1. CRT Decomposition

In this problem we use the Chinese Remainder Theorem to compute $3^{302} \mod 385$.

(a) Write 385 as a product of prime numbers in the form $385 = p_1 \times p_2 \times p_3$.

Answer: $385 = 5 \times 7 \times 11$.

(b) Use Fermat’s Little Theorem to find $3^{302} \mod p_1$, $3^{302} \mod p_2$, and $3^{302} \mod p_3$.

Answer: Since $3^4 \equiv 1 \pmod{5}$, $3^{302} \equiv 3^{4 \times 75} \cdot 3^2 \equiv 4 \pmod{5}$.
Since $3^6 \equiv 1 \pmod{7}$, $3^{302} \equiv 3^{6 \times 50} \cdot 3^2 \equiv 2 \pmod{7}$.
Since $3^{10} \equiv 1 \pmod{11}$, $3^{302} \equiv 3^{10 \times 30} \cdot 3^2 \equiv 9 \pmod{11}$.

(c) Let $x = 3^{302}$. Use part (b) to express the problem as a system of congruences. Argue that there is a unique solution mod 385, and find it. What is the final answer $3^{302} \mod 385$?

Answer: The system of congruences is:

\[
\begin{align*}
x & \equiv 4 \pmod{5} \\
x & \equiv 2 \pmod{7} \\
x & \equiv 9 \pmod{11}
\end{align*}
\]

By the CRT, we know there is a unique solution $x \pmod{385}$. By inspection, we see that $x \equiv 9 \pmod{385}$ satisfies the system of congruences above, hence it must be the unique solution. So $3^{302} \equiv 9 \pmod{385}$.

2. Roots

Let’s make sure you’re comfortable with roots of polynomials in the familiar real numbers \mathbb{R}. Recall that a polynomial of degree d has at most d roots. In this problem, assume we are working with polynomials over \mathbb{R}.

(a) Suppose $p(x)$ and $q(x)$ are two different nonzero polynomials with degrees d_1 and d_2 respectively. What can you say about the number of solutions of $p(x) = q(x)$? How about $p(x) \cdot q(x) = 0$?

Answer: A solution of $p(x) = q(x)$ is a root of the polynomial $p(x) - q(x)$, which has degree at most $\max(d_1, d_2)$. Therefore, the number of solutions is also at most $\max(d_1, d_2)$.

A solution of $p(x) \cdot q(x) = 0$ is a root of the polynomial $p(x) \cdot q(x)$, which has degree $d_1 + d_2$. Therefore, the number of solutions is at most $d_1 + d_2$.

(b) Consider the degree 2 polynomial $f(x) = x^2 + ax + b$. Show that, if f has exactly one root, then $a^2 = 4b$.

Answer: If there is a root c, then the polynomial is divisible by $x - c$. Therefore it can be written as $f(x) = (x - c)g(x)$. But $g(x)$ is a degree one polynomial and by looking at coefficients it is obvious that its leading coefficient is 1. Therefore $g(x) = x - d$ for some d. But then d is also a root, which means that $d = c$. So $f(x) = (x - c)^2$ which means that $a = -2c$ and $b = c^2$, so $a^2 = 4b$.

(c) What is the minimal number of real roots that a nonzero polynomial of degree \(d\) can have? How does the answer depend on \(d\)?

Answer: If \(d\) is even, the polynomial can have 0 roots (e.g., consider \(x^d + 1\), which is always positive for all \(x \in \mathbb{R}\)). If \(d\) is odd, the polynomial must have at least 1 root (a polynomial of odd degree takes on arbitrarily large positive and negative values, and thus must pass through 0 inbetween them at least once).

3. Roots: The Next Generations

Which of the facts from Problem 2 stay true when \(\mathbb{R}\) is replaced by \(GF(p)\) (i.e., if you are working modulo a prime number \(p\))? Which change, and how?

Answer: 2(a) and 2(b) continue to hold in any field, but 2(c) is different: Even degree polynomials can still have 0 roots, for example \(x^2 + 1 \pmod{3}\). However, we lose the guarantee that every odd degree polynomial must have a root (though we are still assured of this at degree 1, i.e., linear polynomials). For example, \(x^3 + x + 1 \pmod{5}\) has no roots.

4. Interpolation Practice

(a) Find a linear polynomial \(p(x)\) over \(\mathbb{R}\) such that \(p(1) = 1\) and \(p(3) = 4\).

Answer: We can find \(p(x) = a_1x + a_0\) by solving the system of linear equations

\[
\begin{align*}
 p(1) &= a_1 + a_0 = 1 \\
 p(3) &= 3a_1 + a_0 = 4
\end{align*}
\]

However, let us use Lagrange interpolation to illustrate the difference with part (b).

We know the polynomial passes through \((x_1,y_1) = (1,1)\) and \((x_2, y_2) = (3,4)\). We form the following Delta functions:

\[
\begin{align*}
\Delta_1(x) &= \frac{x-x_2}{x_1-x_2} = \frac{x-3}{1-3} = -\frac{1}{2}x + \frac{3}{2} \quad \text{(note that } \Delta_1(x_1) = 1, \Delta_1(x_2) = 0) \\
\Delta_2(x) &= \frac{x-x_1}{x_2-x_1} = \frac{x-1}{3-1} = \frac{1}{2}x - \frac{1}{2} \quad \text{(note that } \Delta_2(x_1) = 0, \Delta_2(x_2) = 1)
\end{align*}
\]

Then the polynomial \(p(x)\) is given by

\[
p(x) = y_1\Delta_1(x) + y_2\Delta_2(x) = 1 \cdot \left(-\frac{1}{2}x + \frac{3}{2} \right) + 4 \cdot \left(\frac{1}{2}x - \frac{1}{2} \right) = \frac{3}{2}x - \frac{1}{2}.
\]

Note that \(p(1) = 1\) and \(p(3) = 4\), as desired.

(b) Find a linear polynomial \(q(x)\) over \(GF(5)\) such that \(q(1) \equiv 1 \pmod{5}\) and \(q(3) \equiv 4 \pmod{5}\).

Answer: We use Lagrange interpolation. The Delta functions are:

\[
\begin{align*}
\Delta_1(x) &= \frac{x-x_2}{x_1-x_2} = \frac{x-\overline{3}}{1-\overline{3}} = -2^{-1}(x-\overline{3}) \equiv -3(x-3) \equiv 2x+4 \quad \text{(mod 5)}, \\
\Delta_2(x) &= \frac{x-x_1}{x_2-x_1} = \frac{x-\overline{1}}{3-1} = 2^{-1}(x-\overline{1}) \equiv 3(x-1) \equiv 3x+2 \quad \text{(mod 5)}
\end{align*}
\]

In the calculation above we have used the fact that dividing by 2 is equivalent to multiplying by 2\(^{-1}\) \(\equiv 3\) (mod 5). Then the polynomial \(q(x)\) is given by

\[
q(x) = y_1\Delta_1(x) + y_2\Delta_2(x) \equiv 1 \cdot (2x+4) + 4 \cdot (3x+2) \equiv 14x+12 \equiv 4x+2 \quad \text{(mod 5)}.
\]

Note that \(q(1) \equiv 6 \equiv 1 \pmod{5}\) and \(q(3) \equiv 14 \equiv 4 \pmod{5}\), as desired. Also note that unlike in part (a), here the polynomials \(\Delta_1, \Delta_2\), and \(q\) all have integer coefficients.