Stable Marriage Problem

Proved useful in many settings, led eventually to 2012 Nobel Prize in Economics (to Shapley and Roth).

Original Problem Setting:
- Small town with \(n \) men and \(n \) women.
- Each woman has a ranked preference list of men.
- Each man has a ranked preference list of women.

How should they be matched?

What criteria to use?
- Maximize number of first choices.
- Minimize difference between preference ranks.
- Look for stable matchings

Stability.

Consider the couples:
- Alice and Bob
- Mary and John

Bob prefers Mary to Alice.
Mary prefers Bob to John.
Uh...oh! Unstable pairing.

So..

Produce a pairing where there is no running off!

Definition: A **pairing** is disjoint set of \(n \) man-woman pairs.

Example: A pairing \(S = \{ (Bob, Alice); (John, Mary) \} \).

Definition: A rogue couple \(b, g \) for a pairing \(S \):
- \(b \) and \(g \) prefer each other to their partners in \(S \)
Example: Bob and Mary are a rogue couple in \(S \).

A stable pairing??

Given a set of preferences.
Is there a stable pairing?
How does one find it?

Consider a variant of this problem: stable roommates.

\[
\begin{array}{cccc}
A & B & C & D \\
B & C & A & D \\
C & A & B & D \\
D & A & B & C \\
\end{array}
\]

The Stable Marriage Algorithm.

Each Day:
1. Each man **proposes** to his favorite woman on his list.
2. Each woman rejects all but her favorite proposer (whom she puts on a **string**.)
3. Rejected man **crosses** rejecting woman off his list.

Stop when each woman gets exactly one proposal.
Does this terminate?
...produce a pairing?
.....a stable pairing?
Do men or women do “better”?
Example.

<table>
<thead>
<tr>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1X</td>
</tr>
<tr>
<td>B</td>
<td>2X</td>
</tr>
<tr>
<td>C</td>
<td>3X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B</td>
<td>X</td>
<td>A, C</td>
<td>B, C</td>
<td>A, C</td>
</tr>
</tbody>
</table>

Termination.

Every non-terminated day a man crossed an item off the list.

Total size of lists? \(n \) men, \(n \) length list. \(n^2 \)
Terminates in at most \(n^2 + 1 \) steps!

Pairing when done.

Lemma: Every man is matched at end.

Proof:
If not, a man \(b \) must have been rejected \(n \) times.
Every woman has been proposed to by \(b \), and Improvement lemma
\(\implies \) each woman has a man on a string.
and each man on at most one string.
\(n \) women and \(n \) men. Same number of each.
\(\implies \) \(b \) must be on some woman’s string!

Contradiction.

Pairing is Stable.

Lemma: There is no rogue couple for the pairing formed by stable marriage algorithm.

Proof:
Assume there is a rogue couple; \((b, g^*\) \)

\(b' \) ——— \(g^* \)

\(b \) likes \(g^* \) more than \(g \).

\(b \) ——— \(g \)

\(g^* \) likes \(b \) more than \(b' \).

Man \(b \) proposes to \(g^* \) before proposing to \(g \).
So \(g^* \) rejected \(b \) (since he moved on)
By improvement lemma, \(g^* \) likes \(b' \) better than \(b \).

Contradiction!

Good for men? women?

Is the SMA better for men? for women?

Definition: A pairing is \(x \)-optimal if \(x \)'s partner
is its best partner in any stable pairing.

Definition: A pairing is \(x \)-pessimal if \(x \)'s partner
is its worst partner in any stable pairing.

Definition: A pairing is man optimal if it is \(x \)-optimal for all men \(x \).
...and so on for man pessimal, woman optimal, woman pessimal.

Claim: The optimal partner for a man must be first in his preference list.
True? False? False!

Subtlety here: Best partner in any stable pairing.
As well as you can in a globally stable solution!

Question: Is there a even man or woman optimal pairing?
SMA is optimal!

For men? For women?

Theorem: SMA produces a man-optimal pairing.

Proof:

Assume not: there are men who do not get their optimal woman.

Let t be first day any man b gets rejected by his optimal woman g who he is paired with in some stable pairing S.

Let g put b^* on a string in place of b on day $t \implies g$ prefers b^* to b.

By choice of day t, b^* has not yet been rejected by his optimal woman.

Therefore, b^* prefers g to optimal woman, and hence to his partner g^* in S.

Rogue couple for S.

So S is not a stable pairing. Contradiction.

Recap: S - stable. $(b^*, g^*) \in S$. But (b^*, g) is rogue couple!

Used Well-Ordering principle...

How about for women?

Theorem: SMA produces woman-pessimal pairing.

T – pairing produced by SMA.

S – worse stable pairing for woman g.

In T, (g, b) is pair.

In S, (g, b^*) is pair. b is paired with someone else, say g^*.

g likes b^* less than she likes b.

T is man optimal, so b likes g more than g^*, his partner in S.

(g, b) is Rogue couple for S

S is not stable.

Contradiction.

Residency Matching..

The method was used to match residents to hospitals. Hospital optimal... until 1990's... Resident optimal.

Variations: couples!

Fun stuff from the Fall 2014 offering...

Follow the link.