Quick Solution to Practice Problems 2

ALL of the following problems:

1. **Base case:** For \(n = 1 \) it’s true because 5 divides \(15^1 - 1 = 0 \).

 Inductive step: Assume that 5 divides \(n^5 - n \). We will prove that 5 divides \((n+1)^5 -(n+1)\).

 We note that
 \[
 (n + 1)^5 - (n + 1) = n^5 + 5n^4 + 10n^3 + 10n^2 + 5n + 1 - n - 1
 = (n^5 - n) + 5(n^4 + 2n^3 + 2n^2 + n)
 \]

 Since 5 divides \(n^5 - n \) by the inductive hypothesis, and 5 divides \(5(n^4 + 2n^3 + 2n^2 + n) \),

 5 divides the sum. Therefore 5 divides \((n+1)^5 -(n+1)\).

 Therefore the statement is true for any natural number \(n \) from the principle of induction.

2. Let \(a_1a_2a_3\ldots a_b \) be the secret, where \(a_i \) are bits and \(a_1\ldots a_b \) denotes the number represented by the bit-string. Using Lagrange interpolation we find a polynomial on \(GF(p) \) of degree \(k - 1 \) for which:

 \[
 P(1) = \overline{a_1a_2\ldots a_{\lfloor b/k \rfloor}}
 P(2) = \overline{a_{\lfloor b/k \rfloor + 1} \ldots a_{2\lfloor b/k \rfloor}}
 \ldots = \ldots
 P(k) = \overline{a_{(k-1)\lfloor b/k \rfloor + 1} \ldots a_b}
 \]

 Then we give \(P(k+i) \) to person \(i \) for \(i = 1, 2, \ldots n \). If any \(k \) people get together they can reconstruct the polynomial and the whole secret, since \(k \) points completely determine a polynomial of degree \(k - 1 \).

 Any \(k - 1 \) people won’t be able to reconstruct any chunk of the secret, and in particular the first \(\lfloor b/k \rfloor \) bits. This is true because for any value of the first \(\lfloor b/k \rfloor \) bits \(c_1, c_2, \ldots c_{\lfloor b/k \rfloor} \), there exists a polynomial \(Q \) with \(Q(1) = \overline{c_1c_2\ldots c_{\lfloor b/k \rfloor}} \) and the \(k - 1 \) values of the present people.

 The size of the field \(p \) has to be such that most of its elements are written using \(\lceil b/k \rceil \) bits. So choose a prime \(p \) such that \(2^{\lceil b/k \rceil - 1} < p < 2^{\lfloor b/k \rfloor} \).

 Also, to be sure no-one can individually retrieve \(P(1), p \) must be chosen so that it’s strictly greater than \(n + k \).

ALL of the following problems:

1. Suppose there is no Hamiltonian cycle. Add edges to the graph until we are one edge away from having a Hamiltonian cycle, that is, until there is an edge we can add next that would cause a cycle. That edge will be connecting some vertices \(v_1 \), and \(v_n \) that are the ends of a Hamiltonian path \(v_1, v_2, \ldots v_n \). The degrees of all vertices are still > \(n/2 \). Let \(S \) be the set of vertices \(v_i \) such that \(v_{i+1} \) is a neighbor of \(v_i \) (i.e. the edge \((v_1, v_{i+1}) \) is in the graph) for \(i = 1, 2, \ldots n - 1 \). The size of \(-S \) — is larger than \(n/2 \) since the degree of \(v_1 \) is larger than \(n/2 \). Let \(T \) be the set of neighbors of \(v_n \). The size of \(T \) is also larger than \(n/2 \) since the degree of \(v_n \) is also larger than \(n/2 \). \(S \) and \(T \) are both subsets of \(\{v_2, v_3, \ldots v_{n-1}\} \), which is of size \(n - 2 \). Therefore there is at least one vertex that is both in \(S \) and \(T \). Let that vertex be \(v_k \). By the definitions of \(S \) and \(T \),
(v_k, v_n) is an edge, and (v_1, v_{k+1}) is an edge. However, this implies that the following is a Hamiltonian cycle: (v_1, v_{k+1}, v_{k+2}, \ldots v_n, v_k, v_{k-1}, v_{k-2}, \ldots v_1). This is a contradiction since we stopped adding edges before a Hamiltonian cycle appeared. Therefore our initial assumption was false, and the original graph necessarily had a Hamiltonian cycle.

2. (a) \(2k\)
 (b) \(n!/(n-k)! \cdot 2k\)
 (c) Using method of indicator, let \(I_i\) to be a random variable that is one only when the \(i\)th \(k\)-cycle is in \(G\). Hence, \(E(I_i) = P(I_i = 1) = p^k\)

 Then, \(E(N) = \sum_i E(I_i) = X \cdot p^k\), which \(X\) is the answer to part b.

The following problem:

1. We count the number of ways to split \(n\) elements into 3 labeled groups by two different methods.

 - There are 3 different choices for each element, so \(3^n\) for all of them.
 - For every \(i\) from 0 to \(n\), choose \(i\) elements to go in group A, then for every \(j\) from 0 to \(n - i\) choose \(j\) elements to go in group B, the remaining go in group C. This gives:

\[
\sum_{i=0}^{n} \binom{n}{i} \sum_{j=1}^{n-i} \binom{n-i}{j}
\]

At least two of the following problems:

1. (a) \(\{1, 2, 3, 4\} \times \{H, TH, TTH, \ldots\}\)

\[
\sum_{i=1}^{4} \sum_{n=0}^{\infty} \frac{1}{4^i} \cdot \frac{1}{i} \cdot \frac{i-1^n}{i}
\]

Working on the algebra, you’ll get 1.

(b) \(Pr(H_2) = Pr(H_2 \cap C_1) + Pr(H_2 \cap C_2) + Pr(H_2 \cap C_3) + Pr(H_2 \cap C_4)\)

\[= \frac{95}{576}\]

(c) Use the definition of conditional probability and the solution to part b to get \(Pr(C_i \mid H_2)\).

2. \(\frac{k^m}{N} - \frac{k-1^m}{N}\)

3. There’re different ways to interpret this problem which each can be correct. The probability my friend received my letter is \(m - 1/m\), and since I didn’t get any reply, it was probably lost, so \(1/m\). Hence, the desired probability is \((m - 1)/m^2\).

At least two of the following problems:
1. This seems to contradict Markov’s Inequality. It does not. We can use a random variable which can have negative values. In this case, we have \(\Pr(X = 1) = \frac{2}{3} \), and we need another value \(a \) such that \(\Pr(X = a) = \frac{1}{3} \) and \(1 \cdot \frac{2}{3} + a \cdot \frac{1}{3} = \frac{1}{2} \). Solving that equation, we get that \(a = -\frac{1}{2} \).

2. (a) Define \(I_i = 1 \), if \(i \)th student get his own cell phone.

 \[
 E[I_i] = P(I_i = 1) = \frac{1}{n}
 \]

 \[E[N] = \sum_i E[I_i] = n \cdot \frac{1}{n} = 1\]

 (b) Define \(I_{ij} = 1 \) (given \(i < j \)), if \(i \)th and \(j \)th students will need to swap cell phones.

 \[
 E[I_{ij}] = P(I_{ij} = 1) = \frac{n(n-1)}{n(n-1)} = \frac{1}{2}
 \]

 \[E[N] = \sum_{i,j} E[I_{ij}] = \frac{n!}{(n-1)!} \cdot \frac{(n-2)!}{n!} = 1/k\]

 Remember that the number of different configurations for \(k \) objects on a circle is \((k-1)! \) not \(k! \). (\((k-1)! = k!/k \))

 (c) Define \(I_{i_1,i_2,...,i_k} = 1 \), if the \(k \)-tuple satisfy the property.

 \[
 E[I_{i_1,i_2,...,i_k}] = P(I_{i_1,i_2,...,i_k} = 1) = \frac{(n-k)!}{n!} \cdot \frac{n!}{n!} = 1/k
 \]

 (d) \(E[N] = \sum_{k=1}^{n} E[N_k] = \sum_{k=1}^{n} 1/k\)

3. Eliminated!

The following problem:

1. The covariance, \(\text{Cov}(X, Y) \), of two random variables, \(X \) and \(Y \), is defined to be \(E(XY) - E(X)E(Y) \). Note that if two random variables are independent, then their covariance is zero.

 (a) Let \((X, Y) \) have joint probability given as:

 \[
 \Pr(X = -1 \cap Y = 1) = \frac{1}{3}
 \]
 \[
 \Pr(X = 0 \cap Y = 0) = \frac{1}{3}
 \]
 \[
 \Pr(X = 1 \cap Y = 1) = \frac{1}{3}
 \]

 Note that \(X \) and \(Y \) are not independent since: \(\Pr(X = 1 \cap Y = 1) = \frac{1}{3} \neq \frac{2}{9} = \Pr(X = 1) \Pr(Y = 1) = \frac{1}{3} \)

 But \(\text{Cov}(X, Y) = 0 \).

 (b)

 \[
 \text{Var}(X_1 + \ldots + X_n) = E[(X_1 + \ldots + X_n)^2] - (E[X_1] + \ldots + E[X_n])^2
 \]

 \[
 = E[\sum_i X_i^2 + \sum_{i<j} 2X_iX_j] - [E[X_1]^2 + \ldots + E[X_n]^2 + \sum_{i<j} 2E[X_i]E[X_j]]
 \]

 \[
 = \sum_{i=1}^{n} \text{Var}(X_i) + 2 \sum_{i<j} \text{Cov}(X_i, X_j)
 \]