A \cap B] = \Pr[A] + \Pr[B] - \Pr[A \cup B]$. True
- $\Pr[A \setminus B] \geq \Pr[A] - \Pr[B]$. True
- X_1, \ldots, X_n i.i.d. $\implies \text{var}(\frac{X_1 + \cdots + X_n}{n}) = \text{var}(X_1)$. False: $\times \frac{1}{n}$
- $\Pr[|X - a| \geq b] \leq \frac{E[(X-a)^2]}{b^2}$. True
- X_1, \ldots, X_n i.i.d. $\implies \frac{X_1 + \cdots + X_n - nE[X_1]}{n\sigma(X_1)} \to \mathcal{N}(0,1)$. False: \sqrt{n}
True or False

- True or False
- \(\Omega \) and \(A \) are independent. True
- \(\Pr[A \cap B] = \Pr[A] + \Pr[B] - \Pr[A \cup B] \). True
- \(\Pr[A \setminus B] \geq \Pr[A] - \Pr[B] \). True
- \(X_1, \ldots, X_n \) i.i.d. \(\implies \var\left(\frac{X_1 + \cdots + X_n}{n}\right) = \var(X_1) \). False: \(\times \frac{1}{n} \)
- \(\Pr[|X - a| \geq b] \leq \frac{E[(X-a)^2]}{b^2} \). True
- \(X_1, \ldots, X_n \) i.i.d. \(\implies \frac{X_1 + \cdots + X_n - nE[X_1]}{n\sigma(X_1)} \to \mathcal{N}(0,1) \). False: \(\sqrt{n} \)
- \(X = Expo(\lambda) \implies \Pr[X > 5 | X > 3] = \Pr[X > 2] \).
True or False

- **True or False**
 - Ω and A are independent. True
 - $Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]$. True
 - $Pr[A \setminus B] \geq Pr[A] - Pr[B]$. True
 - X_1, \ldots, X_n i.i.d. $\implies \text{var}(\frac{X_1 + \cdots + X_n}{n}) = \text{var}(X_1)$. False: $\times \frac{1}{n}$
 - $Pr[|X - a| \geq b] \leq \frac{E[(X-a)^2]}{b^2}$. True
 - X_1, \ldots, X_n i.i.d. $\implies \frac{X_1 + \cdots + X_n - nE[X_1]}{n\sigma(X_1)} \xrightarrow{d} N(0,1)$. False: \sqrt{n}
 - $X = \text{Expo}(\lambda) \implies Pr[X > 5 | X > 3] = Pr[X > 2]$. True:
True or False

- Ω and A are independent. True
- $Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]$. True
- $Pr[A \setminus B] \geq Pr[A] - Pr[B]$. True
- X_1, \ldots, X_n i.i.d. $\implies var(\frac{X_1+\ldots+X_n}{n}) = var(X_1)$. False: $\times \frac{1}{n}$
- $Pr[|X - a| \geq b] \leq \frac{E[(X-a)^2]}{b^2}$. True
- X_1, \ldots, X_n i.i.d. $\implies \frac{X_1+\ldots+X_n-nE[X_1]}{n\sigma(X_1)} \rightarrow \mathcal{N}(0,1)$. False: \sqrt{n}
- $X = \text{Expo}(\lambda) \implies Pr[X > 5|X > 3] = Pr[X > 2]$. True:
 $$\frac{\exp\{-\lambda 5\}}{\exp\{-\lambda 3\}} = \exp\{-\lambda 2\}.$$
Correct or not?
Correct or not?

When $n \gg 1$, one has
When $n \gg 1$, one has

- $[A_n - 2\sigma \frac{1}{n}, A_n + 2\sigma \frac{1}{n}] = 95\%$-CI for μ.

If $0.3 < \sigma < 3$, then $[A_n - 6.1 \sqrt{n}, A_n + 6.1 \sqrt{n}] = 95\%$-CI for μ.

Yes
Correct or not?

When $n \gg 1$, one has

- $[A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%$-CI for μ. No
Correct or not?

When $n \gg 1$, one has

- $[A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%$-CI for μ. No
- $[A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%$-CI for μ. Yes
Correct or not?

When \(n \gg 1 \), one has

- \([A_n - 2\sigma \frac{1}{n}, A_n + 2\sigma \frac{1}{n}] \) = 95\%-CI for \(\mu \). No
- \([A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] \) = 95\%-CI for \(\mu \). Yes
Correct or not?

When $n \gg 1$, one has

- $[A_n - 2\sigma \frac{1}{n}, A_n + 2\sigma \frac{1}{n}] = 95\%$-CI for μ. No
- $[A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%$-CI for μ. Yes
- If $0.3 < \sigma < 3$, then
 $[A_n - 0.6 \frac{1}{\sqrt{n}}, A_n + 0.6 \frac{1}{\sqrt{n}}] = 95\%$-CI for μ. Yes
Correct or not?

When $n \gg 1$, one has

- $[A_n - 2\sigma_n^{1/n}, A_n + 2\sigma_n^{1/n}] = 95\%$-CI for μ. No
- $[A_n - 2\sigma_n^{1/n}, A_n + 2\sigma_n^{1/n}] = 95\%$-CI for μ. Yes
- If $0.3 < \sigma < 3$, then $[A_n - 0.6\sigma_n^{1/n}, A_n + 0.6\sigma_n^{1/n}] = 95\%$-CI for μ. No
Correct or not?

When $n \gg 1$, one has

- $[A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%$-CI for μ. No
- $[A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%$-CI for μ. Yes
- If $0.3 < \sigma < 3$, then
 $[A_n - 0.6 \frac{1}{\sqrt{n}}, A_n + 0.6 \frac{1}{\sqrt{n}}] = 95\%$-CI for μ. No
- If $0.3 < \sigma < 3$, then
 $[A_n - 6 \frac{1}{\sqrt{n}}, A_n + 6 \frac{1}{\sqrt{n}}] = 95\%$-CI for μ. Yes
When $n \gg 1$, one has

- $[A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%$-CI for μ. No
- $[A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%$-CI for μ. Yes
- If $0.3 < \sigma < 3$, then $[A_n - 0.6 \frac{1}{\sqrt{n}}, A_n + 0.6 \frac{1}{\sqrt{n}}] = 95\%$-CI for μ. No
- If $0.3 < \sigma < 3$, then $[A_n - 6 \frac{1}{\sqrt{n}}, A_n + 6 \frac{1}{\sqrt{n}}] = 95\%$-CI for μ. Yes
When \(n \gg 1 \), one has

- \([A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%-\text{CI for } \mu\). No
- \([A_n - 2\sigma \frac{1}{\sqrt{n}}, A_n + 2\sigma \frac{1}{\sqrt{n}}] = 95\%-\text{CI for } \mu\). Yes
- If \(0.3 < \sigma < 3 \), then
 \([A_n - 0.6 \frac{1}{\sqrt{n}}, A_n + 0.6 \frac{1}{\sqrt{n}}] = 95\%-\text{CI for } \mu\). No
- If \(0.3 < \sigma < 3 \), then
 \([A_n - 6 \frac{1}{\sqrt{n}}, A_n + 6 \frac{1}{\sqrt{n}}] = 95\%-\text{CI for } \mu\). Yes
Match Items

[1] \(Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)

[2] \(Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)

[3] \(Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)

[4] \(g(\cdot) \text{ convex } \Rightarrow E[g(X)] \geq g(E[X]) \)

[5] \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \)

[6] \(\sum_y y \Pr[Y = y | X = x] \)

[7] \(Pr[|\frac{X_1 + \cdots + X_n}{n} - E[X_1]| \geq \varepsilon] \rightarrow 0, \)

[8] \(E[(Y - E[Y|X])h(X)] = 0. \)
Match Items

1. \(\Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)

2. \(\Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)

3. \(\Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)

4. \(g(\cdot) \text{ convex} \Rightarrow E[g(X)] \geq g(E[X]) \)

5. \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \)

6. \(\sum_y y \Pr[Y = y \mid X = x] \)

7. \(\Pr[|\frac{X_1 + \cdots + X_n}{n} - E[X_1]| \geq \varepsilon] \to 0 \)

8. \(E[(Y - E[Y|X])h(X)] = 0 \)

- WLLN
Match Items

1. \(Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)
2. \(Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)
3. \(Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)
4. \(g(\cdot) \text{ convex } \Rightarrow E[g(X)] \geq g(E[X]) \)
5. \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \)
6. \(\sum_y yPr[Y = y|X = x] \)
7. \(Pr[\left| \frac{X_1 + \cdots + X_n}{n} - E[X_1] \right| \geq \varepsilon] \to 0 \)
8. \(E[(Y - E[Y|X])h(X)] = 0. \)

- WLLN (7)
Match Items

1. \(\Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)
2. \(\Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)
3. \(\Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)
4. \(g(\cdot) \) convex \(\Rightarrow E[g(X)] \geq g(E[X]) \)
5. \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \)
6. \(\sum_y y \Pr[Y = y | X = x] \)
7. \(\Pr[\left| \frac{X_1 + \cdots + X_n}{n} - E[X_1] \right| \geq \varepsilon] \to 0 \)
8. \(E[(Y - E[Y|X])h(X)] = 0 \)

- WLLN (7)
- MMSE
Match Items

1. $Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)}$
2. $Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2}$
3. $Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}}$
4. $g(\cdot)$ convex $\Rightarrow E[g(X)] \geq g(E[X])$
5. $E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]).$
6. $\sum_y yPr[Y = y|X = x]$
7. $Pr[\left| \frac{X_1 + \cdots + X_n}{n} - E[X_1] \right| \geq \varepsilon] \to 0,$
8. $E[(Y - E[Y|X])h(X)] = 0.$

- WLLN (7)
- MMSE (6)
Match Items

1. \(Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)
2. \(Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)
3. \(Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)
4. \(g(\cdot) \text{ convex } \Rightarrow E[g(X)] \geq g(E[X]) \)
5. \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \)
6. \(\sum_y y Pr[Y = y | X = x] \)
7. \(Pr[| \frac{X_1 + \cdots + X_n}{n} - E[X_1] | \geq \varepsilon] \to 0, \)
8. \(E[(Y - E[Y|X])h(X)] = 0. \)

- WLLN (7)
- MMSE (6)
- Projection property
Match Items

[1] \(\Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)

[2] \(\Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)

[3] \(\Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)

[4] \(g(\cdot) \) convex \(\Rightarrow E[g(X)] \geq g(E[X]) \)

[5] \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \)

[6] \(\sum_y y \Pr[Y = y | X = x] \)

[7] \(\Pr[|\frac{X_1 + \cdots + X_n}{n} - E[X_1]| \geq \varepsilon] \rightarrow 0 \)

[8] \(E[(Y - E[Y|X])h(X)] = 0 \)

- WLLN (7)
- MMSE (6)
- Projection property (8)
Match Items

- WLLN (7)
- MMSE (6)
- Projection property (8)
- Chebyshev
Match Items

1. $\Pr[X \geq a] \leq \frac{E[f(X) - f(a)]}{f(a)}$

2. $\Pr[|X - E[X]| > a] \leq \frac{\operatorname{var}[X]}{a^2}$

3. $\Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}}$

4. $g(\cdot)$ convex $\Rightarrow E[g(X)] \geq g(E[X])$

5. $E[Y] + \frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)} (X - E[X])$

6. $\sum_y y \Pr[Y = y | X = x]$

7. $\Pr[\left| \frac{X_1 + \cdots + X_n}{n} - E[X_1] \right| \geq \varepsilon \rightarrow 0,$

8. $E[(Y - E[Y|X])h(X)]] = 0.$

- WLLN (7)
- MMSE (6)
- Projection property (8)
- Chebyshev (2)
Match Items

1. \(Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)
2. \(Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)
3. \(Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)
4. \(g(\cdot) \) convex \(\Rightarrow E[g(X)] \geq g(E[X]) \)
5. \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \)
6. \(\sum_y y Pr[Y = y | X = x] \)
7. \(Pr[\frac{X_1 + \cdots + X_n}{n} - E[X_1] \geq \varepsilon] \rightarrow 0 \)
8. \(E[(Y - E[Y|X])h(X)] = 0. \)

- WLLN (7)
- MMSE (6)
- Projection property (8)
- Chebyshev (2)
- LLSE
Match Items

1. $\Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)}$
2. $\Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2}$
3. $\Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}}$
4. $g(\cdot)$ convex $\Rightarrow E[g(X)] \geq g(E[X])$
5. $E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)}(X - E[X])$
6. $\sum_y y \Pr[Y = y | X = x]$
7. $\Pr[\left| \frac{X_1 + \cdots + X_n}{n} - E[X_1] \right| \geq \varepsilon] \to 0$
8. $E[(Y - E[Y|X])h(X)] = 0$

- WLLN (7)
- MMSE (6)
- Projection property (8)
- Chebyshev (2)
- LLSE (5)
Match Items

1. \(\Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)
2. \(\Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)
3. \(\Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)
4. \(g(\cdot) \text{ convex} \Rightarrow E[g(X)] \geq g(E[X]) \)
5. \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]). \)
6. \(\sum_y y \Pr[Y = y | X = x] \)
7. \(\Pr[\left| \frac{X_1 + \cdots + X_n}{n} - E[X_1] \right| \geq \varepsilon] \rightarrow 0, \)
8. \(E[(Y - E[Y|X])h(X)] = 0. \)

- WLLN (7)
- MMSE (6)
- Projection property (8)
- Chebyshev (2)
- LLSE (5)
- Markov’s inequality
Match Items

1. \(\Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \)
2. \(\Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2} \)
3. \(\Pr[X \geq a] \leq \min_{\theta > 0} \frac{E[e^{\theta X}]}{e^{\theta a}} \)
4. \(g(\cdot) \) convex \(\Rightarrow E[g(X)] \geq g(E[X]) \)
5. \(E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)} (X - E[X]) \)
6. \(\sum_y y \Pr[Y = y | X = x] \)
7. \(\Pr[\left| \frac{X_1 + \cdots + X_n}{n} - E[X_1] \right| \geq \varepsilon] \to 0, \)
8. \(E[(Y - E[Y|X])h(X)] = 0. \)

- WLLN (7)
- MMSE (6)
- Projection property (8)
- Chebyshev (2)
- LLSE (5)
- Markov’s inequality (1)
Quiz 1: G

1. What is \(P[A|B] \)?
 \[P[A|B] = \frac{P[A \cap B]}{P[B]} = 0.4 \times 0.7 \]

2. What is \(P[B|A] \)?
 \[P[B|A] = \frac{P[A \cap B]}{P[A]} = 0.4 \]

3. Are \(A \) and \(B \) positively correlated?
 No.
 \[P[A \cap B] = 0.4 < P[A] \times P[B] = 0.6 \times 0.7 \]
Quiz 1: G

1. What is $P[A | B]$?
 $P[A | B] = \frac{P[A \cap B]}{P[B]} = 0.4 \div 0.7 = 0.57$.

2. What is $P[B | A]$?
 $P[B | A] = \frac{P[A \cap B]}{P[A]} = 0.4 \div 0.2 = 2$.

3. Are A and B positively correlated?
 No. $P[A \cap B] = 0.4 < P[A] \times P[B] = 0.2 \times 0.3$.

The diagram shows a Venn diagram with probabilities:
- $P[A] = 0.2$
- $P[B] = 0.3$
- $P[A \cap B] = 0.4$
- $P[\Omega - A] = 0.1$
- $P[\Omega - B] = 0.3$
Quiz 1: G

1. What is $P[A|B]$?
Quiz 1: G

1. What is $P[A|B]$?

$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{0.1}{0.3} = \frac{0.4}{0.7}$.
Quiz 1: G

1. What is $P[A|B]$?

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} =$$
1. What is $P[A|B]$?

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{0.4}{0.7}$$
1. What is \(P[A|B] \)?

\[
Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{0.4}{0.7}
\]

2. What is \(Pr[B|A] \)?

No.

\[
Pr[A \cap B] < Pr[A] \cdot Pr[B] = 0.4 \times 0.7
\]
Quiz 1: G

1. What is $P[A|B]$?

 $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{0.4}{0.7}$

2. What is $Pr[B|A]$?

 $Pr[B|A] =$
Quiz 1: G

1. What is $P[A|B]$?

 $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{0.4}{0.7}$

2. What is $Pr[B|A]$?

 $Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]} = \frac{0.4}{0.7}$
Quiz 1: G

1. What is $P[A|B]$?

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{0.4}{0.7}$$

2. What is $Pr[B|A]$?

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]} = \frac{0.4}{0.6}$$
1. What is $P[A|B]$?

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{0.4}{0.7}$$

2. What is $Pr[B|A]$?

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]} = \frac{0.4}{0.6}$$

3. Are A and B positively correlated?
1. What is $P[A|B]$?

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{0.4}{0.7}$$

2. What is $Pr[B|A]$?

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]} = \frac{0.4}{0.6}$$

3. Are A and B positively correlated?

No.
1. What is $P[A|B]$?

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{0.4}{0.7}$$

2. What is $Pr[B|A]$?

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]} = \frac{0.4}{0.6}$$

3. Are A and B positively correlated?

No. $Pr[A \cap B] = 0.4 < Pr[A]Pr[B] = 0.6 \times 0.7$.
Quiz 1: G

4. What is $E[Y|X]$?

$$E[Y|X] = 0 = 1 	imes Pr[Y=0|X=0] + 2 \times Pr[Y=2|X=0]$$

$$= 2 \times 0.4 = 1.0$$

5. What is $cov(X,Y)$?

$$cov(X,Y) = E[XY] - E[X]E[Y] = 0.8 - 0.6 \times 1.4 = -0.04$$

6. What is $L[Y|X]$?

$$L[Y|X] = E[Y] + cov(X,Y) \times var(X)(X - E[X]) = 1.4 + (-0.04 \times 0.4 \times 0.4) = 1.33$$
4. What is \(E[Y|X] \)?

\[
E[Y|X] = 0 \times \Pr[Y=0|X=0] + 2 \times \Pr[Y=2|X=0] = 2 \times 0.3 = 0.6
\]

5. What is \(\text{cov}(X,Y) \)?

\[
\text{cov}(X,Y) = E[XY] - E[X]E[Y] = 0.8 - 0.6 \times 1.4 = -0.04
\]

6. What is \(L[Y|X] \)?

\[
L[Y|X] = E[Y] + \text{cov}(X,Y) \text{var}(X) (X - E[X]) = 1.4 + (-0.04) \times 0.6 \times (X - 0.6)
\]
4. What is $E[Y|X]$?
4. What is $E[Y|X]$?

$$E[Y|X = 0] =$$
4. What is $E[Y|X]$?

$$E[Y|X = 0] = 0 \times Pr[Y = 0|X = 0] + 2 \times Pr[Y = 2|X = 0]$$
4. What is $E[Y|X]$?

$$E[Y|X = 0] = 0 \times Pr[Y = 0|X = 0] + 2 \times Pr[Y = 2|X = 0]$$

=

\[= \]
4. What is $E[Y|X]$?

$$E[Y|X = 0] = 0 \times Pr[Y = 0|X = 0] + 2 \times Pr[Y = 2|X = 0]$$

$$= 2 \times \frac{0.3}{0.4} = \frac{3}{2}$$
4. What is $E[Y|X]$?

$$E[Y|X = 0] = 0 \times Pr[Y = 0|X = 0] + 2 \times Pr[Y = 2|X = 0]$$

$$= 2 \times \frac{0.3}{0.4} = 1.5$$
4. What is $E[Y|X]$?

\[
E[Y|X = 0] = 0 \times Pr[Y = 0|X = 0] + 2 \times Pr[Y = 2|X = 0] = 0 \times 0 + 2 \times \frac{0.3}{0.4} = 1.5
\]

\[
E[Y|X = 1] =
\]
4. What is $E[Y|X]$?

\[
E[Y|X = 0] = 0 \times Pr[Y = 0|X = 0] + 2 \times Pr[Y = 2|X = 0] \\
= 2 \times \frac{0.3}{0.4} = 1.5
\]

\[
E[Y|X = 1] = 0 \times Pr[Y = 0|X = 1] + 2 \times Pr[Y = 2|X = 1]
\]
4. What is $E[Y|X]$?

$$E[Y|X = 0] = 0 \times Pr[Y = 0|X = 0] + 2 \times Pr[Y = 2|X = 0]$$
$$= 2 \times \frac{0.3}{0.4} = 1.5$$

$$E[Y|X = 1] = 0 \times Pr[Y = 0|X = 1] + 2 \times Pr[Y = 2|X = 1]$$
$$= 0 \times 0 + 2 \times 0.4$$
$$= 0.8$$

$$= 1.5$$
4. What is $E[Y|X]$?

\[
E[Y|X = 0] = 0 \times Pr[Y = 0|X = 0] + 2 \times Pr[Y = 2|X = 0] \\
= 2 \times \frac{0.3}{0.4} = 1.5
\]

\[
E[Y|X = 1] = 0 \times Pr[Y = 0|X = 1] + 2 \times Pr[Y = 2|X = 1] \\
= 2 \times \frac{0.4}{0.6} =
\]
4. What is $E[Y|X]$?

\[
E[Y|X = 0] = 0 \times Pr[Y = 0|X = 0] + 2 \times Pr[Y = 2|X = 0] \\
= 2 \times \frac{0.3}{0.4} = 1.5
\]

\[
E[Y|X = 1] = 0 \times Pr[Y = 0|X = 1] + 2 \times Pr[Y = 2|X = 1] \\
= 2 \times \frac{0.4}{0.6} = 1.33
\]
4. What is \(E[Y|X] \)?

\[
E[Y|X = 0] = 0 \times Pr[Y = 0|X = 0] + 2 \times Pr[Y = 2|X = 0] \\
= 2 \times \frac{0.3}{0.4} = 1.5
\]

\[
E[Y|X = 1] = 0 \times Pr[Y = 0|X = 1] + 2 \times Pr[Y = 2|X = 1] \\
= 2 \times \frac{0.4}{0.6} = 1.33
\]

5. What is \(\text{cov}(X, Y) \)?
Quiz 1: G

4. What is $E[Y|X]$?

\[
E[Y|X = 0] = 0 \times Pr[Y = 0|X = 0] + 2 \times Pr[Y = 2|X = 0] \\
= 2 \times \frac{0.3}{0.4} = 1.5
\]

\[
E[Y|X = 1] = 0 \times Pr[Y = 0|X = 1] + 2 \times Pr[Y = 2|X = 1] \\
= 2 \times \frac{0.4}{0.6} = 1.33
\]

5. What is $\text{cov}(X, Y)$?

$\text{cov}(X, Y) =$
4. What is $E[Y|X]$?

\[
E[Y|X = 0] = 0 \times Pr[Y = 0|X = 0] + 2 \times Pr[Y = 2|X = 0]
\]
\[
= 2 \times \frac{0.3}{0.4} = 1.5
\]

\[
E[Y|X = 1] = 0 \times Pr[Y = 0|X = 1] + 2 \times Pr[Y = 2|X = 1]
\]
\[
= 2 \times \frac{0.4}{0.6} = 1.33
\]

5. What is $cov(X, Y)$?

\[
cov(X, Y) = E[XY] - E[X]E[Y] =
\]
4. What is $E[Y|X]$?

$$E[Y|X=0] = 0 \times Pr[Y=0|X=0] + 2 \times Pr[Y=2|X=0]$$

$$= 2 \times \frac{0.3}{0.4} = 1.5$$

$$E[Y|X=1] = 0 \times Pr[Y=0|X=1] + 2 \times Pr[Y=2|X=1]$$

$$= 2 \times \frac{0.4}{0.6} = 1.33$$

5. What is $\text{cov}(X, Y)$?

$$\text{cov}(X, Y) = E[XY] - E[X]E[Y] = 0.8 - 0.6 \times 1.4 =$$
4. What is $E[Y|X]$?

$$E[Y|X = 0] = 0 \times Pr[Y = 0|X = 0] + 2 \times Pr[Y = 2|X = 0]$$

$$= 2 \times \frac{0.3}{0.4} = 1.5$$

$$E[Y|X = 1] = 0 \times Pr[Y = 0|X = 1] + 2 \times Pr[Y = 2|X = 1]$$

$$= 2 \times \frac{0.4}{0.6} = 1.33$$

5. What is $cov(X, Y)$?

$$cov(X, Y) = E[XY] - E[X]E[Y] = 0.8 - 0.6 \times 1.4 = -0.04$$
4. What is $E[Y \mid X]$?

\[
E[Y \mid X = 0] = 0 \times Pr[Y = 0 \mid X = 0] + 2 \times Pr[Y = 2 \mid X = 0] = 0 \times 0.3 + 2 \times 0.4 = 1.5
\]

\[
E[Y \mid X = 1] = 0 \times Pr[Y = 0 \mid X = 1] + 2 \times Pr[Y = 2 \mid X = 1] = 0 \times 0.6 + 2 \times 0.4 = 1.33
\]

5. What is $cov(X, Y)$?

\[
cov(X, Y) = E[XY] - E[X]E[Y] = 0.8 - 0.6 \times 1.4 = -0.04
\]

6. What is $L[Y \mid X]$?
4. What is $E[Y|X]$?

\[
E[Y|X = 0] = 0 \times Pr[Y = 0|X = 0] + 2 \times Pr[Y = 2|X = 0]
\]
\[
= 2 \times \frac{0.3}{0.4} = 1.5
\]

\[
E[Y|X = 1] = 0 \times Pr[Y = 0|X = 1] + 2 \times Pr[Y = 2|X = 1]
\]
\[
= 2 \times \frac{0.4}{0.6} = 1.33
\]

5. What is $\text{cov}(X, Y)$?

\[
\text{cov}(X, Y) = E[XY] - E[X]E[Y] = 0.8 - 0.6 \times 1.4 = -0.04
\]

6. What is $L[Y|X]$?
Quiz 1: G

4. What is $E[Y|X]$?

$$E[Y|X = 0] = 0 \times Pr[Y = 0|X = 0] + 2 \times Pr[Y = 2|X = 0]$$
$$= 2 \times \frac{0.3}{0.4} = 1.5$$

$$E[Y|X = 1] = 0 \times Pr[Y = 0|X = 1] + 2 \times Pr[Y = 2|X = 1]$$
$$= 2 \times \frac{0.4}{0.6} = 1.33$$

5. What is $cov(X, Y)$?

$$cov(X, Y) = E[XY] - E[X]E[Y] = 0.8 - 0.6 \times 1.4 = -0.04$$

6. What is $L[Y|X]$?

$$L[Y|X] = E[Y] + \frac{cov(X, Y)}{\text{var}(X)}(X - E[X]) =$$
4. What is $E[Y|X]$?

$$E[Y|X = 0] = 0 \times Pr[Y = 0|X = 0] + 2 \times Pr[Y = 2|X = 0]$$
$$= 2 \times \frac{0.3}{0.4} = 1.5$$

$$E[Y|X = 1] = 0 \times Pr[Y = 0|X = 1] + 2 \times Pr[Y = 2|X = 1]$$
$$= 2 \times \frac{0.4}{0.6} = 1.33$$

5. What is $\text{cov}(X, Y)$?

$$\text{cov}(X, Y) = E[XY] - E[X]E[Y] = 0.8 - 0.6 \times 1.4 = -0.04$$

6. What is $L[Y|X]$?

$$L[Y|X] = E[Y] + \frac{\text{cov}(X,Y)}{\text{var}(X)} (X - E[X]) = 1.4 + \frac{-0.04}{0.6 \times 0.4} (X - 0.6)$$
Quiz 1: G

7. Is this Markov chains irreducible?
Yes.

8. Is this Markov chain periodic?
No.
The return times to 3 are
\{3, 5, ..\}:
coprime!

9. Does \(\pi_n \) converge to a value independent of \(\pi_0 \)?
Yes!

10. Does \(\frac{1}{n} \sum_{m=1}^{n-1} m = \frac{1}{11} \{X_m = 3\} \) converge as \(n \to \infty \)?
Yes!

11. Calculate \(\pi \).
Let \(a = \pi(1) \).
Then
\[a = \pi(5), \pi(2) = 0, 5a, \pi(4) = \pi(2) = 0, 5a, \pi(3) = 0, 5\pi(1) + \pi(4) = a. \]
Thus,
\[\pi = [a, 0.5a, a, 0.5a] = [1, 0.5, 1, 0.5], \]
so \(a = \frac{1}{4} \).
Quiz 1: G

7. Is this Markov chains irreducible?
Yes.

8. Is this Markov chain periodic?
No.
The return times to 3 are \{3, 5, \ldots\}.

9. Does \(\pi_n\) converge to a value independent of \(\pi_0\)?
Yes!

10. Does \(\frac{1}{n} \sum_{m=1}^{n-1} m = 1\) \{\(X_m = 3\)\} converge as \(n \to \infty\)?
Yes!

11. Calculate \(\pi\).
Let \(a = \pi(1)\).
Then \(a = \pi(5)\), \(\pi(2) = 0\), \(5a\), \(\pi(4) = \pi(2) = 0\), \(5a\), \(\pi(3) = 0\), \(5\pi(1) + \pi(4) = a\).
Thus, \(\pi = \begin{bmatrix} a, 0 \\ 5a, a \\ 5a, 1 \end{bmatrix} = \begin{bmatrix} 1, 0 \\ 5, 1 \end{bmatrix}\), so \(a = \frac{1}{4}\).
7. Is this Markov chains irreducible?
Quiz 1: G

7. Is this Markov chains irreducible? Yes.
7. Is this Markov chains irreducible? Yes.
8. Is this Markov chain periodic?
7. Is this Markov chains irreducible? Yes.
8. Is this Markov chain periodic?
 No.
7. Is this Markov chains irreducible? Yes.
8. Is this Markov chain periodic?
 No. The return times to 3 are
7. Is this Markov chains irreducible? Yes.
8. Is this Markov chain periodic?
 No. The return times to 3 are \(\{3, 5, \ldots\}\):
7. Is this Markov chains irreducible? Yes.

8. Is this Markov chain periodic?
 No. The return times to 3 are \{3, 5, ..\}: coprime!
7. Is this Markov chains irreducible? **Yes.**
8. Is this Markov chain periodic?
 No. The return times to 3 are \{3, 5, ..\}: coprime!
9. Does π_n converge to a value independent of π_0?
7. Is this Markov chains irreducible? Yes.
8. Is this Markov chain periodic?
 No. The return times to 3 are \{3, 5, \ldots\}: coprime!
9. Does \(\pi_n \) converge to a value independent of \(\pi_0 \)? Yes!
Quiz 1: G

7. Is this Markov chains irreducible? Yes.

8. Is this Markov chain periodic?

 No. The return times to 3 are \{3, 5, \ldots\}: coprime!

9. Does \(\pi_n \) converge to a value independent of \(\pi_0 \)? Yes!

10. Does \(\frac{1}{n} \sum_{m=1}^{n-1} 1\{X_m = 3\} \) converge as \(n \to \infty \)?
7. Is this Markov chains irreducible? Yes.
8. Is this Markov chain periodic?
 No. The return times to 3 are \{3, 5, \ldots\}: coprime!
9. Does \(\pi_n \) converge to a value independent of \(\pi_0 \)? Yes!
10. Does \(\frac{1}{n} \sum_{m=1}^{n-1} 1\{X_m = 3\} \) converge as \(n \to \infty \)? Yes!
7. Is this Markov chains irreducible? Yes.
8. Is this Markov chain periodic?
 No. The return times to 3 are \{3, 5, \ldots\}: coprime!
9. Does π_n converge to a value independent of π_0? Yes!
10. Does $\frac{1}{n} \sum_{m=1}^{n-1} 1\{X_m = 3\}$ converge as $n \to \infty$? Yes!
11. Calculate π.

Let $a = \pi(1)$.
Then $a = \pi(5)$, $\pi(2) = 0.5$, $\pi(3) = 0.5a$, $\pi(4) = \pi(2) = 0.5a$.

Thus, $\pi = \left[a, 0.5a, a, 0.5a\right] = [1, 0.5a, 1, 0.5a]a$, so $a = \frac{1}{4}$.
7. Is this Markov chains irreducible? Yes.

8. Is this Markov chain periodic?
 No. The return times to 3 are \{3, 5, ..\}: coprime!

9. Does \(\pi_n \) converge to a value independent of \(\pi_0 \)? Yes!

10. Does \(\frac{1}{n} \sum_{m=1}^{n-1} 1\{X_m = 3\} \) converge as \(n \to \infty \)? Yes!

11. Calculate \(\pi \).
 Let \(a = \pi(1) \).
7. Is this Markov chains irreducible? Yes.
8. Is this Markov chain periodic?
 No. The return times to 3 are \{3, 5, \ldots\}: coprime!
9. Does \(\pi_n \) converge to a value independent of \(\pi_0 \)? Yes!
10. Does \(\frac{1}{n} \sum_{m=1}^{n-1} 1\{X_m = 3\} \) converge as \(n \to \infty \)? Yes!
11. Calculate \(\pi \).
 Let \(a = \pi(1) \). Then \(a = \pi(5) \),
7. Is this Markov chain irreducible? Yes.
8. Is this Markov chain periodic?
 No. The return times to 3 are \(\{3, 5, \ldots\} \): coprime!
9. Does \(\pi_n \) converge to a value independent of \(\pi_0 \)? Yes!
10. Does \(\frac{1}{n} \sum_{m=1}^{n-1} 1\{X_m = 3\} \) converge as \(n \to \infty \)? Yes!
11. Calculate \(\pi \).
 Let \(a = \pi(1) \). Then \(a = \pi(5), \pi(2) = 0.5a \),
7. Is this Markov chains irreducible? Yes.

8. Is this Markov chain periodic?

 No. The return times to 3 are \{3, 5, \ldots\}: coprime!

9. Does \(\pi_n \) converge to a value independent of \(\pi_0 \)? Yes!

10. Does \(\frac{1}{n} \sum_{m=1}^{n-1} 1\{X_m = 3\} \) converge as \(n \to \infty \)? Yes!

11. Calculate \(\pi \).

 Let \(a = \pi(1) \). Then \(a = \pi(5), \pi(2) = 0.5a, \pi(4) = \pi(2) = 0.5a, \)
7. Is this Markov chains irreducible? Yes.

8. Is this Markov chain periodic?

 No. The return times to 3 are \{3, 5, ..\}: coprime!

9. Does \(\pi_n \) converge to a value independent of \(\pi_0 \)? Yes!

10. Does \(\frac{1}{n} \sum_{m=1}^{n-1} 1\{X_m = 3\} \) converge as \(n \to \infty \)? Yes!

11. Calculate \(\pi \).

 Let \(a = \pi(1) \). Then \(a = \pi(5), \pi(2) = 0.5a, \pi(4) = \pi(2) = 0.5a, \pi(3) = 0.5\pi(1) + \pi(4) = a. \)
7. Is this Markov chain irreducible? Yes.
8. Is this Markov chain periodic?

 No. The return times to 3 are \(\{3, 5, \ldots\}\): coprime!

9. Does \(\pi_n\) converge to a value independent of \(\pi_0\)? Yes!
10. Does \(\frac{1}{n} \sum_{m=1}^{n-1} 1\{X_m = 3\}\) converge as \(n \to \infty\)? Yes!
11. Calculate \(\pi\).

 Let \(a = \pi(1)\). Then \(a = \pi(5), \pi(2) = 0.5a, \pi(4) = \pi(2) = 0.5a, \pi(3) = 0.5\pi(1) + \pi(4) = a\). Thus,

 \[
 \pi = [a, 0.5a, a, 0.5a, a] = [1, 0.5, 1, 0.5, 1]a, \text{ so } a =
 \]
7. Is this Markov chains irreducible? Yes.

8. Is this Markov chain periodic?
 No. The return times to 3 are \{3, 5, \ldots\}: coprime!

9. Does \(\pi_n \) converge to a value independent of \(\pi_0 \)? Yes!

10. Does \(\frac{1}{n} \sum_{m=1}^{n-1} 1\{X_m = 3\} \) converge as \(n \to \infty \)? Yes!

11. Calculate \(\pi \).

 Let \(a = \pi(1) \). Then \(a = \pi(5), \pi(2) = 0.5a, \pi(4) = \pi(2) = 0.5a, \pi(3) = 0.5\pi(1) + \pi(4) = a \). Thus, \(\pi = [a, 0.5a, a, 0.5a, a] = [1, 0.5, 1, 0.5, 1]a \), so \(a = 1/4 \).
Quiz 1: G

12. Write the first step equations for calculating the mean time from 1 to 4.

\[\beta(1) = 1 + 0.5 \]

\[\beta(2) = 1 + 0.5 \beta(1) \]

\[\beta(3) = 1 + 0.5 \beta(2) \]

\[\beta(4) = 1 + 0.5 \beta(3) \]

13. Solve these equations.

\[\beta(1) = 1 + 0.5 \times 1 + 0.5 \times (1 + (1 + \beta(1))) = 2.5 + 0.5 \beta(1) \]

Hence, \(\beta(1) = 5 \).
12. Write the first step equations for calculating the mean time from 1 to 4.

\[\beta(1) = 1 + 0.5 \beta(5) \]

\[\beta(2) = 1 + 0.5 \beta(1) \]

13. Solve these equations.

\[\beta(1) = 1 + 0.5 \times 1 + 0.5 \times (1 + \beta(1)) = 2.5 + 0.5 \beta(1) \]

Hence, \(\beta(1) = 5 \).
12. Write the first step equations for calculating the mean time from 1 to 4.
12. Write the first step equations for calculating the mean time from 1 to 4.

\[\beta(1) = 1 + 0.5 \beta(2) + 0.5 \beta(3) \]
12. Write the first step equations for calculating the mean time from 1 to 4.

\[\beta(1) = 1 + 0.5\beta(2) + 0.5\beta(3) \]
\[\beta(2) = 1 \]
12. Write the first step equations for calculating the mean time from 1 to 4.

\[
\begin{align*}
\beta(1) &= 1 + 0.5\beta(2) + 0.5\beta(3) \\
\beta(2) &= 1 \\
\beta(3) &= 1 + \beta(5)
\end{align*}
\]
12. Write the first step equations for calculating the mean time from 1 to 4.

\[
\beta(1) = 1 + 0.5\beta(2) + 0.5\beta(3)
\]
\[
\beta(2) = 1
\]
\[
\beta(3) = 1 + \beta(5)
\]
\[
\beta(5) = 1 + \beta(1).
\]
12. Write the first step equations for calculating the mean time from 1 to 4.

\[
\begin{align*}
\beta(1) &= 1 + 0.5\beta(2) + 0.5\beta(3) \\
\beta(2) &= 1 \\
\beta(3) &= 1 + \beta(5) \\
\beta(5) &= 1 + \beta(1).
\end{align*}
\]

13. Solve these equations.
12. Write the first step equations for calculating the mean time from 1 to 4.

\[\beta(1) = 1 + 0.5 \beta(2) + 0.5 \beta(3) \]
\[\beta(2) = 1 \]
\[\beta(3) = 1 + \beta(5) \]
\[\beta(5) = 1 + \beta(1). \]

13. Solve these equations.

\[\beta(1) = 1 + 0.5 \times 1 + 0.5 \times (1 + (1 + \beta(1))) \]
12. Write the first step equations for calculating the mean time from 1 to 4.

\[\beta(1) = 1 + 0.5\beta(2) + 0.5\beta(3) \]
\[\beta(2) = 1 \]
\[\beta(3) = 1 + \beta(5) \]
\[\beta(5) = 1 + \beta(1). \]

13. Solve these equations.

\[\beta(1) = 1 + 0.5 \times 1 + 0.5 \times (1 + (1 + \beta(1))) \]
\[= 2.5 + 0.5\beta(1). \]
12. Write the first step equations for calculating the mean time from 1 to 4.

\[\beta(1) = 1 + 0.5\beta(2) + 0.5\beta(3) \]
\[\beta(2) = 1 \]
\[\beta(3) = 1 + \beta(5) \]
\[\beta(5) = 1 + \beta(1). \]

13. Solve these equations.

\[\beta(1) = 1 + 0.5 \times 1 + 0.5 \times (1 + (1 + \beta(1))) \]
\[= 2.5 + 0.5\beta(1). \]

Hence, \(\beta(1) = 5. \)
14. Which is $E[Y|X]$? Blue, red or green?
14. Which is $E[Y|X]$? Blue, red or green?

Answer: Red.
14. Which is $E[Y|X]$? Blue, red or green?

Answer: Red.
14. Which is $E[Y|X]$? Blue, red or green?

Answer: Red.
Given $X = x$, $Y = U[a(x), b(x)]$.
Quiz 1: G

14. Which is $E[Y|X]$? Blue, red or green?

Answer: Red.

Given $X = x$, $Y = U[a(x), b(x)]$. Thus, $E[Y|X = x] = \frac{a(x) + b(x)}{2}$.
15. Which is $L[Y|X]$? Blue, red or green?

Answer: Blue. Cannot be red (not a straight line). Cannot be green: X and Y are clearly positively correlated.
15. Which is $L[Y|X]$? Blue, red or green?

Answer: Blue.
15. Which is $L[Y|X]$? Blue, red or green?

Answer: Blue.
Cannot be red (not a straight line).
Quiz 1: G

15. Which is $L[Y|X]$? Blue, red or green?

Answer: Blue. Cannot be red (not a straight line). Cannot be green: X and Y are clearly positively correlated.
Quiz 2: PG

1. Find \((x, y)\) so that \(A\) and \(B\) are independent.

We need
\[
\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]
\]
That is,
\[
0.2 = (y + 0.3) \times 0.5
\]
Hence,
\[
y = 0.2\] and \[x = 0.3\].

2. Find the value of \(x\) that maximizes \(\Pr[B|A]\).

Obviously, it is \[x = 0.5\].
Quiz 2: PG

1. Find \((x, y)\) so that \(A\) and \(B\) are independent.

We need

\[
\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)
\]

That is,

\[
0.2 = (y + 0.2) \times 0.5
\]

Hence,

\[
y = 0.2 \quad \text{and} \quad x = 0.3.
\]

2. Find the value of \(x\) that maximizes \(\Pr(B | A)\).

Obviously, it is \(x = 0.5\).
1. Find \((x, y)\) so that \(A\) and \(B\) are independent.
1. Find \((x, y)\) so that \(A\) and \(B\) are independent.

We need

\[Pr[A \cap B] = Pr[A]Pr[B] \]
1. Find \((x, y)\) so that \(A\) and \(B\) are independent.

We need

\[
Pr[A \cap B] = Pr[A]Pr[B]
\]

That is,

\[
0.2 = (y + 0.2) \times 0.5 =
\]
1. Find \((x, y)\) so that \(A\) and \(B\) are independent.

We need

\[Pr[A \cap B] = Pr[A]Pr[B] \]

That is,

\[0.2 = (y + 0.2) \times 0.5 = 0.5y + 0.1 \]
1. Find \((x, y)\) so that \(A\) and \(B\) are independent.

We need

\[Pr[A \cap B] = Pr[A]Pr[B] \]

That is,

\[0.2 = (y + 0.2) \times 0.5 = 0.5y + 0.1 \]

Hence,

\[y = 0.2 \]
1. Find \((x, y)\) so that \(A\) and \(B\) are independent.

 We need
 \[Pr[A \cap B] = Pr[A]Pr[B] \]

 That is,
 \[0.2 = (y + 0.2) \times 0.5 = 0.5y + 0.1 \]

 Hence,
 \[y = 0.2 \]

 and \(x = \)
1. Find \((x, y)\) so that \(A\) and \(B\) are independent.

We need

\[
Pr[A \cap B] = Pr[A]Pr[B]
\]

That is,

\[
0.2 = (y + 0.2) \times 0.5 = 0.5y + 0.1
\]

Hence,

\[
y = 0.2 \text{ and } x = 0.3.
\]
1. Find \((x, y)\) so that \(A\) and \(B\) are independent.

We need

\[
Pr[A \cap B] = Pr[A]Pr[B]
\]

That is,

\[
0.2 = (y + 0.2) \times 0.5 = 0.5y + 0.1
\]

Hence,

\[
y = 0.2 \text{ and } x = 0.3.
\]

2. Find the value of \(x\) that maximizes \(Pr[B|A]\).
1. Find \((x, y)\) so that \(A\) and \(B\) are independent.

We need

\[
Pr[A \cap B] = Pr[A]Pr[B]
\]

That is,

\[
0.2 = (y + 0.2) \times 0.5 = 0.5y + 0.1
\]

Hence,

\[
y = 0.2 \text{ and } x = 0.3.
\]

2. Find the value of \(x\) that maximizes \(Pr[B|A]\).

Obviously, it is \(x = \)
1. Find \((x, y)\) so that \(A\) and \(B\) are independent.

 We need

 \[
 Pr[A \cap B] = Pr[A]Pr[B]
 \]

 That is,

 \[
 0.2 = (y + 0.2) \times 0.5 = 0.5y + 0.1
 \]

 Hence,

 \[
 y = 0.2 \text{ and } x = 0.3.
 \]

2. Find the value of \(x\) that maximizes \(Pr[B|A]\).

 Obviously, it is \(x = 0.5\).
Quiz 2: PG

3. Find α so that X and Y are independent. We need $\Pr[X=0, Y=0] = \Pr[X=0] \cdot \Pr[Y=0]$. That is, $0.1 = (0.1 + \alpha) \cdot (0.1 + 0.2) = 0.03 + 0.3 \alpha$. Hence, $\alpha = 0.233$.
Quiz 2: PG

Find α so that X and Y are independent.

We need $\Pr[X = 0, Y = 0] = \Pr[X = 0] \Pr[Y = 0]$

That is, $0.1 = (0.1 + \alpha)(0.2) = 0.03 + 0.2\alpha$

Hence, $\alpha = 0.233$
3. Find α so that X and Y are independent.
3. Find α so that X and Y are independent.

We need

$$Pr[X = 0, Y = 0] = Pr[X = 0]Pr[Y = 0]$$
3. Find α so that X and Y are independent.

We need

$$\Pr[X = 0, Y = 0] = \Pr[X = 0] \Pr[Y = 0]$$

That is,

$$0.1 = (0.1 + \alpha) \times (0.1 + 0.2) =$$
3. Find α so that X and Y are independent.

We need

$$Pr[X = 0, Y = 0] = Pr[X = 0]Pr[Y = 0]$$

That is,

$$0.1 = (0.1 + \alpha) \times (0.1 + 0.2) = 0.03 + 0.3\alpha$$
3. Find α so that X and Y are independent.

We need

$$Pr[X = 0, Y = 0] = Pr[X = 0]Pr[Y = 0]$$

That is,

$$0.1 = (0.1 + \alpha) \times (0.1 + 0.2) = 0.03 + 0.3\alpha$$

Hence,

$$\alpha = 0.233$$
3. Find α so that X and Y are independent.

We need

$$Pr[X = 0, Y = 0] = Pr[X = 0]Pr[Y = 0]$$

That is,

$$0.1 = (0.1 + \alpha) \times (0.1 + 0.2) = 0.03 + 0.3\alpha$$

Hence,

$$\alpha = 0.233$$
Quiz 2: PG

4. A CS70 student is great with probability 0.3 and good with probability 0.7. A great student solves each question correctly with probability 0.8 whereas a good student does it with probability 0.6. One student got right 70% of the 10 questions on Midterm 1 and 70% of the 10 questions on Midterm 2. What is the expected score of the student on the final?

\[p = \text{Pr}\left[\text{great} \mid \text{scores} \right] = 0.3 (0.8) + 0.7 (0.6) = 0.6 + 0.4 = 0.27 \]

Expected score = 80% + (1 - p) 60% ≈ 65%.
4. A CS70 student is great w.p. 0.3 and good w.p. 0.7.
Quiz 2: PG

4. A CS70 student is great w.p. 0.3 and good w.p. 0.7. A great student solves each question correctly w.p. 0.8.
Quiz 2: PG

4. A CS70 student is great w.p. 0.3 and good w.p. 0.7. A great student solves each question correctly w.p. 0.8 whereas a good student does it w.p. 0.6.
Quiz 2: PG

4. A CS70 student is great w.p. 0.3 and good w.p. 0.7. A great student solves each question correctly w.p. 0.8 whereas a good student does it w.p. 0.6. One student got right 70% of the 10 questions on Midterm 1
4. A CS70 student is great w.p. 0.3 and good w.p. 0.7. A great student solves each question correctly w.p. 0.8 whereas a good student does it w.p. 0.6. One student got right 70% of the 10 questions on Midterm 1 and 70% of the 10 questions on Midterm 2.
4. A CS70 student is great w.p. 0.3 and good w.p. 0.7. A great student solves each question correctly w.p. 0.8 whereas a good student does it w.p. 0.6. One student got right 70% of the 10 questions on Midterm 1 and 70% of the 10 questions on Midterm 2. What is the expected score of the student on the final?
4. A CS70 student is great w.p. 0.3 and good w.p. 0.7. A great student solves each question correctly w.p. 0.8 whereas a good student does it w.p. 0.6. One student got right 70% of the 10 questions on Midterm 1 and 70% of the 10 questions on Midterm 2. What is the expected score of the student on the final?
Quiz 2: PG

4. A CS70 student is great w.p. 0.3 and good w.p. 0.7. A great student solves each question correctly w.p. 0.8 whereas a good student does it w.p. 0.6. One student got right 70% of the 10 questions on Midterm 1 and 70% of the 10 questions on Midterm 2. What is the expected score of the student on the final?

\[p := \Pr[\text{great}|\text{scores}] = \]
4. A CS70 student is great w.p. 0.3 and good w.p. 0.7. A great student solves each question correctly w.p. 0.8 whereas a good student does it w.p. 0.6. One student got right 70% of the 10 questions on Midterm 1 and 70% of the 10 questions on Midterm 2. What is the expected score of the student on the final?

\[p := Pr[\text{great} | \text{scores}] = \frac{0.3 \binom{20}{14} 0.8^{14} 0.2^6}{0.3 \binom{20}{14} 0.8^{14} 0.2^6 + 0.7 \binom{20}{14} 0.6^{14} 0.4^6} \]
4. A CS70 student is great w.p. 0.3 and good w.p. 0.7. A great student solves each question correctly w.p. 0.8 whereas a good student does it w.p. 0.6. One student got right 70% of the 10 questions on Midterm 1 and 70% of the 10 questions on Midterm 2. What is the expected score of the student on the final?

\[p := Pr[\text{great} | \text{scores}] = \frac{0.3 \binom{20}{14} 0.8^{14} 0.2^6}{0.3 \binom{20}{14} 0.8^{14} 0.2^6 + 0.7 \binom{20}{14} 0.6^{14} 0.4^6} \]

\[= \frac{(0.3)0.8^{14}0.2^6}{(0.3)0.8^{14}0.2^6 + (0.7)0.6^{14}0.4^6} \]
4. A CS70 student is great w.p. 0.3 and good w.p. 0.7. A great student solves each question correctly w.p. 0.8 whereas a good student does it w.p. 0.6. One student got right 70% of the 10 questions on Midterm 1 and 70% of the 10 questions on Midterm 2. What is the expected score of the student on the final?

\[
p := Pr[\text{great}|\text{scores}] = \frac{0.3 \binom{20}{14} 0.8^{14} 0.2^6}{0.3 \binom{20}{14} 0.8^{14} 0.2^6 + 0.7 \binom{20}{14} 0.6^{14} 0.4^6} = \frac{(0.3) 0.8^{14} 0.2^6}{(0.3) 0.8^{14} 0.2^6 + (0.7) 0.6^{14} 0.4^6} \approx 0.27
\]
4. A CS70 student is great w.p. 0.3 and good w.p. 0.7. A great student solves each question correctly w.p. 0.8 whereas a good student does it w.p. 0.6. One student got right 70% of the 10 questions on Midterm 1 and 70% of the 10 questions on Midterm 2. What is the expected score of the student on the final?

\[
p := Pr[\text{great}|\text{scores}] = \frac{0.3 \binom{20}{14} 0.8^{14} 0.2^6}{0.3 \binom{20}{14} 0.8^{14} 0.2^6 + 0.7 \binom{20}{14} 0.6^{14} 0.4^6} \approx 0.27
\]

Expected score =
4. A CS70 student is great w.p. 0.3 and good w.p. 0.7. A great student solves each question correctly w.p. 0.8 whereas a good student does it w.p. 0.6. One student got right 70% of the 10 questions on Midterm 1 and 70% of the 10 questions on Midterm 2. What is the expected score of the student on the final?

\[
p := Pr[\text{great} | \text{scores}] = \frac{0.3 \binom{20}{14} 0.8^{14} 0.2^6}{0.3 \binom{20}{14} 0.8^{14} 0.2^6 + 0.7 \binom{20}{14} 0.6^{14} 0.4^6} \\
= \frac{(0.3) 0.8^{14} 0.2^6}{(0.3) 0.8^{14} 0.2^6 + (0.7) 0.6^{14} 0.4^6} \approx 0.27
\]

Expected score = \(p80\% + (1 - p)60\% \approx \)
4. A CS70 student is great w.p. 0.3 and good w.p. 0.7. A great student solves each question correctly w.p. 0.8 whereas a good student does it w.p. 0.6. One student got right 70% of the 10 questions on Midterm 1 and 70% of the 10 questions on Midterm 2. What is the expected score of the student on the final?

\[p := Pr[\text{great} | \text{scores}] = \frac{0.3 \binom{20}{14} 0.8^{14} 0.2^6}{0.3 \binom{20}{14} 0.8^{14} 0.2^6 + 0.7 \binom{20}{14} 0.6^{14} 0.4^6} \]

\[= \frac{(0.3) 0.8^{14} 0.2^6}{(0.3) 0.8^{14} 0.2^6 + (0.7) 0.6^{14} 0.4^6} \approx 0.27 \]

Expected score \[= p80\% + (1 - p)60\% \approx 65\%. \]
You roll a balanced six-sided die 20 times. Use CLT to upper-bound the probability that the total number of dots exceeds 85.

Let $X = X_1 + \cdots + X_{20}$ be the total number of dots. Then

$$X - 70 \approx N(0, 1)$$

where $\sigma^2 = \text{var}(X_1) = \frac{1}{6} \sum_{m=1}^{6} m^2 - (3.5)^2 \approx 2.9 = 1.7^2$.

Now,

$$\Pr[X > 85] = \Pr[X - 70 > 151.7 \times 4.5] = \Pr[X - 70 > 2 \times 1.7] \approx 2.5\%.$$
5. You roll a balanced six-sided die 20 times.
5. You roll a balanced six-sided die 20 times. Use CLT to upper-bound the probability that the total number of dots exceeds 85.
5. You roll a balanced six-sided die 20 times. Use CLT to upper-bound the probability that the total number of dots exceeds 85.

Let $X = X_1 + \cdots + X_{20}$ be the total number of dots.
Quiz 2: PG

5. You roll a balanced six-sided die 20 times. Use CLT to upper-bound the probability that the total number of dots exceeds 85.

Let \(X = X_1 + \cdots + X_{20} \) be the total number of dots. Then

\[
\frac{X - 70}{\sigma \sqrt{20}} \approx \mathcal{N}(0, 1)
\]

where
5. You roll a balanced six-sided die 20 times. Use CLT to upper-bound the probability that the total number of dots exceeds 85.

Let $X = X_1 + \cdots + X_{20}$ be the total number of dots. Then

$$\frac{X - 70}{\sigma \sqrt{20}} \approx \mathcal{N}(0, 1)$$

where

$$\sigma^2 = \text{var}(X_1) = $$
5. You roll a balanced six-sided die 20 times. Use CLT to upper-bound the probability that the total number of dots exceeds 85.

Let $X = X_1 + \cdots + X_{20}$ be the total number of dots. Then

$$\frac{X - 70}{\sigma \sqrt{20}} \approx \mathcal{N}(0, 1)$$

where

$$\sigma^2 = \text{var}(X_1) = \frac{1}{6} \sum_{m=1}^{6} m^2 - (3.5)^2 \approx$$
5. You roll a balanced six-sided die 20 times. Use CLT to upper-bound the probability that the total number of dots exceeds 85.

Let \(X = X_1 + \cdots + X_{20} \) be the total number of dots. Then

\[
\frac{X - 70}{\sigma \sqrt{20}} \approx \mathcal{N}(0, 1)
\]

where

\[
\sigma^2 = \text{var}(X_1) = \frac{1}{6} \sum_{m=1}^{6} m^2 - (3.5)^2 \approx 2.9
\]
5. You roll a balanced six-sided die 20 times. Use CLT to upper-bound the probability that the total number of dots exceeds 85.

Let $X = X_1 + \cdots + X_{20}$ be the total number of dots. Then

$$\frac{X - 70}{\sigma \sqrt{20}} \approx \mathcal{N}(0, 1)$$

where

$$\sigma^2 = \text{var}(X_1) = (1/6) \sum_{m=1}^{6} m^2 - (3.5)^2 \approx 2.9 = 1.7^2.$$
5. You roll a balanced six-sided die 20 times. Use CLT to upper-bound the probability that the total number of dots exceeds 85.

Let $X = X_1 + \cdots + X_{20}$ be the total number of dots.

Then

$$\frac{X - 70}{\sigma \sqrt{20}} \approx \mathcal{N}(0,1)$$

where

$$\sigma^2 = \text{var}(X_1) = (1/6) \sum_{m=1}^{6} m^2 - (3.5)^2 \approx 2.9 = 1.7^2.$$

Now,

$$\Pr[X > 85] = \Pr[X - 70 > 15]$$
5. You roll a balanced six-sided die 20 times. Use CLT to upper-bound the probability that the total number of dots exceeds 85.

Let \(X = X_1 + \cdots + X_{20} \) be the total number of dots.

Then
\[
\frac{X - 70}{\sigma \sqrt{20}} \approx \mathcal{N}(0,1)
\]

where
\[
\sigma^2 = \text{var}(X_1) = (1/6) \sum_{m=1}^{6} m^2 - (3.5)^2 \approx 2.9 = 1.7^2.
\]

Now,
\[
\Pr[X > 85] = \Pr[X - 70 > 15] = \Pr\left[\frac{X - 70}{1.7 \times 4.5} > \frac{15}{1.7 \times 4.5} \right]
\]
5. You roll a balanced six-sided die 20 times. Use CLT to upper-bound the probability that the total number of dots exceeds 85.

Let $X = X_1 + \cdots + X_{20}$ be the total number of dots. Then

$$\frac{X - 70}{\sigma \sqrt{20}} \approx \mathcal{N}(0, 1)$$

where

$$\sigma^2 = \text{var}(X_1) = \frac{1}{6} \sum_{m=1}^{6} m^2 - (3.5)^2 \approx 2.9 = 1.7^2.$$

Now,

$$Pr[X > 85] = Pr[X - 70 > 15]$$

$$= Pr[\frac{X - 70}{1.7 \times 4.5} > \frac{15}{1.7 \times 4.5}]$$

$$= Pr[\frac{X - 70}{1.7 \times 4.5} > 2]$$

$$\approx 2.5\%.$$
5. You roll a balanced six-sided die 20 times. Use CLT to upper-bound the probability that the total number of dots exceeds 85.

Let $X = X_1 + \cdots + X_{20}$ be the total number of dots. Then

$$\frac{X - 70}{\sigma \sqrt{20}} \approx \mathcal{N}(0, 1)$$

where

$$\sigma^2 = \text{var}(X_1) = \frac{1}{6} \sum_{m=1}^{6} m^2 - (3.5)^2 \approx 2.9 = 1.7^2.$$

Now,

$$\Pr[X > 85] = \Pr[X - 70 > 15]$$

$$= \Pr\left[\frac{X - 70}{1.7 \times 4.5} > \frac{15}{1.7 \times 4.5}\right]$$

$$= \Pr\left[\frac{X - 70}{1.7 \times 4.5} > 2\right] \approx 2.5\%.$$
You roll a balanced six-sided die 20 times. Use Chebyshev to upper-bound the probability that the total number of dots exceeds 85. Let \(X = X_1 + \cdots + X_{20} \) be the total number of dots. Then \(\Pr[X > 85] = \Pr[|X - 70| > 15] \leq \frac{\text{var}(X)}{15^2} \). Now, \(\text{var}(X) = 20 \times \text{var}(X_1) = 20 \times 2.9 = 58 \). Hence, \(\Pr[X > 85] \leq \frac{58}{15^2} \approx 0.26 \).
6. You roll a balanced six-sided die 20 times.
6. You roll a balanced six-sided die 20 times. Use Chebyshev to upper-bound the probability that the total number of dots exceeds 85.
6. You roll a balanced six-sided die 20 times. Use Chebyshev to upper-bound the probability that the total number of dots exceeds 85.

Let \(X = X_1 + \cdots + X_{20} \) be the total number of dots.
6. You roll a balanced six-sided die 20 times. Use Chebyshev to upper-bound the probability that the total number of dots exceeds 85.

Let $X = X_1 + \cdots + X_{20}$ be the total number of dots.

Then

$$Pr[X > 85] = Pr[X - 70 > 15]$$
6. You roll a balanced six-sided die 20 times. Use Chebyshev to upper-bound the probability that the total number of dots exceeds 85.

Let \(X = X_1 + \cdots + X_{20} \) be the total number of dots. Then

\[
Pr[X > 85] = Pr[X - 70 > 15] \leq Pr[|X - 70| > 15]
\]
6. You roll a balanced six-sided die 20 times. Use Chebyshev to upper-bound the probability that the total number of dots exceeds 85.

Let $X = X_1 + \cdots + X_{20}$ be the total number of dots. Then

$$Pr[X > 85] = Pr[X - 70 > 15] \leq Pr[|X - 70| > 15] \leq \frac{\text{var}(X)}{15^2}.$$
6. You roll a balanced six-sided die 20 times. Use Chebyshev to upper-bound the probability that the total number of dots exceeds 85.

Let $X = X_1 + \cdots + X_{20}$ be the total number of dots. Then

$$Pr[X > 85] = Pr[X - 70 > 15] \leq Pr[|X - 70| > 15] \leq \frac{var(X)}{15^2}.$$

Now,

$$var(X) = 20var(X_1) = 20 \times 2.9 = 58.$$
6. You roll a balanced six-sided die 20 times. Use Chebyshev to upper-bound the probability that the total number of dots exceeds 85.

Let $X = X_1 + \cdots + X_{20}$ be the total number of dots. Then

$$Pr[X > 85] = Pr[X - 70 > 15] \leq Pr[|X - 70| > 15] \leq \frac{var(X)}{15^2}.$$

Now,

$$var(X) = 20var(X_1) = 20 \times 2.9 = 58.$$

Hence,

$$Pr[X > 85] \leq \frac{58}{15^2} \approx 0.26.$$
7. Let \(X, Y, Z \) be i.i.d. Expo \((1)\).

Find \(L[X | X + 2Y + 3Z] \).

Let \(V = X + 2Y + 3Z \).

One finds \(L[X | V] = E[X] + \text{cov}(X, V) \text{var}(V) (V - E[V]) \).

\(E[X] = 1, E[V] = 6, \text{cov}(X, V) = \text{var}(X) = 1 \).

\(\text{var}(V) = 1 + 4 + 9 = 14 \).

Hence, \(L[X | V] = 1 + \frac{1}{14} (V - 6) \).

8. Let \(X, Y, Z \) be i.i.d. Expo \((1)\). Calculate \(E[X + Z | X + Y] \).

\(E[X + Z | X + Y] = E[X | X + Y] + E[Z] = \frac{1}{2}(X + Y) + 1 \).

9. Let \(X, Y, Z \) be i.i.d. Expo \((1)\). Calculate \(L[X + Z | X + Y] \).

\(L[X + Z | X + Y] = \frac{1}{2}(X + Y) + 1 \).
Quiz 2: PG

7. Let X, Y, Z be i.i.d. $Expo(1)$.
Let X, Y, Z be i.i.d. $\text{Expo}(1)$. Find $L[X|X + 2Y + 3Z]$.

$V = X + 2Y + 3Z$. One finds $L[X|V] = E[X] + \text{cov}(X, V) \var(V) (V - E[V])$.

$E[X] = 1$, $E[V] = 6$, $\text{cov}(X, V) = \text{var}(X) = 1$, $\var(V) = 14$.

Hence, $L[X|V] = 1 + \frac{1}{14} (V - 6)$.

Let X, Y, Z be i.i.d. $\text{Expo}(1)$. Calculate $E[X + Z|X + Y]$.

$E[X + Z|X + Y] = E[X|X + Y] + E[Z] = \frac{1}{2} (X + Y) + 1$.

Let X, Y, Z be i.i.d. $\text{Expo}(1)$. Calculate $L[X + Z|X + Y]$.

$L[X + Z|X + Y] = \frac{1}{2} (X + Y) + 1$.

Quiz 2: PG
Quiz 2: PG

7. Let X, Y, Z be i.i.d. $Expo(1)$. Find $L[X|X + 2Y + 3Z]$.
 Let $V = X + 2Y + 3Z$.
Quiz 2: PG

7. Let X, Y, Z be i.i.d. $\text{Expo}(1)$. Find $L[X|X + 2Y + 3Z]$.

Let $V = X + 2Y + 3Z$. One finds

$$E[X|V] = E[X|X + 2Y + 3Z] = \frac{1}{2}(X + Y) + 1.$$
7. Let X, Y, Z be i.i.d. $\text{Expo}(1)$. Find $L[X \mid X + 2Y + 3Z]$. Let $V = X + 2Y + 3Z$. One finds

$$L[X \mid V] =$$
Quiz 2: PG

Let $V = X + 2Y + 3Z$. One finds

\[
L[X|V] = E[X] + \frac{\text{cov}(X, V)}{\text{var}(V)} (V - E[V])
\]
7. Let X, Y, Z be i.i.d. $\text{Expo}(1)$. Find $L[X|X+2Y+3Z]$.

Let $V = X + 2Y + 3Z$. One finds

$$L[X|V] = E[X] + \frac{\text{cov}(X, V)}{\text{var}(V)} (V - E[V])$$

$$E[X] = 1,$$
7. Let X, Y, Z be i.i.d. $Expo(1)$. Find $L[X|X + 2Y + 3Z]$.

Let $V = X + 2Y + 3Z$. One finds

$$L[X|V] = E[X] + \frac{\text{cov}(X, V)}{\text{var}(V)} (V - E[V])$$

$$E[X] = 1, E[V] =$$
Quiz 2: PG

Let $V = X + 2Y + 3Z$. One finds

$$L[X|V] = E[X] + \frac{\text{cov}(X, V)}{\text{var}(V)}(V - E[V])$$

$E[X] = 1, E[V] = 6$
7. Let X, Y, Z be i.i.d. $\text{Expo}(1)$. Find $L[X|X+2Y+3Z]$.

Let $V = X + 2Y + 3Z$. One finds

$$L[X|V] = E[X] + \frac{\text{cov}(X, V)}{\text{var}(V)} (V - E[V])$$

$E[X] = 1, E[V] = 6$

$\text{cov}(X, V) =$

Let $V = X + 2Y + 3Z$. One finds

$$L[X|V] = E[X] + \frac{\text{cov}(X, V)}{\text{var}(V)}(V - E[V])$$

$E[X] = 1, E[V] = 6$

$\text{cov}(X, V) = \text{var}(X) =$
Quiz 2: PG

7. Let X, Y, Z be i.i.d. Expo(1). Find $L[X|X+2Y+3Z]$.

Let $V = X + 2Y + 3Z$. One finds

$$L[X|V] = E[X] + \frac{\text{cov}(X, V)}{\text{var}(V)} (V - E[V])$$

$E[X] = 1, E[V] = 6$

$\text{cov}(X, V) = \text{var}(X) = 1$

$\text{var}(V) =$
7. Let X, Y, Z be i.i.d. $\text{Expo}(1)$. Find $L[X|X + 2Y + 3Z]$.

Let $V = X + 2Y + 3Z$. One finds

$$L[X|V] = E[X] + \frac{\text{cov}(X, V)}{\text{var}(V)} (V - E[V])$$

$E[X] = 1$, $E[V] = 6$

$\text{cov}(X, V) = \text{var}(X) = 1$

$\text{var}(V) = 1 + 4 + 9 = 14$.

8. Let X, Y, Z be i.i.d. $\text{Expo}(1)$. Calculate $E[X + Z|X + Y]$.

$$E[X + Z|X + Y] = E[X|X + Y] + E[Z] = \frac{1}{2}(X + Y) + 1.$$

$$L[X + Z|X + Y] = \frac{1}{2}(X + Y) + 1.$$
Quiz 2: PG

7. Let X, Y, Z be i.i.d. $\text{Expo}(1)$. Find $L[X|X + 2Y + 3Z]$.

Let $V = X + 2Y + 3Z$. One finds

$$L[X|V] = E[X] + \frac{\text{cov}(X, V)}{\text{var}(V)}(V - E[V])$$

$E[X] = 1$, $E[V] = 6$

$\text{cov}(X, V) = \text{var}(X) = 1$

$\text{var}(V) = 1 + 4 + 9 = 14$.

Hence,

$$L[X|V] = 1 + \frac{1}{14}(V - 6).$$
7. Let X, Y, Z be i.i.d. $\text{Expo}(1)$. Find $L[X|X + 2Y + 3Z]$.

Let $V = X + 2Y + 3Z$. One finds

\[
L[X|V] = E[X] + \frac{\text{cov}(X, V)}{\text{var}(V)}(V - E[V])
\]

$E[X] = 1, E[V] = 6$

$\text{cov}(X, V) = \text{var}(X) = 1$

$\text{var}(V) = 1 + 4 + 9 = 14$.

Hence,

\[
L[X|V] = 1 + \frac{1}{14}(V - 6).
\]

8. Let X, Y, Z be i.i.d. $\text{Expo}(1)$. Calculate $E[X + Z|X + Y]$.

Let $V = X + 2Y + 3Z$. One finds

$$L[X|V] = E[X] + \frac{\text{cov}(X, V)}{\text{var}(V)}(V - E[V])$$

$E[X] = 1, E[V] = 6$

$\text{cov}(X, V) = \text{var}(X) = 1$

$\text{var}(V) = 1 + 4 + 9 = 14$.

Hence,

$$L[X|V] = 1 + \frac{1}{14}(V - 6).$$

$$E[X + Z|X + Y] = E[X|X + Y] + E[Z]$$
7. Let X, Y, Z be i.i.d. $\text{Expo}(1)$. Find $L[X|X+2Y+3Z]$.

Let $V = X + 2Y + 3Z$. One finds

\[L[X|V] = E[X] + \frac{\text{cov}(X, V)}{\text{var}(V)}(V - E[V])\]

$E[X] = 1, E[V] = 6$

$\text{cov}(X, V) = \text{var}(X) = 1$

$\text{var}(V) = 1 + 4 + 9 = 14.$

Hence,

\[L[X|V] = 1 + \frac{1}{14}(V - 6).\]

8. Let X, Y, Z be i.i.d. $\text{Expo}(1)$. Calculate $E[X + Z|X + Y]$.

\[E[X + Z|X + Y] = E[X|X + Y] + E[Z]\]

\[= \frac{1}{2}(X + Y) + 1.\]
Quiz 2: PG

7. Let X, Y, Z be i.i.d. $\text{Expo}(1)$. Find $L[X|X + 2Y + 3Z]$.

Let $V = X + 2Y + 3Z$. One finds

$$L[X|V] = E[X] + \frac{\text{cov}(X, V)}{\text{var}(V)}(V - E[V])$$

$E[X] = 1, E[V] = 6$

$\text{cov}(X, V) = \text{var}(X) = 1$

$\text{var}(V) = 1 + 4 + 9 = 14$.

Hence,

$$L[X|V] = 1 + \frac{1}{14}(V - 6).$$

8. Let X, Y, Z be i.i.d. $\text{Expo}(1)$. Calculate $E[X + Z|X + Y]$.

$$E[X + Z|X + Y] = E[X|X + Y] + E[Z]$$

$$= \frac{1}{2}(X + Y) + 1.$$
7. Let \(X, Y, Z \) be i.i.d. \(\text{Expo}(1) \). Find \(L[X|X+2Y+3Z] \).

Let \(V = X + 2Y + 3Z \). One finds

\[
L[X|V] = E[X] + \frac{\text{cov}(X, V)}{\text{var}(V)} (V - E[V])
\]

\(E[X] = 1, E[V] = 6 \)
\(\text{cov}(X, V) = \text{var}(X) = 1 \)
\(\text{var}(V) = 1 + 4 + 9 = 14 \).

Hence,

\[
L[X|V] = 1 + \frac{1}{14} (V - 6).
\]

8. Let \(X, Y, Z \) be i.i.d. \(\text{Expo}(1) \). Calculate \(E[X+Z|X+Y] \).

\[
E[X+Z|X+Y] = E[X|X+Y] + E[Z] = \frac{1}{2} (X+Y) + 1.
\]

9. Let \(X, Y, Z \) be i.i.d. \(\text{Expo}(1) \). Calculate \(L[X+Z|X+Y] \).

\[
L[X+Z|X+Y] = \frac{1}{2} (X+Y) + 1.
\]
10. You roll a balanced die.
10. You roll a balanced die.

You start with $1.00.
10. You roll a balanced die.

You start with $1.00.

Every time you get a 6, your fortune is multiplied by 10.
10. You roll a balanced die.

You start with $1.00.

Every time you get a 6, your fortune is multiplied by 10.

Every time you do not get a 6, your fortune is divided by 2.
10. You roll a balanced die.

You start with $1.00.

Every time you get a 6, your fortune is multiplied by 10.
Every time you do not get a 6, your fortune is divided by 2.
Let X_n be your fortune at the start of step n,

Calculate $E[X_n]$.

We have $X_1 = 1.$

Also, $E[X_{n+1} | X_n] = X_n \times \left(\frac{1}{6} \times 10 + \frac{5}{6} \times \frac{1}{2}\right) = \rho X_n$,

$\rho = \frac{1}{6} \times 10 + \frac{5}{6} \times \frac{1}{2} \approx 2.1$.

Hence, $E[X_{n+1}] = \rho E[X_n]$,

Thus, $E[X_n] = \rho^{n-1} E[X_1]$, $n \geq 1$.

10. You roll a balanced die.

You start with $1.00.

Every time you get a 6, your fortune is multiplied by 10.
Every time you do not get a 6, your fortune is divided by 2.

Let X_n be your fortune at the start of step n,

Calculate $E[X_n]$.

You roll a balanced die.

You start with $1.00.

Every time you get a 6, your fortune is multiplied by 10.

Every time you do not get a 6, your fortune is divided by 2.

Let X_n be your fortune at the start of step n,

Calculate $E[X_n]$.

We have $X_1 = 1$.
10. You roll a balanced die.

You start with $1.00.

Every time you get a 6, your fortune is multiplied by 10.

Every time you do not get a 6, your fortune is divided by 2.

Let X_n be your fortune at the start of step n,

Calculate $E[X_n]$.

We have $X_1 = 1$. Also,

$$E[X_{n+1}|X_n] = X_n \times \left[10 \frac{1}{6} + 0.5 \times \frac{5}{6}\right]$$
10. You roll a balanced die.

You start with $1.00.

Every time you get a 6, your fortune is multiplied by 10.

Every time you do not get a 6, your fortune is divided by 2.

Let X_n be your fortune at the start of step n.

Calculate $E[X_n]$.

We have $X_1 = 1$. Also,

$$E[X_{n+1}|X_n] = X_n \times \left[10 \frac{1}{6} + 0.5 \times \frac{5}{6} \right]$$

$$= \rho X_n, \rho = 10 \frac{1}{6} + 0.5 \times \frac{5}{6}$$
10. You roll a balanced die.

You start with $1.00.

Every time you get a 6, your fortune is multiplied by 10.
Every time you do not get a 6, your fortune is divided by 2.

Let X_n be your fortune at the start of step n.
Calculate $E[X_n]$.

We have $X_1 = 1$. Also,

$$E[X_{n+1}|X_n] = X_n \times (10 \frac{1}{6} + 0.5 \times \frac{5}{6})$$

$$= \rho X_n, \rho = 10 \frac{1}{6} + 0.5 \times \frac{5}{6} \approx 2.1.$$
10. You roll a balanced die.
You start with $1.00.
Every time you get a 6, your fortune is multiplied by 10.
Every time you do not get a 6, your fortune is divided by 2.
Let X_n be your fortune at the start of step n,
Calculate $E[X_n]$.

We have $X_1 = 1$. Also,

$$E[X_{n+1}|X_n] = X_n \times \left[10 \frac{1}{6} + 0.5 \times \frac{5}{6}\right]$$

$$= \rho X_n, \rho = 10 \frac{1}{6} + 0.5 \times \frac{5}{6} \approx 2.1.$$

Hence,

$$E[X_{n+1}] = \rho E[X_n], n \geq 1.$$
10. You roll a balanced die.

You start with $1.00.

Every time you get a 6, your fortune is multiplied by 10.

Every time you do not get a 6, your fortune is divided by 2.

Let X_n be your fortune at the start of step n.

Calculate $E[X_n]$.

We have $X_1 = 1$. Also,

$$E[X_{n+1} | X_n] = X_n \times \left[10 \frac{1}{6} + 0.5 \times \frac{5}{6} \right]$$

$$= \rho X_n, \rho = 10 \frac{1}{6} + 0.5 \times \frac{5}{6} \approx 2.1.$$

Hence,

$$E[X_{n+1}] = \rho E[X_n], n \geq 1.$$

Thus,

$$E[X_n] = \rho^{n-1}, n \geq 1.$$
Quiz 3: R

1. The lifespans of good lightbulbs are exponentially distributed with mean 1 year. Those of defective bulbs are exponentially distributed with mean 0.8.

All the bulbs in one batch are equally likely to be good or defective.

You test one bulb and note that it burns out after 0.6 year.

(a) What is the probability you got a batch of good bulbs?

(b) What is the expected lifespan of another bulb in that batch?

Hint: If \(X = \text{Expo}(\lambda) \), then
\[
 f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{\{x > 0\}},
\]
\[
 E[X] = \frac{1}{\lambda}.
\]

Let \(X \) be the lifespan of a bulb, \(G \) the event that it is good, and \(B \) the event that it is bad.

(a) \[
 p := \Pr[X \in (0.6, 0.6 + \delta) | G] = 0.5
\]

\[
 \Pr[X \in (0.6, 0.6 + \delta) | G] = 0.5 \Pr[X \in (0.6, 0.6 + \delta)] + 0.5 \Pr[X \in (0.6, 0.6 + \delta) | D] = e^{-0.6 \delta} e^{-0.6 \delta} + (0.8)^{-1} e^{-(0.8) - 0.6 \delta} \approx 0.488.
\]

(b) \[
 E[\text{lifespan of other bulb}] = p \times 1 + (1 - p) \times 0.8 \approx 0.9.
\]
1. The lifespans of good lightbulbs are exponentially distributed with mean 1 year.
1. The lifespans of good lightbulbs are exponentially distributed with mean 1 year. Those of defective bulbs are exponentially distributed with mean 0.8.

(a) What is the probability you got a batch of good bulbs?

(b) What is the expected lifespan of another bulb in that batch?

Hint: If $X = \text{Expo}(\lambda)$,

$f_X(x) = \lambda e^{-\lambda x} 1\{x > 0\}$,

$E[X] = \frac{1}{\lambda}$.

Let X be the lifespan of a bulb, G the event that it is good, and B the event that it is bad.

(a) $p := \Pr[G|X \in (0.6, 0.6+\delta)] = 0.5$

$\Pr[X \in (0.6, 0.6+\delta)|G] + 0.5 \Pr[X \in (0.6, 0.6+\delta)|D] = 0.488$.

(b) $E[\text{lifespan of other bulb}] = p \times 1 + (1-p) \times 0.8 \approx 0.9$.
Quiz 3: R

1. The lifespans of good lightbulbs are exponentially distributed with mean 1 year. Those of defective bulbs are exponentially distributed with mean 0.8. All the bulbs in one batch are equally likely to be good or defective.
Quiz 3: R

1. The lifespans of good lightbulbs are exponentially distributed with mean 1 year. Those of defective bulbs are exponentially distributed with mean 0.8. All the bulbs in one batch are equally likely to be good or defective. You test one bulb and note that it burns out after 0.6 year.
Quiz 3: R

1. The lifespans of good lightbulbs are exponentially distributed with mean 1 year. Those of defective bulbs are exponentially distributed with mean 0.8. All the bulbs in one batch are equally likely to be good or defective. You test one bulb and note that it burns out after 0.6 year. (a) What is the probability you got a batch of good bulbs?
1. The lifespans of good lightbulbs are exponentially distributed with mean 1 year. Those of defective bulbs are exponentially distributed with mean 0.8. All the bulbs in one batch are equally likely to be good or defective. You test one bulb and note that it burns out after 0.6 year. (a) What is the probability you got a batch of good bulbs? (b) What is the expected lifespan of another bulb in that batch?

Hint: If $X = Expo(\lambda), f_X(x) = \lambda e^{-\lambda x}1\{x > 0\}, E[X] = 1/\lambda.$
1. The lifespans of good lightbulbs are exponentially distributed with mean 1 year. Those of defective bulbs are exponentially distributed with mean 0.8. All the bulbs in one batch are equally likely to be good or defective. You test one bulb and note that it burns out after 0.6 year. (a) What is the probability you got a batch of good bulbs? (b) What is the expected lifespan of another bulb in that batch?

Hint: If $X = Expo(\lambda)$, $f_X(x) = \lambda e^{-\lambda x}1\{x > 0\}$, $E[X] = 1/\lambda$.

Let X be the lifespan of a bulb,
Quiz 3: R

1. The lifespans of good lightbulbs are exponentially distributed with mean 1 year. Those of defective bulbs are exponentially distributed with mean 0.8. All the bulbs in one batch are equally likely to be good or defective. You test one bulb and note that it burns out after 0.6 year. (a) What is the probability you got a batch of good bulbs? (b) What is the expected lifespan of another bulb in that batch?

Hint: If $X = \text{Expo}(\lambda)$, $f_X(x) = \lambda e^{-\lambda x} 1\{x > 0\}$, $E[X] = 1/\lambda$.

Let X be the lifespan of a bulb, G the event that it is good,
1. The lifespans of good lightbulbs are exponentially distributed with mean 1 year. Those of defective bulbs are exponentially distributed with mean 0.8. All the bulbs in one batch are equally likely to be good or defective. You test one bulb and note that it burns out after 0.6 year. (a) What is the probability you got a batch of good bulbs? (b) What is the expected lifespan of another bulb in that batch?

Hint: If $X = Expo(\lambda)$, $f_X(x) = \lambda e^{-\lambda x} 1\{x > 0\}$, $E[X] = 1/\lambda$.

Let X be the lifespan of a bulb, G the event that it is good, and B the event that it is bad.
1. The lifespans of good lightbulbs are exponentially distributed with mean 1 year. Those of defective bulbs are exponentially distributed with mean 0.8. All the bulbs in one batch are equally likely to be good or defective. You test one bulb and note that it burns out after 0.6 year. (a) What is the probability you got a batch of good bulbs? (b) What is the expected lifespan of another bulb in that batch?

Hint: If $X = \text{Expo}(\lambda)$, $f_X(x) = \lambda e^{-\lambda x}1\{x > 0\}$, $E[X] = 1/\lambda$.

Let X be the lifespan of a bulb, G the event that it is good, and B the event that it is bad.

(a) $p := \Pr[G|X \in (0.6, 0.6 + \delta)]$
Quiz 3: R

1. The lifespans of good lightbulbs are exponentially distributed with mean 1 year. Those of defective bulbs are exponentially distributed with mean 0.8. All the bulbs in one batch are equally likely to be good or defective. You test one bulb and note that it burns out after 0.6 year. (a) What is the probability you got a batch of good bulbs? (b) What is the expected lifespan of another bulb in that batch?

Hint: If \(X = \text{Expo}(\lambda) \), \(f_X(x) = \lambda e^{-\lambda x} 1\{x > 0\} \), \(E[X] = 1/\lambda \).

Let \(X \) be the lifespan of a bulb, \(G \) the event that it is good, and \(B \) the event that it is bad.

\[(a) \quad p := \Pr[G|X \in (0.6, 0.6+\delta)] = \frac{0.5\Pr[X \in (0.6, 0.6+\delta)|G]}{0.5\Pr[X \in (0.6, 0.6+\delta)|G] + 0.5\Pr[X \in (0.6, 0.6+\delta)|D]} \]
1. The lifespans of good lightbulbs are exponentially distributed with mean 1 year. Those of defective bulbs are exponentially distributed with mean 0.8. All the bulbs in one batch are equally likely to be good or defective. You test one bulb and note that it burns out after 0.6 year. (a) What is the probability you got a batch of good bulbs? (b) What is the expected lifespan of another bulb in that batch?

Hint: If $X = \text{Expo}(\lambda)$, $f_X(x) = \lambda e^{-\lambda x}1\{x > 0\}$, $E[X] = 1/\lambda$.

Let X be the lifespan of a bulb, G the event that it is good, and B the event that it is bad.

(a) $p := \Pr[G|X \in (0.6, 0.6 + \delta)]$

$$= \frac{0.5\Pr[X \in (0.6, 0.6 + \delta)|G]}{0.5\Pr[X \in (0.6, 0.6 + \delta)|G] + 0.5\Pr[X \in (0.6, 0.6 + \delta)|D]}$$

$$= \frac{e^{-0.6\delta}}{e^{-0.6\delta} + (0.8)^{-1}e^{-(0.8)^{-1}0.6\delta}}$$
1. The lifespans of good lightbulbs are exponentially distributed with mean 1 year. Those of defective bulbs are exponentially distributed with mean 0.8. All the bulbs in one batch are equally likely to be good or defective. You test one bulb and note that it burns out after 0.6 year. (a) What is the probability you got a batch of good bulbs? (b) What is the expected lifespan of another bulb in that batch?

Hint: If $X = \text{Expo}(\lambda)$, $f_X(x) = \lambda e^{-\lambda x}1\{x > 0\}$, $E[X] = 1/\lambda$.

Let X be the lifespan of a bulb, G the event that it is good, and B the event that it is bad.

(a) $p := Pr[G|X \in (0.6, 0.6+\delta)]$

$$= \frac{0.5 Pr[X \in (0.6, 0.6+\delta)|G]}{0.5 Pr[X \in (0.6, 0.6+\delta)|G] + 0.5 Pr[X \in (0.6, 0.6+\delta)|D]}$$

$$= \frac{e^{-0.6 \delta}}{e^{-0.6 \delta} + (0.8)^{-1} e^{-(0.8)^{-1}0.6 \delta}} \approx 0.488.$$

(b) $E[\text{lifespan of other bulb}] = p \times 1 + (1-p) \times 0.8 \approx 0.9$.
Quiz 3: R

1. The lifespans of good lightbulbs are exponentially distributed with mean 1 year. Those of defective bulbs are exponentially distributed with mean 0.8. All the bulbs in one batch are equally likely to be good or defective. You test one bulb and note that it burns out after 0.6 year. (a) What is the probability you got a batch of good bulbs? (b) What is the expected lifespan of another bulb in that batch?

Hint: If $X = \text{Expo}(\lambda)$, $f_X(x) = \lambda e^{-\lambda x}1\{x > 0\}$, $E[X] = 1/\lambda$.

Let X be the lifespan of a bulb, G the event that it is good, and B the event that it is bad.

\[(a) \quad p := \Pr[G|X \in (0.6, 0.6 + \delta)]
\]
\[= \frac{0.5\Pr[X \in (0.6, 0.6 + \delta)|G]}{0.5\Pr[X \in (0.6, 0.6 + \delta)|G] + 0.5\Pr[X \in (0.6, 0.6 + \delta)|D]}
\]
\[= \frac{e^{-0.6 \delta}}{e^{-0.6 \delta} + (0.8)^{-1} e^{-(0.8)^{-1}0.6 \delta}} \approx 0.488.
\]

\[(b) \quad E[\text{lifespan of other bulb}] =
\]
1. The lifespans of good lightbulbs are exponentially distributed with mean 1 year. Those of defective bulbs are exponentially distributed with mean 0.8. All the bulbs in one batch are equally likely to be good or defective. You test one bulb and note that it burns out after 0.6 year. (a) What is the probability you got a batch of good bulbs? (b) What is the expected lifespan of another bulb in that batch?

Hint: If \(X = \text{Expo}(\lambda) \), \(f_X(x) = \lambda e^{-\lambda x}1\{x > 0\} \), \(E[X] = 1/\lambda \).

Let \(X \) be the lifespan of a bulb, \(G \) the event that it is good, and \(B \) the event that it is bad.

(a) \(p := \Pr[G|X \in (0.6, 0.6+\delta)] \)

\[
p = \frac{0.5\Pr[X \in (0.6, 0.6+\delta)|G]}{0.5\Pr[X \in (0.6, 0.6+\delta)|G] + 0.5\Pr[X \in (0.6, 0.6+\delta)|D]} = \frac{e^{-0.6}\delta}{e^{-0.6}\delta + (0.8)^{-1}e^{-(0.8)^{-1}0.6}\delta} \approx 0.488.
\]

(b) \(E[\text{lifespan of other bulb }] = p \times 1 + (1 - p) \times 0.8 \approx 0.9. \)
Quiz 3: R

2. In the figure, $1, 2, 3, 4$ are links that fail after i.i.d. times that are $U[0,1]$. Find the average time until A and B are disconnected.

Let X_k be the lifespan of link k, for $k = 1, \ldots, 4$. We are looking for $E[Z]$ where $Z = \max\{Y_1, Y_2\}$ with $Y_1 = \min\{X_1, X_2\}$ and $Y_2 = \min\{X_3, X_4\}$.

$$Pr[Y_1 > t] = Pr[X_1 > t] Pr[X_2 > t] = (1 - t)^2$$

$$Pr[Z \leq t] = Pr[Y_1 \leq t] Pr[Y_2 \leq t] = (1 - (1 - t)^2)^2 = (2t - t^2)^2$$

$$f_Z(t) = 8t - 12t^2 + 4t^3$$

$$E[Z] = \int_0^1 tf_Z(t) \, dt = \frac{81}{3} - \frac{121}{4} + \frac{41}{5} \approx 0.4667.$$
2. In the figure, 1, 2, 3, 4 are links that fail after i.i.d. times that are $U[0,1]$. Find the average time until A and B are disconnected.

Let X_k be the lifespan of link k, for $k = 1, \ldots, 4$. We are looking for $E[Z]$ where $Z = \max\{Y_1, Y_2\}$ with $Y_1 = \min\{X_1, X_2\}$ and $Y_2 = \min\{X_3, X_4\}$.

$$
\Pr[Y_1 > t] = \Pr[X_1 > t] \Pr[X_2 > t] = (1 - t)^2
$$

$$
\Pr[Z \leq t] = \Pr[Y_1 \leq t] \Pr[Y_2 \leq t] = (1 - (1 - t)^2)^2 = (2t - t^2)^2 = 4t^2 - 4t^3 + t^4
$$

$$
f_Z(t) = 8t - 12t^2 + 4t^3
$$

$$
E[Z] = \int_0^1 tf_Z(t) \, dt = \frac{81}{3} - \frac{121}{4} + \frac{41}{5} = 0.4667.
$$
2. In the figure, 1, 2, 3, 4 are links that fail after i.i.d. times that are $U[0, 1]$.

\[Z = \max\{Y_1, Y_2\} \]
\[Y_1 = \min\{X_1, X_2\} \]
\[Y_2 = \min\{X_3, X_4\} \]

\[\Pr[Y_1 > t] = (1 - t)^2 \]
\[\Pr[Z \leq t] = (1 - (1 - t)^2)^2 = 4t^2 - 4t^3 + t^4 \]

\[f_Z(t) = 8t - 12t^2 + 4t^3 \]

\[E[Z] = \int_0^1 tf_Z(t) \, dt \]
\[= \frac{81}{3} - \frac{121}{4} + \frac{41}{5} \approx 0.4667 \]
2. In the figure, 1, 2, 3, 4 are links that fail after i.i.d. times that are $U[0, 1]$.

Find the average time until A and B are disconnected.
2. In the figure, 1, 2, 3, 4 are links that fail after i.i.d. times that are \(U[0, 1] \).

Find the average time until \(A \) and \(B \) are disconnected.

Let \(X_k \) be the lifespan of link \(k \), for \(k = 1, \ldots, 4 \).
2. In the figure, 1, 2, 3, 4 are links that fail after i.i.d. times that are $U[0, 1]$. Find the average time until A and B are disconnected.

Let X_k be the lifespan of link k, for $k = 1, \ldots, 4$. We are looking for $E[Z]$ where $Z = \max\{Y_1, Y_2\}$ with
2. In the figure, 1, 2, 3, 4 are links that fail after i.i.d. times that are $U[0, 1]$. Find the average time until A and B are disconnected.

Let X_k be the lifespan of link k, for $k = 1, \ldots, 4$. We are looking for $E[Z]$ where $Z = \max\{Y_1, Y_2\}$ with $Y_1 = \min\{X_1, X_2\}$ and $Y_2 = \min\{X_3, X_4\}$.
2. In the figure, 1, 2, 3, 4 are links that fail after i.i.d. times that are $U[0, 1]$.

Find the average time until A and B are disconnected.

Let X_k be the lifespan of link k, for $k = 1, \ldots, 4$.

We are looking for $E[Z]$ where $Z = \max\{Y_1, Y_2\}$ with $Y_1 = \min\{X_1, X_2\}$ and $Y_2 = \min\{X_3, X_4\}$.

\[
Pr[Y_1 > t] = Pr[X_1 > t]Pr[X_2 > t]
\]
2. In the figure, 1, 2, 3, 4 are links that fail after i.i.d. times that are $U[0,1]$.

Find the average time until A and B are disconnected.

Let X_k be the lifespan of link k, for $k = 1, \ldots, 4$.

We are looking for $E[Z]$ where $Z = \max\{Y_1, Y_2\}$ with $Y_1 = \min\{X_1, X_2\}$ and $Y_2 = \min\{X_3, X_4\}$.

$$Pr[Y_1 > t] = Pr[X_1 > t]Pr[X_2 > t] = (1 - t)^2$$
Quiz 3: R

2. In the figure, 1, 2, 3, 4 are links that fail after i.i.d. times that are \(U[0, 1] \).

Find the average time until \(A \) and \(B \) are disconnected.

Let \(X_k \) be the lifespan of link \(k \), for \(k = 1, \ldots, 4 \).

We are looking for \(E[Z] \) where \(Z = \max\{Y_1, Y_2\} \) with \(Y_1 = \min\{X_1, X_2\} \) and \(Y_2 = \min\{X_3, X_4\} \).

\[
\begin{align*}
Pr[Y_1 > t] &= Pr[X_1 > t]Pr[X_2 > t] = (1 - t)^2 \\
Pr[Z \leq t] &= Pr[Y_1 \leq t]Pr[Y_2 \leq t]
\end{align*}
\]
2. In the figure, 1, 2, 3, 4 are links that fail after i.i.d. times that are $U[0, 1]$.

Find the average time until A and B are disconnected.

Let X_k be the lifespan of link k, for $k = 1, \ldots, 4$.

We are looking for $E[Z]$ where $Z = \max\{Y_1, Y_2\}$ with $Y_1 = \min\{X_1, X_2\}$ and $Y_2 = \min\{X_3, X_4\}$.

\[
Pr[Y_1 > t] = Pr[X_1 > t]Pr[X_2 > t] = (1 - t)^2
\]
\[
Pr[Z \leq t] = Pr[Y_1 \leq t]Pr[Y_2 \leq t] = (1 - (1 - t)^2)^2
\]
Let X_k be the lifespan of link k, for $k = 1, \ldots, 4$. We are looking for $E[Z]$ where $Z = \max\{Y_1, Y_2\}$ with $Y_1 = \min\{X_1, X_2\}$ and $Y_2 = \min\{X_3, X_4\}$.

\[
Pr[Y_1 > t] = Pr[X_1 > t]Pr[X_2 > t] = (1 - t)^2
\]
\[
Pr[Z \leq t] = Pr[Y_1 \leq t]Pr[Y_2 \leq t] = (1 - (1 - t)^2)^2
\]
\[
= (2t - t^2)^2
\]
2. In the figure, 1, 2, 3, 4 are links that fail after i.i.d. times that are $U[0, 1]$.

Find the average time until A and B are disconnected.

Let X_k be the lifespan of link k, for $k = 1, \ldots, 4$.

We are looking for $E[Z]$ where $Z = \max\{Y_1, Y_2\}$ with $Y_1 = \min\{X_1, X_2\}$ and $Y_2 = \min\{X_3, X_4\}$.

$$Pr[Y_1 > t] = Pr[X_1 > t]Pr[X_2 > t] = (1 - t)^2$$

$$Pr[Z \leq t] = Pr[Y_1 \leq t]Pr[Y_2 \leq t] = (1 - (1 - t)^2)^2$$

$$= (2t - t^2)^2 = 4t^2 - 4t^3 + t^4$$

$$E[Z] = \int_0^1 tf_Z(t) dt = \frac{8}{3} - \frac{12}{4} + \frac{4}{5} = 0.4667.$$
2. In the figure, 1, 2, 3, 4 are links that fail after i.i.d. times that are $U[0, 1]$. Find the average time until A and B are disconnected.

Let X_k be the lifespan of link k, for $k = 1, \ldots, 4$. We are looking for $E[Z]$ where $Z = \max\{ Y_1, Y_2 \}$ with $Y_1 = \min\{X_1, X_2\}$ and $Y_2 = \min\{X_3, X_4\}$.

\[
Pr[Y_1 > t] = Pr[X_1 > t]Pr[X_2 > t] = (1 - t)^2
\]
\[
Pr[Z \leq t] = Pr[Y_1 \leq t]Pr[Y_2 \leq t] = (1 - (1 - t)^2)^2
\]
\[
= (2t - t^2)^2 = 4t^2 - 4t^3 + t^4
\]
\[
f_Z(t) = 8t - 12t^2 + 4t^3
\]
2. In the figure, 1, 2, 3, 4 are links that fail after i.i.d. times that are $U[0, 1]$.

Find the average time until A and B are disconnected.

Let X_k be the lifespan of link k, for $k = 1, \ldots, 4$.

We are looking for $E[Z]$ where $Z = \max\{Y_1, Y_2\}$ with $Y_1 = \min\{X_1, X_2\}$ and $Y_2 = \min\{X_3, X_4\}$.

\[
Pr[Y_1 > t] = Pr[X_1 > t]Pr[X_2 > t] = (1 - t)^2
\]
\[
Pr[Z \leq t] = Pr[Y_1 \leq t]Pr[Y_2 \leq t] = (1 - (1 - t)^2)^2
\]
\[
= (2t - t^2)^2 = 4t^2 - 4t^3 + t^4
\]
\[
f_Z(t) = 8t - 12t^2 + 4t^3
\]
\[
E[Z] = \int_0^1 tf_Z(t) dt
\]
2. In the figure, 1, 2, 3, 4 are links that fail after i.i.d. times that are $U[0, 1]$.

Find the average time until A and B are disconnected.

Let X_k be the lifespan of link k, for $k = 1, \ldots, 4$.

We are looking for $E[Z]$ where $Z = \max\{Y_1, Y_2\}$ with $Y_1 = \min\{X_1, X_2\}$ and $Y_2 = \min\{X_3, X_4\}$.

\[
Pr[Y_1 > t] = Pr[X_1 > t]Pr[X_2 > t] = (1 - t)^2
\]
\[
Pr[Z \leq t] = Pr[Y_1 \leq t]Pr[Y_2 \leq t] = (1 - (1 - t)^2)^2
\]
\[
= (2t - t^2)^2 = 4t^2 - 4t^3 + t^4
\]

\[
f_Z(t) = 8t - 12t^2 + 4t^3
\]

\[
E[Z] = \int_0^1 t f_Z(t) dt = 8 \frac{1}{3} - 12 \frac{1}{4} + 4 \frac{1}{5}
\]
2. In the figure, 1, 2, 3, 4 are links that fail after i.i.d. times that are $U[0, 1]$.

Find the average time until A and B are disconnected.

Let X_k be the lifespan of link k, for $k = 1, \ldots, 4$.
We are looking for $E[Z]$ where $Z = \max\{Y_1, Y_2\}$ with $Y_1 = \min\{X_1, X_2\}$ and $Y_2 = \min\{X_3, X_4\}$.

\[
Pr[Y_1 > t] = Pr[X_1 > t]Pr[X_2 > t] = (1 - t)^2
\]
\[
Pr[Z \leq t] = Pr[Y_1 \leq t]Pr[Y_2 \leq t] = (1 - (1 - t)^2)^2
\]
\[
= (2t - t^2)^2 = 4t^2 - 4t^3 + t^4
\]
\[
f_Z(t) = 8t - 12t^2 + 4t^3
\]
\[
E[Z] = \int_0^1 tf_Z(t)\,dt = 8\frac{1}{3} - 12\frac{1}{4} + 4\frac{1}{5}
\]
\[
\approx 0.4667.
\]
We are given π_0.

Find $\lim_{n \to \infty} \pi_n$.

With probability $\alpha := 0.2 \pi_0 (1) + \pi_0 (2) + \pi_0 (3)$, the MC ends up in $\{2, 3\}$.

With probability $1 - \alpha$, it ends up in state 4.

If it is in $\{2, 3\}$, the probability that it is in state 2 converges to $0.20 + 0.6 = 0.25$.

Hence, the limiting distribution is $[0, 0.25 \alpha, 0, 0.75 \alpha, 1 - \alpha]$.
We are given π_0. Find $\lim_{n \to \infty} \pi_n$.

With probability $\alpha := 0.2 \pi_0 (1) + \pi_0 (2) + \pi_0 (3)$, the MC ends up in $\{2, 3\}$. With probability $1 - \alpha$, it ends up in state 4. If it is in $\{2, 3\}$, the probability that it is in state 2 converges to $0.2 + 0.2 = 0.4$. Hence, the limiting distribution is $[0, 0.25 \alpha, 0.75 \alpha, 1 - \alpha]$.
3. We are given π_0.

Quiz 3: R
3. We are given π_0. Find $\lim_{n \to \infty} \pi_n$.
3. We are given π_0. Find $\lim_{n \to \infty} \pi_n$.

With probability $\alpha := 0.2\pi_0(1) + \pi_0(2) + \pi_0(3)$, the MC ends up in $\{2, 3\}$.
3. We are given \(\pi_0 \). Find \(\lim_{n \to \infty} \pi_n \).

With probability \(\alpha := 0.2\pi_0(1) + \pi_0(2) + \pi_0(3) \), the MC ends up in \{2, 3\}.
With probability \(1 - \alpha \), it ends up in state 4.
3. We are given \(\pi_0 \). Find \(\lim_{n \to \infty} \pi_n \).

With probability \(\alpha := 0.2\pi_0(1) + \pi_0(2) + \pi_0(3) \), the MC ends up in \{2, 3\}.

With probability \(1 - \alpha \), it ends up in state 4.

If it is in \{2, 3\}, the probability that it is in state 2 converges to
3. We are given π_0. Find $\lim_{n \to \infty} \pi_n$.

With probability $\alpha := 0.2\pi_0(1) + \pi_0(2) + \pi_0(3)$, the MC ends up in $\{2, 3\}$.
With probability $1 - \alpha$, it ends up in state 4.
If it is in $\{2, 3\}$, the probability that it is in state 2 converges to

$$\frac{0.2}{0.2 + 0.6} = 0.25.$$
3. We are given π_0. Find $\lim_{n \to \infty} \pi_n$.

With probability $\alpha := 0.2\pi_0(1) + \pi_0(2) + \pi_0(3)$, the MC ends up in $\{2,3\}$. With probability $1 - \alpha$, it ends up in state 4.

If it is in $\{2,3\}$, the probability that it is in state 2 converges to

$$\frac{0.2}{0.2 + 0.6} = 0.25.$$

Hence, the limiting distribution is
3. We are given π_0. Find $\lim_{n \to \infty} \pi_n$.

With probability $\alpha := 0.2\pi_0(1) + \pi_0(2) + \pi_0(3)$, the MC ends up in $\{2, 3\}$. With probability $1 - \alpha$, it ends up in state 4.

If it is in $\{2, 3\}$, the probability that it is in state 2 converges to

$$\frac{0.2}{0.2 + 0.6} = 0.25.$$

Hence, the limiting distribution is

$$[0, 0.25\alpha, 0.75\alpha, 1 - \alpha].$$
4. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Are X and Y positively, negatively, or uncorrelated?

Clearly, negatively.

5. Calculate $\text{cov}(X, Y)$.

$$\text{cov}(X, Y) = E[XY] - E[X]E[Y],$$

by symmetry $E[X] = 0$.

$$E[XY] = \Pr[X = Y] - \Pr[X \neq Y] = \frac{n-1}{2n-1}$$

E.g., if $X = +1 = \text{red}$, then Y is red w.p. $\frac{n-1}{2n-1}$.

$$E[XY] = \frac{2}{2n-1} - 1 = -1,$$

Thus, $\text{cov}(X, Y)$.

6. What is $L[Y|X]$?

$$L[Y|X] = -\frac{1}{2} X.$$

Indeed, $\text{var}(X) = 1$, obviously!
4. A bag has n red and n blue balls. You pick two balls (no replacement).
4. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise.
4. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.
4. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.
→ Are X and Y positively, negatively, or un-correlated?
4. A bag has \(n \) red and \(n \) blue balls. You pick two balls (no replacement). Let \(X = 1 \) if ball 1 is red and \(X = -1 \) otherwise. Define \(Y \) likewise for ball 2.

→ Are \(X \) and \(Y \) positively, negatively, or uncorrelated?

Clearly, negatively.
Quiz 3: R

4. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Are X and Y positively, negatively, or uncorrelated?

Clearly, negatively.

5. Calculate $\text{cov}(X, Y)$.
4. A bag has \(n \) red and \(n \) blue balls. You pick two balls (no replacement). Let \(X = 1 \) if ball 1 is red and \(X = -1 \) otherwise. Define \(Y \) likewise for ball 2.

\[\rightarrow \text{Are } X \text{ and } Y \text{ positively, negatively, or uncorrelated?} \]

Clearly, negatively.

5. Calculate \(\text{cov}(X, Y) \).

\[\text{cov}(X, Y) = E[XY] - E[X]E[Y] \]
4. A bag has \(n \) red and \(n \) blue balls. You pick two balls (no replacement). Let \(X = 1 \) if ball 1 is red and \(X = -1 \) otherwise. Define \(Y \) likewise for ball 2.

\[\rightarrow \text{Are } X \text{ and } Y \text{ positively, negatively, or un- correlated?} \]

Clearly, negatively.

5. Calculate \(\text{cov}(X, Y) \).

\[
\text{cov}(X, Y) = E[XY] - E[X]E[Y]
\]

\[
E[X] = E[Y],
\]
4. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.
Are X and Y positively, negatively, or uncorrelated?
Clearly, negatively.
5. Calculate $\text{cov}(X, Y)$.
$$\text{cov}(X, Y) = E[XY] - E[X]E[Y]$$
$E[X] = E[Y]$, by symmetry
4. A bag has \(n \) red and \(n \) blue balls. You pick two balls (no replacement). Let \(X = 1 \) if ball 1 is red and \(X = -1 \) otherwise. Define \(Y \) likewise for ball 2.

 → Are \(X \) and \(Y \) positively, negatively, or uncorrelated?

 Clearly, negatively.

5. Calculate \(\text{cov}(X, Y) \).
 \[
 \text{cov}(X, Y) = E[XY] - E[X]E[Y]
 \]

 \[
 E[X] = E[Y], \text{ by symmetry}
 \]

 \[
 E[X] = 0
 \]
Quiz 3: R

4. A bag has \(n \) red and \(n \) blue balls. You pick two balls (no replacement). Let \(X = 1 \) if ball 1 is red and \(X = -1 \) otherwise. Define \(Y \) likewise for ball 2.

Are \(X \) and \(Y \) positively, negatively, or un-correlated?

Clearly, negatively.

5. Calculate \(\text{cov}(X, Y) \).

\[
\text{cov}(X, Y) = E[XY] - E[X]E[Y]
\]

\[
E[X] = E[Y], \text{ by symmetry}
\]

\[
E[X] = 0
\]

\[
E[XY] = Pr[X = Y] - Pr[X \neq Y]
\]
4. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Are X and Y positively, negatively, or uncorrelated?

Clearly, negatively.

5. Calculate $\text{cov}(X, Y)$.

$$\text{cov}(X, Y) = E[XY] - E[X]E[Y]$$

$E[X] = E[Y]$, by symmetry

$E[X] = 0$

$E[XY] = Pr[X = Y] - Pr[X \neq Y] = 2Pr[X = Y] - 1$
4. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Are X and Y positively, negatively, or un-correlated?

Clearly, negatively.

5. Calculate $\text{cov}(X, Y)$.

$$\text{cov}(X, Y) = E[XY] - E[X]E[Y]$$

$E[X] = E[Y]$, by symmetry

$E[X] = 0$

$E[XY] = Pr[X = Y] - Pr[X \neq Y] = 2Pr[X = Y] - 1$

$Pr[X = Y] = (n - 1)/(2n - 1)$
4. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.
→ Are X and Y positively, negatively, or uncorrelated?
Clearly, negatively.

5. Calculate $\text{cov}(X, Y)$.

\[
\text{cov}(X, Y) = E[XY] - E[X]E[Y]
\]

$E[X] = E[Y]$, by symmetry

$E[X] = 0$

$E[XY] = \Pr[X = Y] - \Pr[X \neq Y] = 2\Pr[X = Y] - 1$

$\Pr[X = Y] = (n - 1)/(2n - 1)$

E.g., if $X = +1 = \text{red}$, then Y is red w.p. $(n - 1)/(2n - 1)$
4. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Are X and Y positively, negatively, or un-correlated?

Clearly, negatively.

5. Calculate $\text{cov}(X, Y)$.

$$\text{cov}(X, Y) = E[XY] - E[X]E[Y]$$

$E[X] = E[Y]$, by symmetry

$E[X] = 0$

$E[XY] = Pr[X = Y] - Pr[X \neq Y] = 2Pr[X = Y] - 1$

$Pr[X = Y] = \frac{(n-1)}{(2n-1)}$

E.g., if $X = +1 = \text{red}$, then Y is red w.p. $\frac{(n-1)}{(2n-1)}$

$E[XY] = 2\left(\frac{n-1}{2n-1}\right) - 1 = -\frac{1}{2n-1}$
4. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Are X and Y positively, negatively, or un-correlated?

Clearly, negatively.

5. Calculate $\text{cov}(X, Y)$.

$$\text{cov}(X, Y) = E[XY] - E[X]E[Y]$$

$E[X] = E[Y]$, by symmetry

$E[X] = 0$

$E[XY] = Pr[X = Y] - Pr[X \neq Y] = 2Pr[X = Y] - 1$

$Pr[X = Y] = (n - 1)/(2n - 1)$

E.g., if $X = +1 =$ red, then Y is red w.p. $(n - 1)/(2n - 1)$

$E[XY] = 2(n - 1)/(2n - 1) - 1 = -1/(2n - 1) = \text{cov}(X, Y)$.

6. What is $L[Y|X]$?

$L[Y|X] = -1/(2n - 1)X$.

Indeed, $\text{var}(X) = 1$, obviously!
4. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.
→ Are X and Y positively, negatively, or un-correlated?

Clearly, negatively.

5. Calculate $\text{cov}(X, Y)$.

$$
\text{cov}(X, Y) = E[XY] - E[X]E[Y]
$$

$E[X] = E[Y]$, by symmetry

$E[X] = 0$

$E[XY] = Pr[X = Y] - Pr[X \neq Y] = 2Pr[X = Y] - 1$

$Pr[X = Y] = (n - 1)/(2n - 1)$

E.g., if $X = +1 = \text{red}$, then Y is red w.p. $(n - 1)/(2n - 1)$

$$
E[XY] = 2(n - 1)/(2n - 1) - 1 = -1/(2n - 1) = \text{cov}(X, Y).
$$

6. What is $L[Y|X]$?
4. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.

→ Are X and Y positively, negatively, or uncorrelated?

Clearly, negatively.

5. Calculate $\text{cov}(X, Y)$.

$$
\text{cov}(X, Y) = E[XY] - E[X]E[Y]
$$

$E[X] = E[Y]$, by symmetry

$E[X] = 0$

$E[XY] = \Pr[X = Y] - \Pr[X \neq Y] = 2\Pr[X = Y] - 1$

$\Pr[X = Y] = (n-1)/(2n-1)$

E.g., if $X = +1 = \text{red}$, then Y is red w.p. $(n-1)/(2n-1)$

$E[XY] = 2(n-1)/(2n-1) - 1 = -1/(2n-1) = \text{cov}(X, Y)$.

Quiz 3: R

4. A bag has \(n \) red and \(n \) blue balls. You pick two balls (no replacement). Let \(X = 1 \) if ball 1 is red and \(X = -1 \) otherwise. Define \(Y \) likewise for ball 2.

Are \(X \) and \(Y \) positively, negatively, or uncorrelated?

Clearly, negatively.

5. Calculate \(\text{cov}(X, Y) \).

\[
\text{cov}(X, Y) = E[XY] - E[X]E[Y]
\]

\[
E[X] = E[Y], \text{ by symmetry}
\]

\[
E[X] = 0
\]

\[
E[XY] = Pr[X = Y] - Pr[X \neq Y] = 2Pr[X = Y] - 1
\]

\[
Pr[X = Y] = (n-1)/(2n-1)
\]

E.g., if \(X = +1 = \text{red} \), then \(Y \) is red w.p. \((n-1)/(2n-1) \)

\[
E[XY] = 2(n-1)/(2n-1) - 1 = -1/(2n-1) = \text{cov}(X, Y).
\]

6. What is \(L[Y|X] \)? \(L[Y|X] = -\frac{1}{2n-1} X \). Indeed, \(\text{var}(X) = 1 \),
4. A bag has \(n \) red and \(n \) blue balls. You pick two balls (no replacement). Let \(X = 1 \) if ball 1 is red and \(X = -1 \) otherwise. Define \(Y \) likewise for ball 2.

\(\rightarrow \) Are \(X \) and \(Y \) positively, negatively, or uncorrelated?

Clearly, negatively.

5. Calculate \(\text{cov}(X, Y) \).

\[
\text{cov}(X, Y) = E[XY] - E[X]E[Y]
\]

\[
E[X] = E[Y], \text{ by symmetry}
\]

\[
E[X] = 0
\]

\[
E[XY] = Pr[X = Y] - Pr[X \neq Y] = 2Pr[X = Y] - 1
\]

\[
Pr[X = Y] = (n-1)/(2n-1)
\]

E.g., if \(X = +1 = \text{red} \), then \(Y \) is red w.p. \((n-1)/(2n-1) \)

\[
E[XY] = 2(n-1)/(2n-1) - 1 = -1/(2n-1) = \text{cov}(X, Y).
\]

6. What is \(L[Y|X] \)? \(L[Y|X] = -\frac{1}{2n-1} X \). Indeed, \(\text{var}(X) = 1 \), obviously!
A bag has \(n \) red and \(n \) blue balls. You pick two balls (no replacement). Let \(X = 1 \) if ball 1 is red and \(X = -1 \) otherwise. Define \(Y \) likewise for ball 2. Calculate \(E[Y | X] \).

Since \(X \) takes only two values, any \(g(X) \) is linear in \(X \). Hence, \(E[Y | X] = L[Y | X] \).

Alternatively, let \(\alpha = \Pr[X = Y] = \frac{(n-1)(2n-1)}{2n^2} \).

Then,
\[
E[Y | X = 1] = \alpha - (1 - \alpha) = 2\alpha - 1,
\]
\[
E[Y | X = -1] = -\alpha + (1 - \alpha) = 1 - 2\alpha.
\]

Thus,
\[
E[Y | X] = (2\alpha - 1)X = \frac{2n-1}{2n}X.
\]
7. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.
7. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2. Calculate $E[Y|X]$.
7. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2. Calculate $E[Y|X]$.

Since X takes only two values, any $g(X)$ is linear in X.

Hence, $E[Y|X] = \text{L}[Y|X]$.

Alternatively, let $\alpha = \Pr[X = 1] = \frac{(n-1)(2n-1)}{2n}$. Then,

$E[Y|X=1] = \alpha - (1-\alpha) = 2\alpha - 1$,

$E[Y|X=-1] = -\alpha + (1-\alpha) = 1 - 2\alpha$.

Thus, $E[Y|X] = (2\alpha - 1)X$.

7. A bag has \(n \) red and \(n \) blue balls. You pick two balls (no replacement). Let \(X = 1 \) if ball 1 is red and \(X = -1 \) otherwise. Define \(Y \) likewise for ball 2.
Calculate \(E[Y|X] \).

Since \(X \) takes only two values, any \(g(X) \) is linear in \(X \). Hence, \(E[Y|X] = L[Y|X] \).
7. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2.
Calculate $E[Y|X]$.

Since X takes only two values, any $g(X)$ is linear in X.
Hence, $E[Y|X] = L[Y|X]$.

Alternatively, Let $\alpha = Pr[X = Y] = (n-1)(2n-1)$.
7. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2. Calculate $E[Y|X]$.

Since X takes only two values, any $g(X)$ is linear in X. Hence, $E[Y|X] = L[Y|X]$.

Alternatively, Let $\alpha = Pr[X = Y] = (n-1)(2n-1)$. Then,

$$E[Y|X = 1] = \alpha - (1 - \alpha) = 2\alpha - 1,$$
7. A bag has n red and n blue balls. You pick two balls (no replacement). Let $X = 1$ if ball 1 is red and $X = -1$ otherwise. Define Y likewise for ball 2. Calculate $E[Y|X]$.

Since X takes only two values, any $g(X)$ is linear in X. Hence, $E[Y|X] = L[Y|X]$.

Alternatively, Let $\alpha = Pr[X = Y] = (n-1)(2n-1)$. Then,

$$E[Y|X = 1] = \alpha - (1 - \alpha) = 2\alpha - 1,$$
$$E[Y|X = -1] = -\alpha + (1 - \alpha) = 1 - 2\alpha.$$
7. A bag has \(n \) red and \(n \) blue balls. You pick two balls (no replacement). Let \(X = 1 \) if ball 1 is red and \(X = -1 \) otherwise. Define \(Y \) likewise for ball 2. Calculate \(E[Y|X] \).

Since \(X \) takes only two values, any \(g(X) \) is linear in \(X \). Hence, \(E[Y|X] = L[Y|X] \).

Alternatively, Let \(\alpha = Pr[X = Y] = (n - 1)(2n - 1) \). Then,

\[
E[Y|X = 1] = \alpha - (1 - \alpha) = 2\alpha - 1, \\
E[Y|X = -1] = -\alpha + (1 - \alpha) = 1 - 2\alpha.
\]

Thus,

\[
E[Y|X] = (2\alpha - 1)X = -\frac{1}{2n-1}X.
\]
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0$, $Y = 1$.

 No: They are independent.

 Let $X(1) = -1$, $X(2) = 0$, $X(1) = 1$, $Y(1) = 0$, $Y(2) = 1$, $Y(3) = 0$.

- $\sum_{n=0}^{\infty} a^n = 1/a$. No.

- $\sum_{n=0}^{\infty} a^n = 1/a$. No.

- CS70 is difficult. No.

- I will do poorly on the final. No.

- Walrand is really weird. Probably!
Common Mistakes

▶ \(\Omega = \{1, 2, 3\} \). Define \(X, Y \) with \(\text{cov}(X, Y) = 0 \) and \(X, Y \) not independent.

Let \(X = 0, Y = 1 \). No: They are independent.
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.

 Let

 $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.

 Let

 $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$.

Common Mistakes

- \(\Omega = \{1, 2, 3\} \). Define \(X, Y \) with \(\text{cov}(X, Y) = 0 \) and \(X, Y \) not independent.

 Let \(X = 0, Y = 1 \). No: They are independent.

 Let
 \[
 X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0.
 \]

- \(3 \times 3.5 = 12.5 \). No.
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.

 Let

 $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. No.

Common Mistakes

- \(\Omega = \{1, 2, 3\} \). Define \(X, Y \) with \(\text{cov}(X, Y) = 0 \) and \(X, Y \) not independent.

 Let \(X = 0, Y = 1 \). No: They are independent.

 Let

 \[
 X(1) = -1, X(2) = 0, X(3) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0.
 \]

- \(3 \times 3.5 = 12.5 \). No.

- \(E[X^2] = E[X]^2 \). No.

- \(\sum_{n=0}^{\infty} a_n = 1/a \). No.

- CS70 is difficult. No.

- I will do poorly on the final. No.

- Walrand is really weird. Probably!
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.

 Let

 $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. No.

- $X = B(n, p) \implies \text{var}(X) = n^2 p(1 - p)$. No.

- CS70 is difficult. No.

- I will do poorly on the final. No.

- Walrand is really weird. Probably!
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.

 Let

 $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. No.

- $X = B(n, p) \implies \text{var}(X) = n^2 p(1 - p)$. No.
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.

 Let

 $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. No.
- $X = B(n, p) \implies \text{var}(X) = np(1 - p)$. No.
- $E[X] = E[X|A] + E[X|\bar{A}]$.

Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0$, $Y = 1$. No: They are independent.

 Let $X(1) = -1$, $X(2) = 0$, $X(1) = 1$, $Y(1) = 0$, $Y(2) = 1$, $Y(3) = 0$.

- $3 \times 3.5 = 12.5$. No.

- $X = B(n, p) \implies \text{var}(X) = np(1 - p)$. No.

- $E[X] = E[X|A] + E[X|\bar{A}]$. No.
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.

 Let

 $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. No.

- $X = B(n, p) \implies \text{var}(X) = np(1 - p)$. No.

- $E[X] = E[X|A] + E[X|\bar{A}]$. No.

- $\sum_{n=0}^{\infty} a^n = 1/a$. No.
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.

 Let

 $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. No.

- $X = B(n, p) \implies \text{var}(X) = np(1 - p)$. No.

- $E[X] = E[X|A] + E[X|\bar{A}]$. No.

- $\sum_{n=0}^{\infty} a^n = 1/a$. No.
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.

 Let $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. No.

- $X = B(n, p) \implies \text{var}(X) = np(1 - p)$. No.

- $E[X] = E[X|A] + E[X|\bar{A}]$. No.

- $\sum_{n=0}^{\infty} a^n = 1/a$. No.

- CS70 is difficult.
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.

 Let

 $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. No.
- $X = B(n, p) \implies \text{var}(X) = np(1 - p)$. No.
- $E[X] = E[X|A] + E[X|\bar{A}]$. No.
- $\sum_{n=0}^{\infty} a^n = 1/a$. No.
- CS70 is difficult. No.
Ω = \{1,2,3\}. Define \(X, Y\) with \(\text{cov}(X, Y) = 0\) and \(X, Y\) not independent.

Let \(X = 0, Y = 1\). No: They are independent.

Let \(X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0\).

\(3 \times 3.5 = 12.5\). No.
\(E[X^2] = E[X]^2\). No.
\(X = B(n, p) \implies \text{var}(X) = np(1-p)\). No.
\(E[X] = E[X|A] + E[X|\bar{A}]\). No.
\(\sum_{n=0}^{\infty} a^n = 1/a\). No.
CS70 is difficult. No.
I will do poorly on the final.
Common Mistakes

- $\Omega = \{1,2,3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.

 Let

 $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. No.

- $X = B(n, p) \implies \text{var}(X) = np(1 - p)$. No.

- $E[X] = E[X|A] + E[X|\bar{A}]$. No.

- $\sum_{n=0}^{\infty} a^n = 1/a$. No.

- CS70 is difficult. No.

- I will do poorly on the final. No.
Common Mistakes

- \(\Omega = \{1,2,3\} \). Define \(X, Y \) with \(\text{cov}(X, Y) = 0 \) and \(X, Y \) not independent.

 Let \(X = 0, Y = 1 \). No: They are independent.

 Let

 \[
 X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0.
 \]

- \(3 \times 3.5 = 12.5 \). No.

- \(E[X^2] = E[X]^2 \). No.

- \(X = B(n, p) \implies \text{var}(X) = np(1-p) \). No.

- \(E[X] = E[X|A] + E[X|\bar{A}] \). No.

- \(\sum_{n=0}^{\infty} a^n = 1/a \). No.

- CS70 is difficult. No.

- I will do poorly on the final. No.

- Walrand is really weird.
Common Mistakes

- $\Omega = \{1, 2, 3\}$. Define X, Y with $\text{cov}(X, Y) = 0$ and X, Y not independent.

 Let $X = 0, Y = 1$. No: They are independent.

 Let

 $X(1) = -1, X(2) = 0, X(1) = 1, Y(1) = 0, Y(2) = 1, Y(3) = 0$.

- $3 \times 3.5 = 12.5$. No.
- $X = B(n, p) \implies \text{var}(X) = n^2 p(1 - p)$. No.
- $E[X] = E[X|A] + E[X|\bar{A}]$. No.
- $\sum_{n=0}^{\infty} a^n = 1/a$. No.
- CS70 is difficult. No.
- I will do poorly on the final. No.
- Walrand is really weird. Probably!
Thanks and Best Wishes!
Thanks and Best Wishes!